1
0
forked from M-Labs/nac3

Compare commits

...

1421 Commits

Author SHA1 Message Date
e480081e4b update dependencies 2025-01-04 10:28:41 +08:00
12fddc3533 [core] codegen/ndarray: Make ndims non-optional
Now that everything is ported to use strided impl, dynamic-ndim ndarray
instances do not exist anymore.
2025-01-03 15:43:08 +08:00
3ac1083734 [core] codegen: Reimplement np_dot() for scalars and 1D
Based on 693b7f37: core/ndstrides: implement np_dot() for scalars and 1D
2025-01-03 15:43:08 +08:00
66b8a5e01d [core] codegen/ndarray: Reimplement matmul
Based on 73c2203b: core/ndstrides: implement general matmul
2025-01-03 15:43:06 +08:00
ebbadc2d74 [core] codegen: Reimplement ndarray cmpop
Based on 56cccce1: core/ndstrides: implement cmpop
2025-01-03 15:15:13 +08:00
a2f1b25fd8 [core] codegen: Reimplement ndarray unary op
Based on bb992704: core/ndstrides: implement unary op
2025-01-03 15:15:12 +08:00
59f19e29df [core] codegen: Reimplement ndarray binop
Based on 9e40c834: core/ndstrides: implement binop
2025-01-03 15:15:12 +08:00
6cbba8fdde [core] codegen: Reimplement builtin funcs to support strided ndarrays
Based on 7f3c4530: core/ndstrides: update builtin_fns to use ndarray
with strides
2025-01-03 15:15:12 +08:00
e6dab25a57 [core] codegen/ndarray: Add NDArrayOut, broadcast_map, map
Based on fbfc0b29: core/ndstrides: add NDArrayOut, broadcast_map and map
2025-01-03 15:15:11 +08:00
2dc5e79a23 [core] codegen/ndarray: Implement subscript assignment
Based on 5bed394e: core/ndstrides: implement subscript assignment

Overlapping is not handled. Currently it has undefined behavior.
2025-01-03 15:15:11 +08:00
dcde1d9c87 [core] codegen/values/ndarray: Add more ScalarOrNDArray utils
Based on f731e604: core/ndstrides: add more ScalarOrNDArray and
NDArrayObject utils
2025-01-03 15:15:10 +08:00
7375983e0c [core] codegen/ndarray: Implement np_transpose without axes argument
Based on 052b67c8: core/ndstrides: implement np_transpose() (no axes
argument)

The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2025-01-03 15:15:08 +08:00
43e440d2fd [core] codegen/ndarray: Reimplement broadcasting
Based on 9359ed96: core/ndstrides: implement broadcasting &
np_broadcast_to()
2025-01-03 15:14:59 +08:00
8d975b5ff3 [core] codegen/ndarray: Implement np_reshape
Based on 926e7e93: core/ndstrides: implement np_reshape()
2025-01-03 14:56:16 +08:00
aae41eef6a [core] toplevel: Add view functions category
Based on 9e0f636d: core: categorize np_{transpose,reshape} as 'view
functions'
2025-01-03 14:47:59 +08:00
132ba1942f [core] toplevel: Implement np_size
Based on 2c1030d1: core/ndstrides: implement np_size()
2025-01-03 14:16:29 +08:00
12358c57b1 [core] codegen/ndarray: Implement np_{shape,strides}
Based on 40c24486: core/ndstrides: implement np_shape() and np_strides()

These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is
used.
2025-01-03 13:58:47 +08:00
9ffa2d6552 [core] codegen/ndarray: Reimplement np_{copy,fill}
Based on 18db85fa: core/ndstrides: implement ndarray.fill() and .copy()
2025-01-03 13:58:47 +08:00
acb437919d [core] codegen/ndarray: Reimplement np_{eye,identity}
Based on fa047d50: core/ndstrides: implement np_identity() and np_eye()
2025-01-03 13:58:47 +08:00
fadadd7505 [core] codegen/ndarray: Reimplement np_array()
Based on 8f0084ac: core/ndstrides: implement np_array()

It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.

However, currently only `np_array(<input>, copy=False)` and `np_array
(<input>, copy=True)` are supported. In NumPy, copy could be false,
true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves
like NumPy's `np.array(<input>, copy=None)`.
2025-01-03 13:58:47 +08:00
26f1428739 [core] codegen: Refactor len()
Based on 54a842a9: core/ndstrides: implement len(ndarray) & refactor
len()
2025-01-03 13:58:47 +08:00
5880f964bb [core] codegen/ndarray: Reimplement np_{zeros,ones,full,empty}
Based on 792374fa: core/ndstrides: implement np_{zeros,ones,full,empty}.
2025-01-03 13:58:47 +08:00
7d02f5833d [core] codegen: Implement Tuple{Type,Value} 2025-01-03 13:58:47 +08:00
822f9d33f8 [core] codegen: Refactor ListType to use derive(StructFields) 2025-01-03 13:58:47 +08:00
805a9d23b3 [core] codegen: Add derive(Copy, Clone) to TypedArrayLikeAdapter 2025-01-03 13:58:46 +08:00
1ffe2fcc7f [core] irrt: Minor reformat 2025-01-03 13:26:51 +08:00
2f0847d77b [core] codegen/types: Refactor ProxyType
- Add alloca_type() function to obtain the type that should be passed
into a `build_alloca` call
- Provide default implementations for raw_alloca and array_alloca
- Add raw_alloca_var and array_alloca_var to distinguish alloca
instructions placed at the front of the function vs at the current
builder location
2024-12-30 17:00:17 +08:00
dc9efa9e8c [core] codegen/ndarray: Use IRRT for size() and indexing operations
Also refactor some usages of call_ndarray_calc_size with ndarray.size().
2024-12-30 16:58:33 +08:00
3c0ce3031f [core] codegen: Update raw_alloca to return PointerValue
Better match the expected behavior of alloca.
2024-12-30 16:51:34 +08:00
d5e8df070a [core] Minor improvements to IRRT and add missing documentation 2024-12-30 16:51:17 +08:00
dc413dfa43 [core] codegen: Refactor TypedArrayLikeAdapter to use fn
Allows for greater flexibility when TypedArrayLikeAdapter is used with
custom value types.
2024-12-30 16:50:22 +08:00
19122e2905 [core] codegen: Rename classes/functions for consistency
- ContiguousNDArrayFields -> ContiguousNDArrayStructFields
- ndarray/nditer: Add _field suffix to field accessors
2024-12-30 16:50:18 +08:00
318371a509 [core] irrt: Minor cleanup 2024-12-30 14:13:48 +08:00
35e3042435 [core] Refactor/Remove redundant and unused constructs
- Use ProxyValue.name where necessary
- Remove NDArrayValue::ptr_to_{shape,strides}
- Remove functions made obsolete by ndstrides
- Remove use statement for ndarray::views as it only contain an impl
block.
- Remove class_names field in Resolvers of test sources
2024-12-30 14:13:48 +08:00
0e5940c49d [meta] Refactor itertools::{chain,enumerate,repeat_n} with std equiv 2024-12-30 14:13:48 +08:00
fbf0053c24 [core] irrt/string: Minor cleanup
- Refactor __nac3_str_eq to always return bool
- Use `get_usize_dependent_function_name` to get IRRT func name
2024-12-30 14:04:42 +08:00
456aefa6ee clean up duplicate include 2024-12-30 13:03:31 +08:00
ram
49a7469b4a use memcmp for string comparison
Co-authored-by: ram <RAMTEJ001@e.ntu.edu.sg>
Co-committed-by: ram <RAMTEJ001@e.ntu.edu.sg>
2024-12-30 13:02:09 +08:00
1531b6cc98 cargo: update dependencies 2024-12-13 19:42:01 +08:00
9bbc40bbfa flake: update dependencies 2024-12-13 19:41:52 +08:00
790e56d106 msys2: update 2024-12-13 19:39:39 +08:00
a00eb7969e [core] codegen: Implement matrix_power
Last of the functions that need to be ported over to strided-ndarray.
2024-12-13 15:23:31 +08:00
27a6f47330 [core] codegen: Implement construction of unsized ndarrays
Partially based on f731e604: core/ndstrides: add more ScalarOrNDArray
and NDArrayObject utils.
2024-12-13 15:23:31 +08:00
061747c67b [core] codegen: Implement NDArrayValue::atleast_nd
Based on 9cfa2622: core/ndstrides: add NDArrayObject::atleast_nd.
2024-12-13 15:23:31 +08:00
dc91d9e35a [core] codegen: Implement ScalarOrNDArray and use it in indexing
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing.
2024-12-13 15:23:31 +08:00
438943ac6f [core] codegen: Implement indexing for NDArray
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing

The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
M-Labs/nac3#486.
2024-12-13 15:23:31 +08:00
678e56c95d [core] irrt: rename NDIndex to NDIndexInt
Unfortunately the name `NDIndex` is used in later commits. Renaming this
typedef to `NDIndexInt` to avoid amending. `NDIndexInt` will be removed
anyway when ndarray strides is completed.
2024-12-13 15:23:31 +08:00
fdfc80ca5f [core] codegen: Implement Slice{Type,Value}, RustSlice
Based on 01c96396: core/irrt: add Slice and Range and part of
8f9d2d82: core/ndstrides: implement ndarray indexing.

Needed for implementing general ndarray indexing.

Currently IRRT slice and range have nothing to do with NAC3's slice
and range. The IRRT slice and range are currently there to implement
ndarray specific features. However, in the future their definitions may
be used to replace that of NAC3's. (NAC3's range is a [i32 x 3], IRRT's
range is a proper struct. NAC3 does not have a slice struct).
2024-12-13 15:23:31 +08:00
8b3429d62a [artiq] Reimplement get_obj_value for strided ndarray
Based on 7ef93472: artiq: reimplement get_obj_value to use ndarray with
strides
2024-12-13 15:23:31 +08:00
f4c5038b95 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
ddd16738a6 [core] codegen: implement ndarray iterator NDIter
Based on 50f960ab: core/ndstrides: implement ndarray iterator NDIter

A necessary utility to iterate through all elements in a possibly
strided ndarray.
2024-12-13 15:23:31 +08:00
44c49dc102 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
e4bd376587 [core] codegen: Implement ContiguousNDArray
Fixes compatibility with linalg algorithms. matrix_power is missing due
to the need for indexing support.
2024-12-13 15:23:29 +08:00
44498f22f6 [core] codegen: Implement NDArray functions from a0a1f35b 2024-12-13 15:22:11 +08:00
110416d07a [core] codegen/irrt: Add IRRT functions for strided-ndarray 2024-12-13 15:22:11 +08:00
08a7d01a13 [core] Add itemsize and strides to NDArray struct
Temporarily disable linalg ndarray tests as they are not ported to work
with strided-ndarray.
2024-12-13 15:22:09 +08:00
3cd36fddc3 [core] codegen/types: Add check_struct_type_matches_fields
Shorthand for checking if a type is representable by a StructFields
instance.
2024-12-12 11:40:44 +08:00
56a7a9e03d [core] codegen: Add helper functions for create+call functions
Replacement for various FnCall methods from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
574ae40f97 [core] codegen: Add call_memcpy_generic_array
Replacement for Instance<Ptr>::copy_from from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
aa293b6bea [core] codegen: Add type_aligned_alloca 2024-12-12 11:30:35 +08:00
eb4b881690 [core] Expose {types,values}::ndarray modules
Allows better encapsulation of members in these modules rather than
allowing them to leak into types/values mod.
2024-12-12 11:30:14 +08:00
3d0a1d281c [core] Expose irrt::ndarray 2024-12-10 12:49:49 +08:00
ad67a99c8f [core] codegen: Cleanup builtin_fns.rs
- Unpack tuples directly in function argument
- Replace Vec parameters with slices
- Replace unwrap-transform with map-unwrap
2024-12-10 12:49:49 +08:00
8e2b50df21 [core] codegen/ndarray: Cleanup
- Remove redundant size param
- Add *_fields functions and docs
2024-12-09 13:01:08 +08:00
06092ad29b [core] Move alloca and map_value of ProxyType to implementations
These functions may not be invokable by the same set of parameters as
some classes has associated states.
2024-12-09 12:51:50 +08:00
d62c6b95fd [core] codegen/types: Rename StructField::set_from_value 2024-12-09 12:51:50 +08:00
95e29d9997 [core] codegen: Move ndarray type/value as a separate module 2024-12-09 12:51:46 +08:00
536ed2146c [meta] Remove all mentions of build_int_cast
build_int_cast performs signed extension or truncation depending on the
source and target int lengths. This is usually not what we want - We
want zero-extension instead.

Replace all instances of build_int_cast with
build_int_z_extend_or_bit_cast to fix this issue.
2024-12-09 12:51:39 +08:00
d484d44d95 [standalone] linalg: Fix function name in error message 2024-12-09 12:09:57 +08:00
ac978864f2 [meta] Apply clippy suggestions 2024-12-09 12:08:41 +08:00
95254f8464 [meta] Update Cargo dependencies 2024-12-09 12:08:41 +08:00
964945d244 string_store: update embedding map after compilation 2024-12-03 16:45:46 +08:00
ae09a0d444 exceptions: preallocate in NAC3 instead 2024-12-03 16:45:05 +08:00
01edd5af67 [meta] Apply rustfmt changes 2024-11-29 15:43:34 +08:00
015714eee1 copy constructor -> clone 2024-11-28 18:52:53 +08:00
71dec251e3 ld/dwarf: remove reader resets
DWARF reader never had to reverse. Readers are already copied to achieve this effect.
Plus the position that it reverses to might be questionable.
2024-11-28 18:52:53 +08:00
fce61f7b8c ld: fix dwarf sections offset calculations 2024-11-28 18:52:53 +08:00
babc081dbd core/toplevel: update tests 2024-11-27 14:31:57 +08:00
5337dbe23b core/toplevel: add python-like error messages for class definition 2024-11-27 14:31:57 +08:00
f862c01412 core/toplevel: refactor composer 2024-11-27 14:31:53 +08:00
0c9705f5f1 [meta] Apply clippy changes 2024-11-25 16:05:12 +08:00
5f940f86d9 [artiq] Fix obtaining ndarray struct from NDArrayType 2024-11-25 15:01:39 +08:00
5651e00688 flake: add platformdirs artiq dependency 2024-11-22 20:30:30 +08:00
f6745b987f bump sipyco and artiq used for profiling 2024-11-22 19:43:03 +08:00
e0dedc6580 nac3artiq: support kernels sent by content 2024-11-22 19:38:52 +08:00
28f574282c [core_derive] Ignore doctest in example
Causes linker errors for unknown reasons.
2024-11-22 00:00:05 +08:00
144f0922db [core] coregen/types: Implement StructFields for NDArray
Also rename some fields to better align with their naming in numpy.
2024-11-21 14:27:00 +08:00
c58ce9c3a9 [core] codegen/types: Implement NDArray in terms of i8*
Better aligns with the future implementation of ndstrides.
2024-11-21 14:27:00 +08:00
f7e296da53 [core] irrt: Break IRRT into several impl files
Each IRRT file is now mapped to one Rust file.
2024-11-21 14:27:00 +08:00
b58c99369e [core] irrt: Update some IRRT implementation
- Change CSlice to use `void*` for better pointer compatibility
- Only include impl *.hpp files in irrt.cpp
- Refactor typedef to using declaration
- Add missing ``// namespace`
2024-11-21 14:26:58 +08:00
1a535db558 [core] codegen: Add dtype to NDArrayType
We won't have this once NDArray is refactored to strided impl.
2024-11-20 15:35:57 +08:00
1ba2e287a6 [core] codegen: Add Self::llvm_type to all type abstractions 2024-11-20 15:35:57 +08:00
f95f979ad3 core/irrt: fix exception.hpp C++ castings 2024-11-20 15:35:57 +08:00
48e2148c0f core/toplevel/helper: add {extract,create}_ndims 2024-11-20 15:35:57 +08:00
88e57f7120 [core_derive] Initial implementation 2024-11-20 15:35:55 +08:00
d7633c42bc [core] codegen/types: Implement StructField{,s}
Loosely based on FieldTraversal by lyken.
2024-11-19 13:46:25 +08:00
a4f53b6e6b [core] codegen: Refactor ProxyType and ProxyValue
Accepts generator+context object for generic type checking. Also
implements more default trait impl for easier delegation.
2024-11-19 13:46:25 +08:00
9d9ead211e [core] Move Proxies to their own modules 2024-11-19 13:46:23 +08:00
26a1b85206 [core] codegen/classes: Remove Underlying type
This is confusing and we want a better abstraction than this.
2024-11-19 13:45:55 +08:00
2822074b2d [meta] Cleanup from upgrading Rust version
- Remove rust_2024_edition warnings, since it wouldn't be released for
another 3 months
- Fix new clippy warnings
2024-11-19 13:43:57 +08:00
fe67ed076c [meta] Update pre-commit configuration 2024-11-19 13:20:27 +08:00
94e2414df0 [meta] Update cargo dependencies 2024-11-19 13:20:26 +08:00
2cee760404 turn rust_2024_compatibility lints into warnings 2024-11-16 13:41:49 +08:00
230982dc84 update dependencies 2024-11-16 12:40:11 +08:00
2bd3f63991 boolop: terminate both branches with *_end_bb 2024-11-16 12:06:20 +08:00
b53266e9e6 artiq: use async RPC for attributes writeback 2024-11-12 12:04:01 +08:00
86eb22bbf3 artiq: main is always the last module 2024-11-12 12:03:38 +08:00
beaa38047d artiq: suppress main module debug warning 2024-11-12 12:03:08 +08:00
705dc4ff1c artiq: lump return value into attributes writeback RPC 2024-11-12 12:02:35 +08:00
979209a526 binop: expand not operator as loglcal not 2024-11-08 17:12:01 +08:00
c3927d0ef6 [ast] Refactor lazy_static to LazyLock
It is available in Rust 1.80 and reduces a dependency.
2024-10-30 12:29:51 +08:00
202a902cd0 [meta] Update dependencies 2024-10-30 12:29:51 +08:00
b6e2644391 [meta] Update cargo dependencies 2024-10-18 14:17:16 +08:00
45cd01556b [meta] Apply cargo fmt 2024-10-18 14:16:42 +08:00
b6cd2a6993 [meta] Reorganize order of use declarations - Phase 3 2024-10-17 16:25:52 +08:00
a98f33e6d1 [meta] Reorganize order of use declarations - Phase 2
Some more rules:

- For module-level imports, prefer no prefix > super > crate.
- Use crate instead of super if super refers to the crate-level module
2024-10-17 15:57:33 +08:00
5839badadd [standalone] Update globals.py with type-inferred global var 2024-10-07 20:44:08 +08:00
56c845aac4 [standalone] Add support for registering globals without type decl 2024-10-07 20:44:06 +08:00
65a12d9ab3 [core] Refactor registration of top-level variables 2024-10-07 17:05:48 +08:00
9c6685fa8f [core] typecheck/function_check: Fix lookup of defined ids in scope 2024-10-07 16:51:37 +08:00
2bb788e4bb [core] codegen/expr: Materialize implicit globals
Required for when globals are read without the use of a global
declaration.
2024-10-07 13:13:20 +08:00
42a2f243b5 [core] typecheck: Disallow redeclaration of var shadowing global 2024-10-07 13:11:00 +08:00
3ce2eddcdc [core] typecheck/type_inferencer: Infer whether variables are global 2024-10-07 13:10:46 +08:00
51bf126a32 [core] typecheck/type_inferencer: Differentiate global symbols
Required for analyzing use of global symbols before global declaration.
2024-10-07 12:25:00 +08:00
1a197c67f6 [core] toplevel/composer: Reduce lock scope while analyzing function 2024-10-05 15:53:20 +08:00
581b2f7bb2 [standalone] Add demo for global variables 2024-10-04 13:24:30 +08:00
746329ec5d [standalone] Implement symbol resolution for globals 2024-10-04 13:24:30 +08:00
e60e8e837f [core] Add support for global statements 2024-10-04 13:24:27 +08:00
9fdbe9695d [core] Add generator to SymbolResolver::get_symbol_value
Needed in a future commit.
2024-10-04 13:20:29 +08:00
8065e73598 [core] toplevel/composer: Add type analysis for global variables 2024-10-04 13:20:29 +08:00
192290889b [core] Add IdentifierInfo
Keeps track of whether an identifier refers to a global or local
variable.
2024-10-04 13:20:24 +08:00
1407553a2f [core] Implement parsing of global variables
Globals are now parsed into symbol resolver and top level definitions.
2024-10-04 13:18:29 +08:00
c7697606e1 [core] Add TopLevelDef::Variable 2024-10-04 13:09:25 +08:00
88d0ccbf69 [standalone] Explicit panic when encountering a compilation error
Otherwise scripts will continue to execute.
2024-10-04 13:00:16 +08:00
a43b59539c [meta] Move variables declarations closer to where they are first used 2024-10-04 13:00:16 +08:00
fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00
7f6c9a25ac [meta] Update Cargo dependencies 2024-10-04 12:52:01 +08:00
6c8382219f msys2: get python via numpy dependencies 2024-09-30 14:27:30 +08:00
9274a7b96b flake: update nixpkgs 2024-09-30 14:22:40 +08:00
d1c0fe2900 cargo: update dependencies 2024-09-30 14:14:43 +08:00
f2c047ba57 artiq: support async rpcs
Co-authored-by: mwojcik <mw@m-labs.hk>
Co-committed-by: mwojcik <mw@m-labs.hk>
2024-09-13 12:12:13 +08:00
5e2e77a500 [meta] Bump inkwell to v0.5 2024-09-13 11:11:14 +08:00
f3cc4702b9 [meta] Update dependencies 2024-09-13 11:11:14 +08:00
3e92c491f5 [standalone] Add tests creating ndarrays with tuple dims 2024-09-11 15:52:43 +08:00
7f629f1579 core: fix comment in unify_call 2024-09-11 15:46:19 +08:00
5640a793e2 core: allow np_full to take tuple shapes 2024-09-11 15:46:19 +08:00
abbaa506ad [standalone] Remove redundant recreation of TargetMachine 2024-09-09 14:27:10 +08:00
f3dc02d646 [meta] Apply cargo fmt 2024-09-09 14:24:52 +08:00
ea217eaea1 [meta] Update pre-commit config
Directly invoke cargo using nix develop to avoid using the system cargo.
2024-09-09 14:24:38 +08:00
5a34551905 allow the use of the LLVM shared library
Which in turns allows working around the incompatibility of the LLVM static library
with Rust link-args=-rdynamic, which produces binaries that either fail to link (OpenBSD)
or segfault on startup (Linux).

The year is 2024 and compiler toolchains are still a trash fire like this.
2024-09-09 11:17:31 +08:00
6098b1b853 fix previous commit 2024-09-06 11:32:08 +08:00
668ccb1c95 nac3core: expose inkwell and nac3parser 2024-09-06 11:06:26 +08:00
a3c624d69d update all dependencies 2024-09-06 10:21:58 +08:00
bd06155f34 irrt: compatibility with pre-C23 compilers 2024-09-05 18:54:55 +08:00
9c33c4209c [core] Fix type of ndarray.element_type
Should be the element type of the NDArray itself, not the pointer to its
type.
2024-08-30 22:47:38 +08:00
122983f11c flake: update dependencies 2024-08-30 14:45:38 +08:00
71c3a65a31 [core] codegen/stmt: Fix obtaining return type of sret functions 2024-08-29 19:15:30 +08:00
8c540d1033 [core] codegen/stmt: Add more casts for boolean types 2024-08-29 16:36:32 +08:00
0cc60a3d33 [core] codegen/expr: Fix missing cast to i1 2024-08-29 16:36:32 +08:00
a59c26aa99 [artiq] Fix RPC of ndarrays from host 2024-08-29 16:08:45 +08:00
02d93b11d1 [meta] Update dependencies 2024-08-29 14:32:21 +08:00
59cad5bfe1
standalone: clang-format demo.c 2024-08-29 10:37:24 +08:00
4318f8de84
standalone: improve src/assignment.py 2024-08-29 10:33:58 +08:00
15ac00708a [core] Use quoted include paths instead of angled brackets
This is preferred for user-defined headers.
2024-08-28 16:37:03 +08:00
c8dfdcfdea
standalone & artiq: remove class_names from resolver 2024-08-27 23:43:40 +08:00
600a5c8679 Revert "standalone: reformat demo.c"
This reverts commit 308edb8237.
2024-08-27 23:06:49 +08:00
22c4d25802 core/typecheck: add missing typecheck in matmul 2024-08-27 22:59:39 +08:00
308edb8237 standalone: reformat demo.c 2024-08-27 22:55:22 +08:00
9848795dcc core/irrt: add exceptions and debug utils 2024-08-27 22:55:22 +08:00
58222feed4 core/irrt: split into headers 2024-08-27 22:55:22 +08:00
518f21d174 core/irrt: build.rs capture IR defined constants 2024-08-27 22:55:22 +08:00
e8e49684bf core/irrt: build.rs capture IR defined types 2024-08-27 22:55:22 +08:00
b2900b4883 core/irrt: use +std=c++20 to compile
To explicitly set the C++ variant and avoid inconsistencies.
2024-08-27 22:55:22 +08:00
c6dade1394 core/irrt: reformat 2024-08-27 22:55:22 +08:00
7e3fcc0845 add .clang-format 2024-08-27 22:55:22 +08:00
d3b4c60d7f core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-27 22:55:22 +08:00
5b2b6db7ed core: improve error messages 2024-08-26 18:37:55 +08:00
15e62f467e standalone: add tests for polymorphism 2024-08-26 18:37:55 +08:00
2c88924ff7 core: add support for simple polymorphism 2024-08-26 18:37:55 +08:00
a744b139ba core: allow Call and AnnAssign in init block 2024-08-26 18:37:55 +08:00
2b2b2dbf8f [core] Fix resolution of exception names in raise short form
Previous implementation fails as `resolver.get_identifier_def` in ARTIQ
would return the exception __init__ function rather than the class.

We fix this by limiting the exception class resolution to only include
raise statements, and to force the exception name to always be treated
as a class.

Fixes #501.
2024-08-26 18:35:02 +08:00
d9f96dab33 [core] Add codegen_unreachable 2024-08-23 13:10:55 +08:00
c5ae0e7c36 [standalone] Add tests for tuple equality 2024-08-21 16:25:32 +08:00
b8dab6cf7c [standalone] Add tests for string equality 2024-08-21 16:25:32 +08:00
4d80ba38b7 [core] codegen/expr: Implement comparison of tuples 2024-08-21 16:25:32 +08:00
33929bda24 [core] typecheck/typedef: Add support for tuple methods 2024-08-21 16:25:32 +08:00
a8e92212c0 [core] codegen/expr: Implement string equality 2024-08-21 16:25:32 +08:00
908271014a [core] typecheck/magic_methods: Add equality methods to string 2024-08-21 16:25:32 +08:00
c407622f5c [core] codegen/expr: Add compilation error for unsupported cmpop 2024-08-21 15:46:13 +08:00
d7952d0629 [core] codegen/expr: Fix assertions not generated for -O0 2024-08-21 15:36:54 +08:00
ca1395aed6 [core] codegen: Remove redundant return 2024-08-21 15:36:54 +08:00
7799aa4987 [meta] Do not specify rev in dependency version 2024-08-21 15:36:54 +08:00
76016a26ad [meta] Apply clippy suggestions 2024-08-21 13:07:57 +08:00
8532bf5206
standalone: add missing test_ndarray_ceil() run 2024-08-21 11:39:00 +08:00
2cf64d8608
apply clippy comment changes 2024-08-21 11:21:10 +08:00
706759adb2
artiq: apply cargo fmt 2024-08-21 11:21:10 +08:00
b90cf2300b
core/fix: add missing lifetime in gen_for* 2024-08-21 11:05:30 +08:00
0fc26df29e flake: update nixpkgs 2024-08-19 23:53:15 +08:00
0b074c2cf2 [artiq] symbol_resolver: Set private linkage for constants 2024-08-19 14:41:43 +08:00
a0f6961e0e cargo: update dependencies 2024-08-19 13:15:03 +08:00
b1c5c2e1d4 [artiq] Fix RPC of ndarrays to host 2024-08-15 15:41:24 +08:00
69320a6cf1 [artiq] Fix LLVM representation of strings
Should be `%str` rather than `[N x i8]`.
2024-08-14 09:30:08 +08:00
9e0601837a core: Add compile-time feature to disable escape analysis 2024-08-14 09:29:48 +08:00
432c81a500
core: update insta after #489 2024-08-13 15:30:34 +08:00
6beff7a268 [artiq] Implement core_log and rtio_log in terms of polymorphic_print
Implementation mostly references the original implementation in Python.
2024-08-13 15:19:03 +08:00
6ca7aecd4a [artiq] Add core_log and rtio_log function declarations 2024-08-13 15:19:03 +08:00
8fd7216243 [core] toplevel/composer: Add lateinit_builtins
This is required for the new core_log and rtio_log functions, which take
a generic type as its parameter. However, in ARTIQ builtins are
initialized using one unifier and then actually used by another unifier.

lateinit_builtins workaround this issue by deferring the initialization
of functions requiring type variables until the actual unifier is ready.
2024-08-13 15:19:03 +08:00
4f5e417012 [core] codegen: Add function to get format constants for integers 2024-08-13 15:19:03 +08:00
a0614bad83 [core] codegen/expr: Make gen_string return StructValue
So that it is clear that the value itself is returned rather than a
pointer to the struct or its data.
2024-08-13 15:19:03 +08:00
5539d144ed [core] Add CodeGenContext::build_in_bounds_gep_and_load
For safer accesses to `gep`-able values and faster fails.
2024-08-13 15:19:03 +08:00
b3891b9a0d standalone: Fix several issues post script refactoring
- Add helptext for check_demos.sh
- Add back support for using debug NAC3 for running tests
- Output error message when argument is not recognized
- Fixed last non-demo script argument being ignored
- Add back SSE2 requirement to NAC3 (required for mandelbrot)
2024-08-13 15:19:03 +08:00
6fb8939179 [meta] Update dependencies 2024-08-13 15:19:03 +08:00
973dc5041a core/typecheck: Support tuple arg type in len() 2024-08-13 15:02:59 +08:00
d0da688aa7 standalone: Add tuple len test 2024-08-13 15:02:59 +08:00
12c4e1cf48 core/toplevel/builtins: Add support for len() on tuples 2024-08-13 15:02:59 +08:00
9b988647ed core/toplevel/builtins: Extract len() into builtin function 2024-08-13 15:02:59 +08:00
35a7cecc12
core/typecheck: fix np_array ndmin bug 2024-08-13 12:50:04 +08:00
7e3d87f841 core/codegen: fix bug in call_ceil function 2024-08-07 16:40:55 +08:00
ac0d83ef98 standalone: Add vararg.py 2024-08-06 11:48:42 +08:00
3ff6db1a29 core/codegen: Add va_start and va_end intrinsics 2024-08-06 11:48:42 +08:00
d7b806afb4 core/codegen: Implement support for va_info on supported architectures 2024-08-06 11:48:40 +08:00
fac60c3974 core/codegen: Handle vararg in function generation 2024-08-06 11:46:00 +08:00
f5fb504a15 core/codegen/expr: Implement vararg handling in gen_call 2024-08-06 11:46:00 +08:00
faa3bb97ad core/typecheck/typedef: Add vararg to Unifier::stringify 2024-08-06 11:46:00 +08:00
6a64c9d1de core/typecheck/typedef: Add is_vararg_ctx to TTuple 2024-08-06 11:45:54 +08:00
3dc8498202 core/typecheck/typedef: Handle vararg parameters in unify_call 2024-08-06 11:43:13 +08:00
cbf79c5e9c core/typecheck/typedef: Add is_vararg to FuncArg, ConcreteFuncArg 2024-08-06 11:43:13 +08:00
b8aa17bf8c core/toplevel/composer: Add parsing for vararg parameter 2024-08-06 10:52:24 +08:00
f5b998cd9c core/codegen: Remove unnecessary mut from get_llvm*_type 2024-08-06 10:52:24 +08:00
c36f85ecb9 meta: Update dependencies 2024-08-06 10:52:24 +08:00
3a8c385e01 core/typecheck: fix missing ExprKind::Asterisk in fix_assignment_target_context 2024-08-05 19:30:48 +08:00
221de4d06a core/codegen: add missing comment 2024-08-05 19:30:48 +08:00
fb9fe8edf2 core: reimplement assignment type inference and codegen
- distinguish between setitem and getitem
- allow starred assignment targets, but the assigned value would be a tuple
- allow both [...] and (...) to be target lists
2024-08-05 19:30:48 +08:00
894083c6a3 core/codegen: refactor gen_{for,comprehension} to match on iter type 2024-08-05 19:30:48 +08:00
669c6aca6b clean up and fix 32-bit demos 2024-08-05 19:04:25 +08:00
63d2b49b09 core: remove np_linalg_matmul 2024-08-05 11:44:55 +08:00
bf709889c4 standalone/demo: separate linalg functions from main workspace 2024-08-05 11:44:54 +08:00
1c72698d02 core: add np_linalg_det and np_linalg_matrix_power functions 2024-07-31 18:02:54 +08:00
54f883f0a5 core: implement np_dot using LLVM_IR 2024-07-31 15:53:51 +08:00
4a6845dac6 standalone: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
00236f48bc core: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
a3e6bb2292 core/helper: add linalg section 2024-07-31 13:23:07 +08:00
17171065b1 standalone: link linalg at runtime 2024-07-31 13:23:07 +08:00
540b35ec84 standalone: move linalg functions to demo 2024-07-31 13:23:05 +08:00
4bb00c52e3 core/builtin_fns: improve error reporting 2024-07-31 13:21:31 +08:00
faf07527cb standalone: add runtime implementation for linalg functions 2024-07-31 13:21:28 +08:00
d6a4d0a634 standalone: add linalg methods and tests 2024-07-29 16:48:06 +08:00
2242c5af43 core: add linalg methods 2024-07-29 16:48:06 +08:00
318a675ea6 standalone: Rename -m32 to -i386 2024-07-29 14:58:58 +08:00
32e52ce198 standalone: Revert using uint32_t as slice length
Turns out list and str have always been size_t.
2024-07-29 14:58:29 +08:00
665ca8e32d cargo: update dependencies 2024-07-27 22:24:56 +08:00
12c12b1d80 flake: update nixpkgs 2024-07-27 22:22:20 +08:00
72972fa909 core/toplevel: add more numpy categories 2024-07-27 21:57:47 +08:00
142cd48594 core/toplevel: reorder PrimDef::details 2024-07-27 21:57:47 +08:00
8adfe781c5 core/toplevel: fix PrimDef method names 2024-07-27 21:57:47 +08:00
339b74161b core/toplevel: reorganize PrimDef 2024-07-27 21:57:47 +08:00
8c5ba37d09 standalone: Add 32-bit execution tests to check_demo.sh 2024-07-26 13:35:40 +08:00
05a8948ff2 core: Minor cleanup to use ListValue APIs 2024-07-26 13:35:40 +08:00
6d171ec284 core: Add label name and hooks to gen_for functions 2024-07-26 13:35:40 +08:00
0ba68f6657 core: Set target triple and datalayout for each module
Fixes an issue with inconsistent pointer sizes causing crashes.
2024-07-26 13:35:40 +08:00
693b2a8863 core: Add support for 32-bit size_t on 64-bit targets 2024-07-26 13:35:40 +08:00
5faeede0e5 Determine size_t using LLVM target machine 2024-07-26 13:35:38 +08:00
266707df9d standalone: Add support for running 32-bit binaries 2024-07-26 13:32:38 +08:00
3d3c258756 standalone: Remove support for --lli 2024-07-26 13:32:38 +08:00
ed1182cb24 standalone: Update format specifiers for exceptions
Use platform-agnostic identifiers instead.
2024-07-26 13:32:37 +08:00
fd025c1137 standalone: Use uint32_t for cslice length
Matching the expected type of string and list slices.
2024-07-26 13:32:21 +08:00
f139db9af9 meta: Update dependencies 2024-07-26 10:33:02 +08:00
44487b76ae standalone: interpret_demo.py remove duplicated section 2024-07-22 17:23:35 +08:00
1332f113e8 standalone: fix interpret_demo.py comments 2024-07-22 17:06:14 +08:00
7632d6f72a cargo: update dependencies 2024-07-21 11:00:25 +08:00
4948395ca2 core/toplevel/type_annotation: Add handling for mismatching class def
Primitive types only contain fields in its Type and not its TopLevelDef.
This causes primitive object types to lack some fields.
2024-07-19 14:42:14 +08:00
3db3061d99 artiq/symbol_resolver: Handle type of zero-length lists 2024-07-19 14:42:14 +08:00
51c2175c80 core/codegen/stmt: Convert assertion values to i1 2024-07-19 14:42:14 +08:00
1a31a50b8a
standalone: fix __nac3_raise def in demo.c 2024-07-17 21:22:08 +08:00
6c10e3d056 core: cargo clippy 2024-07-12 21:18:53 +08:00
2dbc1ec659 cargo fmt 2024-07-12 21:16:38 +08:00
c80378063a add np_argmin/argmax to interpret_demo environment 2024-07-12 13:27:52 +02:00
513d30152b core: support raise exception short form 2024-07-12 18:58:34 +08:00
45e9360c4d standalone: Add np_argmax and np_argmin tests 2024-07-12 18:19:56 +08:00
2e01b77fc8 core: refactor np_max/np_min functions 2024-07-12 18:18:54 +08:00
cea7cade51 core: add np_argmax/np_argmin functions 2024-07-12 18:18:28 +08:00
d658d9b00e update dependencies, Python 3.12 on Linux 2024-07-09 23:56:12 +08:00
eeb474f9e6 core: reduce code duplication in codegen/extern_fns (#453)
Used macros to reduce code duplication in `codegen/extern_fns`

Reviewed-on: M-Labs/nac3#453
Co-authored-by: abdul124 <ar@m-labs.hk>
Co-committed-by: abdul124 <ar@m-labs.hk>
2024-07-09 16:31:08 +08:00
88b72af2d1 core/llvm_intrinsic: improve macro name and comments 2024-07-09 16:30:32 +08:00
b73f6c4d68 core: reduce code duplication in codegen/llvm_intrinsic 2024-07-09 16:30:32 +08:00
f47cdec650 standalone: Fix output format of output_range 2024-07-09 13:55:48 +08:00
d656880e44 standalone: Fix missing implementation for output_range 2024-07-09 13:53:50 +08:00
a91602915a core: Fix missing fields in range type 2024-07-09 13:53:50 +08:00
1c56005a01 core: Reformat and modernize irrt.cpp
- Use anon namespace instead of static
- Use using declaration instead of typedef
- Align pointers to the type instead of the identifier
2024-07-09 13:53:50 +08:00
bc40a32524 core: Add report_type_error to enable more code reuse 2024-07-09 13:44:47 +08:00
c820daf5f8 core: Apply cargo format 2024-07-09 13:32:10 +08:00
25d2de67f7 standalone: Add output_range and tests 2024-07-09 04:44:40 +08:00
2cfb7a7e10 core: Refactor range function into constructor 2024-07-09 04:44:40 +08:00
9238a5e86e standalone: Rename output_str to output_strln and add output_str
output_str is for outputting strings without newline, and the newly
introduced output_strln now has the old behavior of ending with a
newline.
2024-07-09 04:44:40 +08:00
76defac462 meta: use clang -x c++ instead of clang++ 2024-07-07 20:03:34 +08:00
650f354b74 core: use C++ for irrt source 2024-07-07 14:36:10 +08:00
f062ef5f59 core/llvm_intrinsic: replace roundeven with rint 2024-07-07 14:24:18 +08:00
f52086b706 core: improve binop and cmpop error messages 2024-07-05 16:27:24 +08:00
0a732691c9 core: refactor typecheck/magic_methods.rs operators & add op symbol name 2024-07-05 16:27:20 +08:00
cbff356d50 core: workaround inkwell on llvm.stackrestore 2024-07-05 13:56:12 +08:00
24ac3820b2 core: check int32 obj_id directly in fold_numpy_function_call_shape_argument 2024-07-05 10:36:47 +08:00
ba32fab374 standalone: Add demos for list arithmetic operators 2024-07-04 16:01:15 +08:00
c4052b6342 core: Implement multi-operand __eq__ and __ne__ for lists 2024-07-04 16:01:15 +08:00
66c205275f core: Implement list::__add__ 2024-07-04 16:01:11 +08:00
c85e412206 core: Implement list::__mul__ 2024-07-04 15:53:50 +08:00
075536d7bd core: Add BreakContinueHooks for gen_for_callback 2024-07-04 15:32:18 +08:00
13beeaa2bf core: Implement handling for zero-length lists 2024-07-04 15:32:18 +08:00
2194dbddd5 core/type_annotation: Refactor List type to TObj
In preparation for operators on lists.
2024-07-04 15:32:18 +08:00
94a1d547d6 meta: Update dependencies 2024-07-04 15:32:18 +08:00
d6565feed3 core: ndarray_from_ndlist_impl cast size_of to usize 2024-07-04 12:24:52 +08:00
83154ef8e1 core/llvm_intrinsics: remove llvm.roundeven call from call_float_roundeven 2024-07-03 14:17:47 +08:00
0744b938b8 core: fix __nac3_ndarray_calc_size crash due to incorrect typing 2024-07-03 13:03:14 +08:00
56fa2b6803 core: fix crash on iterating over non-iterables
a
2024-06-28 15:45:53 +08:00
d06c13f936 core: fix crash on invalid subscripting 2024-06-27 16:58:48 +08:00
9808923258 core: improve comments in type_inferencer/mod.rs 2024-06-27 14:46:48 +08:00
5b11a1dbdd core: support tuple and int32 input for np_empty, np_ones, and more 2024-06-27 14:30:17 +08:00
b21df53e0d core: fix comment typo in unify_call() 2024-06-27 14:06:39 +08:00
0ec967a468 core: improve function call errors 2024-06-27 14:06:39 +08:00
ca8459dc7b standalone: prettify TopLevelComposer error reporting 2024-06-27 10:15:14 +08:00
b0b804051a nac3artiq: allow class attribute access without init function 2024-06-25 16:06:33 +08:00
134af79fd6 core: add support for class attributes 2024-06-25 16:06:33 +08:00
7fe2c3496c core: add attribute field to class definition 2024-06-25 16:06:33 +08:00
144a3fc426 core: more derive Debug in typedef 2024-06-25 15:02:50 +08:00
74096eb9f6 core: name codegen worker threads 2024-06-25 12:36:37 +08:00
06e9d90d57 apply clippy changes 2024-06-21 14:14:01 +08:00
d89146aa02 core: use no_run on builtin_fns docs 2024-06-20 13:53:25 +08:00
5bade81ddb standalone: Add test for multidim array index with one index 2024-06-20 12:50:30 +08:00
0452e6de78 core: Fix codegen for tuple-index into ndarray 2024-06-20 12:50:30 +08:00
635c944c90 core: Fix type inference for tuple-index into ndarray
Fixes #420.
2024-06-20 12:50:30 +08:00
e36af3b0a3 core: reduce code duplication in codegen/builtin_fns (#422)
Used macros to generate some unary math functions.

Reviewed-on: M-Labs/nac3#422
Reviewed-by: David Mak <chmakac@connect.ust.hk>
Co-authored-by: lyken <lyken@m-labs.hk>
Co-committed-by: lyken <lyken@m-labs.hk>
2024-06-20 12:48:44 +08:00
5b1aa812ed update dependencies 2024-06-20 10:43:55 +08:00
d3cd2a8d99 artiq: Add support for generating RPC tag for ndarray 2024-06-19 18:56:16 +08:00
202a63274d artiq: Implement pyty-to-ty conversion 2024-06-19 18:56:15 +08:00
76dd5191f5 artiq: Implement Python-to-LLVM conversion of ndarray 2024-06-19 18:56:15 +08:00
8d9df0a615 artiq: Fix ndarray class ID
We want the class ID of the ndarray class, not its corresponding typing
class.
2024-06-19 18:56:15 +08:00
07adfb2a18 standalone: Add *.ll to Gitignore list 2024-06-19 18:56:15 +08:00
f00e458f60 add test for class without __init__ 2024-06-19 18:16:54 +08:00
1bc95a7ba6 Add handling for np.bool_ and np.str_ 2024-06-19 15:10:47 +08:00
e85f4f9bd2 core: refactor top_level::builtins::get_builtins() 2024-06-18 11:06:25 +08:00
ce3e9bf4fe nac3artiq: add support string attributes in classes 2024-06-17 16:53:51 +08:00
82091b1be8 meta: Apply clippy changes 2024-06-17 14:10:31 +08:00
32919949e2 Run clippy --tests on pre-commit hook 2024-06-17 12:51:25 +08:00
2abe75d1f4 core: remove code dup with make_exception_fields 2024-06-17 12:01:48 +08:00
676412fe6d apply cargo fmt 2024-06-14 09:46:42 +08:00
8b9df7252f core: cleanup with Unifier::generate_var_id 2024-06-14 09:42:04 +08:00
6979843431 core: fix typo in into_var_map 2024-06-13 16:59:10 +08:00
fed1361c6a core: rename to_var_map to into_var_map 2024-06-13 16:59:10 +08:00
aa94e0c8a4 core: remove pub & add From<TypeVarId> for u32 2024-06-13 16:59:10 +08:00
f523e26227 core: fix typo in fmt::Display of TypeVarId 2024-06-13 16:59:10 +08:00
f026b48e2a core: refactor to use TypeVarId and TypeVar 2024-06-13 16:59:10 +08:00
dc874f2994 core: use PrimDef simple names in make_primitives() 2024-06-13 16:58:32 +08:00
95de0800b4 core/demo: fix typo in .gitignore 2024-06-13 16:05:33 +08:00
3d71c6a850 core/demo: gitignore to ignore *.bc & *.o 2024-06-13 16:00:23 +08:00
be55e2ac80 meta: Update README to include info regarding pre-commit hooks 2024-06-12 16:10:57 +08:00
79c8b759ad meta: Add pre-commit configuration 2024-06-12 16:10:57 +08:00
4798c53a21 flake: Add pre-commit to dev environment 2024-06-12 16:10:57 +08:00
23974feae7 meta: Restrict number of allowed lints 2024-06-12 16:10:57 +08:00
40a3bded36 meta: Set clippy lints in {main,lib}.rs
So that this does not have to be manually passed to the `cargo clippy`
command-line every single time. Also allows incrementally addressing
these lints by removing and fixing them one-by-one.
2024-06-12 16:10:57 +08:00
c4420e6ab9 core: refactor get_builtins() 2024-06-12 15:09:20 +08:00
fd36f78005 core: refactor PrimitiveDefinitionId into enum PrimDef 2024-06-12 15:01:01 +08:00
8168692cc3 apply cargo fmt 2024-06-12 14:45:03 +08:00
53d44b9595 standalone: Add np_array tests 2024-06-11 16:44:36 +08:00
6153f94b05 core/numpy: Implement codegen for np_array 2024-06-11 16:42:11 +08:00
4730b595f3 core/builtins: Add np_array function 2024-06-11 16:42:08 +08:00
c2fdb12397 core/type_inferencer: Add special rule for np_array 2024-06-11 16:40:35 +08:00
82bf14785b core: Add multidimensional array helpers 2024-06-11 15:30:06 +08:00
2d4329e23c core/stmt: Use BB of last statement in if-else in phi 2024-06-11 15:30:06 +08:00
679656f9e1 core/classes: Fix incorrect field locations for lists 2024-06-11 15:30:06 +08:00
210d9e2334 core: Add more creator functions for ProxyType 2024-06-11 15:26:37 +08:00
181ac3ec1a core/classes: Fix incorrect pointers of range.{stop,step} 2024-06-11 15:13:31 +08:00
3acdfb304d meta: Apply clippy suggestions 2024-06-11 14:58:32 +08:00
6e24da9cc5 meta: Update dependencies 2024-06-11 14:58:32 +08:00
f0ab1b858a core: Refactor class abstractions
- Introduce new Type abstractions
- Rearrange some functions
2024-06-06 13:45:51 +08:00
08129cc635 nac3core: add TopLevelComposer::new builtin check's assertion msg 2024-06-05 15:30:02 +08:00
ad4832dcf4 core: Refactor to get LLVM intrinsics via Intrinsics::find 2024-06-05 15:29:40 +08:00
520bbb246b flake: add llvmPackages_14.llvm to devShells linux default (#405)
Co-authored-by: lyken <lyken@m-labs.hk>
Co-committed-by: lyken <lyken@m-labs.hk>
2024-06-05 11:11:56 +08:00
b857f1e403 nac3core: fix typo in gen_for's comment 2024-06-04 17:15:41 +08:00
fa8af37e84 flake: update nixpkgs 2024-06-03 22:22:04 +08:00
23b2fee4e7 standalone: Add test case for ndarray slicing 2024-06-03 16:40:05 +08:00
ed79d5bb9e core/expr: Add support for multi-dim slicing of NDArrays 2024-06-03 16:40:05 +08:00
c35ad06949 core/expr: Add support for 1D slicing of NDArrays 2024-06-03 16:40:05 +08:00
135ef557f9 core/numpy: Implement ndarray_sliced_{copy,copyto_impl}
Performing copying with optional support for slicing. Also made
copy_impl delegate to sliced_copy, as sliced_copy now performs a
superset of operations that copy_impl can already do.
2024-06-03 16:40:05 +08:00
a176c3eb70 core/irrt: Change handle_slice_indices to instead take length of object
So that all other array-like datatypes (e.g. ndarray) can also take
advantage of it.
2024-06-03 16:40:05 +08:00
2cf79510c2 core/numpy: Add more helper functions 2024-06-03 16:40:05 +08:00
b6ff75dcaf core/irrt: Add support for calculating partial size of NDArray 2024-06-03 16:40:05 +08:00
588c15f80d core/stmt: Add gen_for_range_callback
For generating for loops over range objects or array slices.
2024-06-03 16:40:05 +08:00
82cc693b11 meta: Update dependencies 2024-06-03 16:40:02 +08:00
520e1adc56 core/builtins: Add np_minimum/np_maximum 2024-05-09 15:01:20 +08:00
73e81259f3 core/builtins: Add np_min/np_max 2024-05-09 15:01:20 +08:00
7627acea41 core/type_inferencer: Fix error message 2024-05-09 15:01:20 +08:00
a777099ea8 core/type_inferencer: Fix missing lowering for some builtin TVars 2024-05-09 15:01:20 +08:00
876e6ea7b8 meta: Update dependencies 2024-05-08 17:27:38 +08:00
30c6cffbad core/builtins: Refactored numpy builtins to accept scalar and ndarrays 2024-05-06 15:38:29 +08:00
51671800b6 core/builtins: Extract codegen portion into functions
We will need to reuse them when implementing elementwise function
application for ndarrays.
2024-05-06 13:21:54 +08:00
7195476edb core/builtins: Add llvm_intrinsics prefix 2024-05-06 13:21:54 +08:00
eecba0b71d core: Add GenCall::create_dummy
A simple abstraction for GenCalls that are already handled elsewhere.
2024-05-06 13:21:54 +08:00
7b4253ccd8 core/numpy: Add missing lifetime parameters 2024-05-06 13:21:54 +08:00
f58c3a11f8 core/builtins: Rework handling of PrimitiveStore-Unifier tuples 2024-05-06 13:21:54 +08:00
d0766a116f core: Remove Box from GenCallCallback type alias
So that references to the function type can be taken.
2024-05-06 13:21:54 +08:00
64a3751fc2 core: Remove custom function type definitions for ndarray operators 2024-05-06 13:21:54 +08:00
9566047241 standalone: Fix cbrt never tested 2024-05-06 13:21:54 +08:00
062e318dd5 core/magic_methods: Fix clippy warnings 2024-05-06 13:21:54 +08:00
c4dc36ae99 standalone: Add explicit -- for delimiting run args vs NAC3 args 2024-05-06 13:21:54 +08:00
baac348ee6 meta: Update dependencies 2024-05-06 13:21:37 +08:00
847615fc2f core: Implement numpy.matmul for 2D-2D ndarrays 2024-04-23 10:27:37 +08:00
5dfcc63978 core/classes: Take reference of indexes 2024-04-16 17:20:24 +08:00
025b3cd02f core/stmt: Remove gen_if_chained*
Turns out it is really difficult to get lifetimes and closures right, so
let's just provide the most rudimentary if-else codegen and we can nest
them if necessary.
2024-04-16 17:16:50 +08:00
e0f440040c core/expr: Implement negative indices for ndarray 2024-04-15 12:49:42 +08:00
f0715e2b6d core/stmt: Add gen_if* functions
For generating if-constructs in IR.
2024-04-15 12:20:34 +08:00
e7fca67786 core/stmt: Do not generate jumps if bb is already terminated
Future-proofs gen_*_callback functions in case other codegen functions
will delegate to it in the future.
2024-04-15 12:20:34 +08:00
52c731c312 core: Implement Not/UAdd/USub for booleans
Not sure if this is deliberate or an oversight, but we implement it
anyway for consistency with other Python implementations.
2024-04-12 18:29:58 +08:00
00d1b9be9b core: Fix __inv__ for i8-based boolean operands 2024-04-12 15:35:54 +08:00
8404d4c4dc meta: Update dependencies 2024-04-12 15:29:09 +08:00
e614dd4257 core/type_inferencer: Fix location of unary/compare expressions
Codegen uses this location information to determine the CallId, and if
a function call is the operand of a unary expression or left-hand
operand of a compare expression, codegen will use the type of the
operator expression rather than the actual operand type.
2024-04-05 15:42:10 +08:00
937a8b9698 core/magic_methods: Fix type of unary ops with primitive types 2024-04-05 13:23:08 +08:00
876ad6c59c core/type_inferencer: Include location info if inferencer fails 2024-04-05 13:22:35 +08:00
a920fe0501 core: Implement elementwise comparison operators 2024-04-03 00:07:33 +08:00
727a1886b3 core: Implement elementwise unary operators 2024-04-03 00:07:33 +08:00
6af13a8261 core: Implement elementwise binary operators
Including immediate variants of these operators.
2024-04-03 00:07:33 +08:00
3540d0ab29 core/magic_methods: Add typeof_*op
Used to determine the expected type of the binary operator with
primitive operands.
2024-04-03 00:07:33 +08:00
3a6c53d760 core/toplevel/numpy: Split ndarray type var utilities 2024-04-03 00:07:33 +08:00
87bc34f7ec core: Implement calculations for broadcasting ndarrays 2024-04-03 00:07:31 +08:00
f50a5f0345 core/type_inferencer: Allow both int32 and isize when indexing ndarray 2024-04-02 16:49:12 +08:00
a77fd213e0 core/magic_methods: Allow unknown return types
These types can be later inferred by the type inferencer.
2024-04-02 16:49:12 +08:00
8f1497df83 core/helper: Add PrimitiveDefinitionIds::iter 2024-04-02 16:49:12 +08:00
5ca2dbeec8 core/typedef: Add Type::obj_id to replace get_obj_id 2024-04-02 16:49:10 +08:00
9a98cde595 core: Extract codegen portion of gen_*op_expr
This allows *ops to be generated internally using LLVM values as
input. Required in a future change.
2024-04-01 16:48:25 +08:00
5ba8601b39 core: Remove ArrayValue variants of functions
These will be lowered and optimized away later anyways, and we have
ArrayLikeAccessor now.
2024-04-01 16:48:25 +08:00
26a01b14d5 core: Use more typed slices in APIs 2024-04-01 16:48:25 +08:00
d5f4817134 core/builtins: Fix len() on ndarrays 2024-04-01 16:48:24 +08:00
789bfb5a26 core: Fix index-based operations not returning i32 2024-04-01 16:46:45 +08:00
4bb0e60981 core: Apply clippy suggestions 2024-04-01 16:46:41 +08:00
623fcf85af msys2: update 2024-03-25 14:45:36 +08:00
13f06f3e29 core: Refactor VarMap to IndexMap
This is the only Map I can find that preserves insertion order while
also deduplicating elements by key.
2024-03-22 15:51:23 +08:00
f0da9c0283 core: Add ArrayLikeValue
For exposing LLVM values that can be accessed like an array.
2024-03-22 15:51:06 +08:00
2c4bf3ce59 core: Allow unsized CodeGenerator to be passed to some codegen functions
Enables codegen_callback to call these codegen functions as well.
2024-03-22 15:07:28 +08:00
e980f19c93 core: Simplify typed value assertions 2024-03-22 15:07:28 +08:00
cfbc37c1ed core: Add gen_for_callback_incrementing
Simplifies generation of monotonically increasing for loops.
2024-03-22 15:07:28 +08:00
50264e8750 core: Add missing unchecked accessors for NDArrayDimsProxy 2024-03-22 15:07:28 +08:00
1b77e62901 core: Split numpy into codegen and toplevel 2024-03-22 15:07:28 +08:00
fd44ee6887 core: Apply clippy suggestions 2024-03-22 15:07:23 +08:00
c8866b1534 core/classes: Rename get_* functions to remove prefix
As suggested by Rust API Guidelines.
2024-03-21 15:46:10 +08:00
84a888758a core: Rename unsafe functions to unchecked
This is this intended name of the functions.
2024-03-21 15:46:10 +08:00
9d550725b7 meta: Update cargo dependencies 2024-03-21 15:45:26 +08:00
2edc1de0b6 standalone: Update ndarray.py to output all elements in ndarrays 2024-03-07 14:59:13 +08:00
c3b122acfc core: Implement ndarray.copy 2024-03-07 14:59:13 +08:00
a94927a11d core: Update __builtin_assume expressions
No dimension size should be 0.
2024-03-07 14:59:13 +08:00
ebf86cd134 core: Use size_t for accessing array elements 2024-03-07 14:59:13 +08:00
cccd8f2d00 core: Fix ndarray_eye not preserving signness of offset 2024-03-07 14:59:13 +08:00
3292aed099 core: Fix ndarray subscript operator returning the wrong object
Should be returning the newly created object instead of the original
ndarray...
2024-03-07 14:59:13 +08:00
96b7f29679 core: Implement ndarray.fill 2024-03-07 14:59:13 +08:00
3d2abf73c8 core: Replace ndarray_init_dims IRRT impl with IR impl
Implementation of that function in IR allows for more flexibility in
terms of different integer type widths.
2024-03-07 14:59:13 +08:00
f682e9bf7a core: Match IRRT compile flavor with build profile 2024-03-07 14:59:02 +08:00
b26cb2b360 core: Express member func def IDs as offsets from class def ID 2024-03-06 12:24:39 +08:00
2317516cf6 core: Use tvars from ndarray for class definition 2024-03-04 23:58:02 +08:00
77de24ef74 core: Use BTreeMap for type variable mapping
There have been multiple instances where I had the need to iterate over
type variables, only to discover that the traversal order is arbitrary.

This commit fixes that by adding SortedMapping, which utilizes BTreeMap
internally to guarantee a traversal order. All instances of VarMap are
now refactored to use this to ensure that type variables are iterated in
 the order of its variable ID, which should be monotonically incremented
 by the unifier.
2024-03-04 23:56:04 +08:00
234a6bde2a core: Use TObj for NDArray 2024-03-01 15:41:55 +08:00
c3db6297d9 core: Add primitive definition-id list
So that we have a single ground truth for the definition IDs of
primitive types.
2024-03-01 11:29:10 +08:00
82fdb02d13 core: Extract LLVM intrinsic functions to their functions 2024-02-23 15:41:06 +08:00
4efdd17513 core: Add missing From implementations for LLVM wrapper classes 2024-02-23 15:41:06 +08:00
49de81ef1e core: Apply clippy suggestions 2024-02-23 15:41:06 +08:00
8492503af2 core: Update cargo dependencies 2024-02-23 15:41:04 +08:00
e1dbe2526a flake: switch to nixpkgs unstable for newer rustc 2024-02-20 15:46:51 +08:00
f37de381ce update dependencies 2024-02-20 13:33:20 +08:00
4452c8986a update ARTIQ version used for PGO profiling 2024-02-20 13:29:00 +08:00
22e831cb76 core: Add test for indexing into ndarray 2024-02-19 17:13:10 +08:00
cc538d221a core: Implement codegen for indexing into ndarray 2024-02-19 17:13:09 +08:00
0d5c53e60c core: Implement type inference for indexing into ndarray 2024-02-19 17:13:09 +08:00
976a9512c1 core: Add const variants to NDArray element getters 2024-02-19 16:56:21 +08:00
1eacaf9afa core: Fix IRRT argument order to ndarray_flatten_index 2024-02-19 16:37:13 +08:00
8c7e44098a core: Fix IRRT implementation of ndarray_flatten_index 2024-02-19 16:37:13 +08:00
282a3e1911 core: Fix typo in error message 2024-02-14 16:26:13 +08:00
5cecb2bb74 core: Fix Literal use in variable type annotation 2024-02-06 18:16:14 +08:00
1963c30744 core: Use Display output for locations 2024-02-06 18:11:51 +08:00
27011f385b core: Add location to non-primitive value return error 2024-02-02 12:49:21 +08:00
d6302b6ec8 core: Allow tuple of primitives to be returned 2024-02-02 12:48:52 +08:00
fef4b2a5ce standalone: Disable tests requiring return of non-primitive values 2024-01-29 12:49:50 +08:00
b3736c3e99 core: Disallow returning of non-primitive values
Non-primitive values are represented by an `alloca`-ed value in the
function body, and when the pointer is returned from the function, the
`alloca`-ed object is deallocated on the stack.

Related to #54.
2024-01-29 12:49:24 +08:00
e328e44c9a update MSYS2 2024-01-26 15:55:45 +08:00
9e4e90f8a0 update dependencies 2024-01-26 15:52:48 +08:00
8470915809 core: Add NDArrayValue and helper functions 2024-01-25 15:51:39 +08:00
148900302e core: Add RangeValue and helper functions 2024-01-25 15:51:39 +08:00
5ee08b585f core: Add ListValue and helper functions 2024-01-25 15:51:39 +08:00
f1581299fc core: Minor changes to IRRT
Add missing documentation, remove redundant lifetime variables, and fix
typos.
2024-01-25 15:50:53 +08:00
af95ba5012 standalone: Add debug flag to run_demo.sh
Allows running demos using the debug build instead of the (default)
release build.
2024-01-25 15:50:53 +08:00
9c9756be33 standalone: Use size_t in demo.c 2024-01-25 15:50:53 +08:00
2a922c7480 artiq: Fix source module of NDArray
Should be `numpy.typing` instead of `numpy`.
2024-01-17 10:40:08 +08:00
e3e2c36ef4 core: Mark TNDArray and TLiteral as unimplemented in tests 2024-01-17 09:58:14 +08:00
4f9a0110c4 meta: Update insta snapshots 2024-01-17 09:49:50 +08:00
12c0eed0a3 core: Fix compilation of tests 2024-01-17 09:49:49 +08:00
c679474f5c standalone: Fix redefinition of ndarray consumer functions 2024-01-17 09:38:13 +08:00
ab3fa05996 demo: use portable format strings 2024-01-10 18:35:35 +08:00
140f8f8a08 core: Implement most ndarray-creation functions 2023-12-22 16:29:55 +08:00
27fcf8926e core: Implement ndarray constructor and numpy.empty 2023-12-22 16:29:54 +08:00
afa7d9b100 core: Implement helper for creation of generic ndarray 2023-12-21 15:39:49 +08:00
c395472094 core: Initial infrastructure for ndarray 2023-12-21 15:39:46 +08:00
03870f222d core: Extract special method handling in type inferencer
To prepare for more special handling with methods.
2023-12-21 15:38:26 +08:00
e435b25756 core: Allow implicit promotions of integral literals
It should not matter, since it is the value of the literal that matters
with respect to the const generic variable.
2023-12-21 15:21:08 +08:00
bd792904f9 core: Add size_t to primitive store
Used for ndims in ndarray.
2023-12-21 15:20:31 +08:00
1c3a823670 core: Do not discard value names for IRRT 2023-12-20 15:16:02 +08:00
f01d833d48 standalone: Add missing parenthesis 2023-12-20 15:15:47 +08:00
9d64e606f4 core: Reject multiple literal bounds
This is currently broken due to how we handle function calls in the
unifier.
2023-12-18 10:04:25 +08:00
6dccb343bb Revert "core: Do not keep unification result for function arguments"
This reverts commit f09f3c27a5.
2023-12-18 10:01:23 +08:00
d47534e2ad interpret_demo: add typing.Literal 2023-12-18 08:50:49 +08:00
8886964776 core: Remove redundant argument in type annotation parsing 2023-12-16 18:40:48 +08:00
f09f3c27a5 core: Do not keep unification result for function arguments
For some reason, when unifying a function call parameter with an
argument, subsequent calls to the same function will only accept the
type of the substituted argument.

This affect snippets like:

```
def make1() -> C[Literal[1]]:
    return ...

def make2() -> C[Literal[2]]:
    return ...

def consume(instance: C[Literal[1, 2]]):
    pass

consume(make1())
consume(make2())
```

The last statement will result in a compiler error, as the parameter of
consume is replaced with C[Literal[1]].

We fix this by getting a snapshot before performing unification, and
restoring the snapshot after unification succeeds.
2023-12-16 18:40:48 +08:00
0bbc9ce6f5 core: Deduplicate values in Literal
Matches the behavior with `typing.Literal`.
2023-12-16 18:40:48 +08:00
457d3b6cd7 core: Refactor generic constants to Literal
Better matches the syntax of `typing.Literal`.
2023-12-16 18:40:48 +08:00
5f692debd8 core: Add PrimitiveStore into Unifier
This will be used during unification between a const generic variable
and a `Literal`.
2023-12-16 18:40:48 +08:00
c7735d935b standalone: Output id of undefined identifier 2023-12-16 18:40:48 +08:00
b47ac1b89b core: Minor formatting cleanup 2023-12-15 17:46:44 +08:00
a19f1065e3 meta: Refactor to use more let-else bindings 2023-12-12 16:31:14 +08:00
5bf05c6a69 update ARTIQ version used for PGO profiling 2023-12-12 15:57:48 +08:00
32746c37be core: Refactor to return errors by HashSet 2023-12-12 15:41:59 +08:00
1d6291b9ba ast: Add Ord implementation to Location 2023-12-12 15:41:59 +08:00
16655959f2 meta: Update cargo dependencies 2023-12-12 15:41:59 +08:00
beee3e1f7e artiq: Pass artiq builtins to NAC3 constructor 2023-12-12 11:28:03 +08:00
d4c109b6ef core: Add missing generic constant concrete type 2023-12-12 11:28:01 +08:00
5ffd06dd61 core: Remove debugging statement 2023-12-12 11:23:51 +08:00
95d0c3c93c artiq: Rename const_generic_dummy to const_generic_marker 2023-12-12 11:23:51 +08:00
bd3d67f3d6 artiq: Apply clippy pedantic changes 2023-12-11 15:16:23 +08:00
ddfb532b80 standalone: Apply clippy pedantic changes 2023-12-11 15:16:23 +08:00
02933753ca core: Apply clippy pedantic changes 2023-12-11 15:16:23 +08:00
a1f244834f meta: Bringup some documentation 2023-12-11 15:16:23 +08:00
d304afd333 meta: Apply clippy suggested changes 2023-12-11 15:16:23 +08:00
ef04696b02 meta: Lift return out of conditional statement 2023-12-11 15:16:23 +08:00
4dc5dbb856 meta: Replace equality assertion with assert_eq
Emits a more useful assertion message.
2023-12-11 15:16:23 +08:00
fd9f66b8d9 meta: Remove redundant casts and brackets 2023-12-11 15:16:23 +08:00
5182453bd9 meta: Remove redundant path prefixes 2023-12-11 15:16:23 +08:00
68556da5fd update ARTIQ version used for PGO profiling 2023-12-11 09:37:03 +08:00
983f080ea7 artiq: Implement handling for const generic variables 2023-12-08 18:02:14 +08:00
031e660f18 core: Initial implementation for const generics 2023-12-08 18:02:11 +08:00
b6dfcfcc38 core: Move some SymbolValue functions to symbol_resolver.rs 2023-12-08 18:00:51 +08:00
c93ad152d7 core: Codegen for ellipsis expression as NotImplemented
A lot of refactoring was performed, specifically with relaxing
expression codegen to return Option in case where ellipsis are used
within a subexpression.
2023-12-08 18:00:51 +08:00
68b97347b1 core: Infer builtins name list using builtin declaration list 2023-12-08 17:29:34 +08:00
875d534de4 ast: Use {filename}:{row}:{col} for location output 2023-12-08 15:48:54 +08:00
adadf56e2b nac3standalone: generate PIC 2023-12-04 19:09:50 +08:00
9f610745b7 cargo: update dependencies 2023-12-04 18:51:06 +08:00
98199768e3 demo: fix 64-bit format strings 2023-12-04 18:51:06 +08:00
bfa9ceaae3 switch to new nixpkgs release 2023-12-03 10:31:05 +08:00
120f8da5c7 fix compilation warnings 2023-11-26 09:09:24 +08:00
cee62aa6c5 pin down LLVM used for IRRT 2023-11-25 20:15:29 +08:00
fcda360ad6 flake: update dependencies 2023-11-24 18:11:25 +08:00
87c20ada48 windows: switch to CLANG64 MSYS2
For compatibility with MSVC (Anaconda and others).
2023-11-24 18:10:00 +08:00
38e968cff6 gitignore: fix msys2 path 2023-11-24 17:18:17 +08:00
5c5620692f core: Add np_{round,floor,ceil}
These functions are NumPy variants of round/floor/ceil, which returns
floats instead of ints.
2023-11-23 13:45:07 +08:00
0af1e37e99 core: Prefix all NumPy/SciPy functions with np_/sp_spec 2023-11-23 13:35:23 +08:00
854e33ed48 meta: Update cargo dependencies 2023-11-23 13:31:24 +08:00
f020d61cbb update ARTIQ version used for PGO profiling 2023-11-11 11:10:58 +08:00
10538b5296 core: Update insta snapshots 2023-11-09 13:00:27 +08:00
d322c91697 core: Change bitshift operators to accept int32/uint32 for RHS operand 2023-11-09 12:16:20 +08:00
3231eb0d78 core: Add compile-time error and runtime assertion for negative shifts 2023-11-09 12:16:20 +08:00
1ca4de99b9 update ARTIQ version used for PGO profiling 2023-11-08 17:29:29 +08:00
bf4b1aae47 update dependencies 2023-11-08 17:23:49 +08:00
08a5050f9a core: Implement non-trivial builtin functions using IRRT 2023-11-06 12:57:23 +08:00
c2ab6b58ff artiq: Implement with legacy_parallel block 2023-11-04 13:42:44 +08:00
0a84f7ac31 Add CodeGenerator::gen_block and refactor to use it 2023-11-04 13:42:44 +08:00
fd787ca3f5 core: Remove trunc
The behavior of trunc is already implemented by casts and is therefore
redundant.
2023-11-04 13:35:53 +08:00
4dbe07a0c0 core: Revert breaking changes to round-family functions
These functions should return ints as the math.* functions do instead of
following the convention of numpy.* functions.
2023-11-04 13:35:53 +08:00
2e055e8ab1 core: Replace rint implementation with LLVM intrinsic 2023-11-04 13:35:53 +08:00
9d737743c1 standalone: Add regression test for numeric primitive operations 2023-11-03 16:24:26 +08:00
c6b9aefe00 core: Fix int32-to-uint64 conversion
This conversion should be sign-extended.
2023-11-03 16:24:26 +08:00
8ad09748d0 core: Fix conversion from float to unsigned types
These conversions also need to wraparound.
2023-11-03 16:24:26 +08:00
7a5a2db842 core: Fix handling of float-to-int32 casts
Out-of-bound conversions should be wrapped around.
2023-11-03 16:24:26 +08:00
447eb9c387 standalone: Fix output format string for output_uint* 2023-11-03 16:24:26 +08:00
92d6f0a5d3 core: Implement bitwise not for unsigned ints and fix implementation 2023-11-03 16:24:26 +08:00
7e4dab15ae standalone: Add math tests for non-number arguments 2023-11-01 18:03:29 +08:00
ff1fed112c core: Rework gamma/gammaln to match SciPy behavior
Matches behavior for infinities and NaNs.
2023-11-01 18:03:29 +08:00
36a6a7b8cd core: Replace TopLevelDef comments with documentation 2023-11-01 18:03:29 +08:00
2b635a0b97 core: Implement numpy and scipy functions 2023-11-01 18:03:29 +08:00
60ad100fbb core: Implement and expose {isinf,isnan} 2023-11-01 18:03:29 +08:00
316f0824d8 flake: Add scipy 2023-11-01 18:03:29 +08:00
7cf7634985 core: Add create_fn_by_* functions
Used for abstracting the creation of function from different sources.
2023-11-01 18:03:29 +08:00
068f0d9faf core: Do not cast floor/ceil result to int
NumPy explicitly states that the return type of the floor/ceil is float.
2023-11-01 18:03:29 +08:00
95810d4229 core: Remove {ceil64,floor64,round,round64}
These are not present in NumPy or Artiq.
2023-11-01 18:03:29 +08:00
630897b779 standalone: Do not output sign if float is NaN
Matches behavior in Python.
2023-11-01 18:03:29 +08:00
e546535df0 flake: update nixpkgs 2023-11-01 15:53:47 +08:00
352f70b885 artiq: Update host exception list to match possibly thrown types 2023-11-01 13:28:48 +08:00
e95586f61e core: Fix IR generation of for loop containing break/continue
Fix cases where the body BB would have two terminators because of a
preceding continue/break statement already emitting a terminator.
2023-11-01 13:21:27 +08:00
bb27e3d400 standalone: Fix indentation of demo.c 2023-11-01 13:20:26 +08:00
bb5147521f standalone: Fix indentation of test files 2023-11-01 13:20:26 +08:00
9518d3fe14 artiq: Fix timeline not resetting upon exiting sequential block 2023-10-30 14:04:53 +08:00
cbd333ab10 artiq: Extract parallel block timeline utilities 2023-10-30 14:04:53 +08:00
65d6104d00 artiq: Improve IR value naming and add documentation 2023-10-30 14:04:53 +08:00
8373a6cb0f artiq: Use gen_block when generating "with sequential" 2023-10-30 14:04:53 +08:00
f75ae78677 cargo: Update dependencies 2023-10-30 14:04:53 +08:00
ea2ab0ef7c update nixpkgs, python 3.11 2023-10-25 21:09:22 +08:00
e49b760e34 ld: Support multiple CFIs with different encoding in .eh_frame
We now parse each CFI to read its encoding as opposed to assuming that
all CFIs within the same EH_Frame uses the same encoding. FDEs are now
iterated in a per-CFI manner.
2023-10-20 18:15:03 +08:00
aa92778363 ld: Fix remapping of FDEs with multiple CFIs 2023-10-20 18:14:27 +08:00
e1487ed335 cargo: Update dependencies 2023-10-20 18:11:45 +08:00
73500c9081 core: Remove lazy_static from dependencies 2023-10-16 15:55:10 +08:00
9ca34c714e flake: Enable thread-safe mode for LLVM
This is required as we use the LLVM APIs from multiple threads.
2023-10-16 15:55:10 +08:00
7fc2a30c14 Force single-threaded compilation if LLVM is not thread-safe 2023-10-16 15:55:10 +08:00
950f431483 standalone: Update help text for --emit-llvm 2023-10-16 15:52:51 +08:00
a50c690428 standalone: Fix run_demo script
- Link main and module*.bc together if using multiple threads
- Fix temporary files not being deleted
2023-10-16 15:52:48 +08:00
48eb64403f standalone: Treat -T0 as using all available threads 2023-10-13 14:57:16 +08:00
2c44b58bb8 standalone: Require use of -T for specifying thread count 2023-10-13 14:36:34 +08:00
50230e61f3 core: Simplify loop condition check for list comprehension 2023-10-06 12:24:03 +08:00
0205161e35 core: Simplify list creation for comprehension 2023-10-06 12:22:38 +08:00
a2fce49b26 core: Allocate exceptions at the beginning of function
Only one instance of exception is necessary, as exceptions will always
be initialized before being thrown.
2023-10-06 12:13:20 +08:00
60a503a791 core: Allocate more stack variables at the beginning of function
All allocas for temporary objects are now placed in the beginning of the
function. Allocas for on-temporary objects are not modified because
these variables may appear in a loop and thus must be uniquely
allocated by different allocas.
2023-10-06 11:42:47 +08:00
0c49b30a90 core: Restore debug info before function call is invoked
Previously, the IR which sets up the call to the target function will
have its debug location pointing at the last argument of the function
call instead of the function call itself.
2023-10-06 11:35:23 +08:00
c7de22287e core: Fix restoration of stack address
All allocas for temporary objects are now placed in the beginning of the
function. Allocas for on-temporary objects are not modified because
these variables may appear in a loop and thus must be uniquely
represented.
2023-10-06 11:34:23 +08:00
1a54aaa1c0 core: Restore debug location when generating allocas
Debug location is lost when moving the builder cursor.
2023-10-06 11:11:50 +08:00
c5629d4eb5 standalone: Remove redundant const in demo library 2023-10-06 10:32:58 +08:00
a79286113e standalone: Add output_bool in demo library 2023-10-06 10:19:22 +08:00
901e921e00 windows: fix build 2023-10-05 18:02:53 +08:00
45a323e969 windows: update msys2 packages 2023-10-05 17:52:29 +08:00
11759a722f flake: fix pgo build 2023-10-05 17:38:36 +08:00
480a4bc0ad core: Implement comparison operators for unsigned types 2023-10-05 17:13:10 +08:00
a1d3093196 flake: update dependencies 2023-10-05 17:05:57 +08:00
85c5f2c044 cargo: update dependencies 2023-10-05 17:03:35 +08:00
f34c6053d6 standalone: Add flags to control demo output options 2023-10-04 18:11:44 +08:00
e8a5f0dfef standalone: Fix parsing NAC3 args in check_demo.sh 2023-10-04 18:03:28 +08:00
7140901261 standalone: Fix missing libraries when linking
Fixes `undefined reference to 'pow'` for pow.py using -O0.
2023-10-04 18:03:28 +08:00
2a775d822e core: Demote dead code into a stdout warning 2023-10-04 18:03:25 +08:00
1659c3e724 standalone: Remove temporary logfiles after execution 2023-09-30 09:31:18 +08:00
f53cb804ec standalone: Add execution of test cases via lli 2023-09-30 09:31:18 +08:00
279376a373 standalone: Emit IRRT IR 2023-09-30 09:31:18 +08:00
b6afd1bfda standalone: Split check_demos into check_demo
Allows individual tests to be executed.
2023-09-30 09:31:18 +08:00
be3e8f50a2 standalone: Refactor demo library to C
Needed for use by lli.
2023-09-30 09:31:18 +08:00
059d3da58b standalone: Add float64 output tests 2023-09-30 09:31:18 +08:00
9b28f23d8c flake: Add clang alongside clang-unwrapped 2023-09-30 09:31:18 +08:00
119f4d63e9 cargo: update dependencies 2023-09-29 14:46:22 +08:00
458fa12788 flake: update dependencies 2023-09-29 14:07:47 +08:00
48c6498d1f core: Fix restoration of loop target in try statement
old_loop_target is only assigned if ctx.loop_target is overwritten,
meaning that if ctx.loop_target is never overwritten, ctx.loop_target
will always be overwritten to None.

We fix this by only restoring from old_loop_target if we previously
assigned to old_loop_target.
2023-09-28 20:00:02 +08:00
2a38d5160e meta: Respect opt flags when performing whole-module optimization 2023-09-28 19:58:54 +08:00
b39831b388 standalone: Update demos
- Add `output_str` for printing a string
- Add demo_test.py to test interop
2023-09-28 19:58:53 +08:00
cb39f61e79 core: Fix passing structure arguments to extern functions
All parameters with a structure type in extern functions are marked as
`byref` instead of `byval`, as most ABIs require the first several
arguments to be passed in registers before spilling into the stack.

`byval` breaks this contract by explicitly requiring all arguments to be
 passed in the stack, breaking interop with libraries written in other
 languages.
2023-09-28 15:02:35 +08:00
176f250bdb core: Fix missing conversion to i1 for IfExp 2023-09-28 10:06:40 +08:00
acdb1de6fe meta: Improve documentation for various modified classes 2023-09-25 15:42:07 +08:00
31dcd2dde9 core: Use i8 for boolean variable allocation
In LLVM, i1 represents a 1-byte integer with a single valid bit; The
rest of the 7 upper bits are undefined. This causes problems when
using these variables in memory operations (e.g. memcpy/memmove as
needed by List slicing and assignment).

We fix this by treating all local boolean variables as i8 so that they
are well-defined for memory operations. Function ABIs will continue to
use i1, as memory operations cannot be directly performed on function
arguments or return types, instead they are always converted back into
local boolean variables (which are i8s anyways).

Fixes #315.
2023-09-25 15:42:07 +08:00
fc93fc2f0e core: Move bitcode verification error message into panic message 2023-09-22 17:16:29 +08:00
dd42022633 core: Minor refactor allocate_list 2023-09-22 17:16:29 +08:00
6dfc43c8b0 core: Add name to build_gep_and_load 2023-09-22 17:16:29 +08:00
ab2360d7a0 core: Remove emit_llvm from CodeGenLLVMOptions
We instead output an LLVM bitcode file when the option is specified on
the command-line.
2023-09-22 17:16:29 +08:00
ee1ee4ab3b core: Replace deprecated _ExtInt with _BitInt 2023-09-22 17:16:29 +08:00
3e430b9b40 core: Fix missing changes for codegen tests
Apparently the changes were dropped after rebasing.
2023-09-22 17:16:21 +08:00
9e57498958 meta: Update dependencies 2023-09-21 09:38:38 +08:00
769fd01df8 meta: Allow specifying compiler arguments for check_demos 2023-09-18 11:35:20 +08:00
411837cacd artiq: Specify target CPU when creating LLVM target options
We can try to optimize for the host and Cortex-A9 chips; The RISC-V
ISAs do not target specific chips, so we will fallback to using the
generic CPU.
2023-09-18 11:35:20 +08:00
f59d45805f standalone: Add command line flags for target properties
For testing codegen for different platforms on the host system.
2023-09-18 11:35:20 +08:00
048fcb0a69 core: Switch to LLVM New Pass Manager 2023-09-18 11:35:15 +08:00
676d07657a core: Add target field to CodeGenLLVMOptions
For specifying the target machine options when optimizing and linking.

This field is currently unused but will be required in a future
commit.
2023-09-18 09:46:24 +08:00
2482a1ef9b core: Add CodeGenTargetMachineOptions
Needed in a future commit.
2023-09-18 09:41:49 +08:00
eb63f2ad48 meta: Update to Rust Edition 2021 2023-09-15 10:25:50 +08:00
ff27e22ee6 flake: switch back to nixpkgs unstable
Too many issues with python-updates branch for now.
2023-09-13 19:15:47 +08:00
d672ef094b msys2: update packages, Python 3.11 2023-09-13 09:50:33 +08:00
d25921230e switch to Python 3.11 2023-09-13 09:44:08 +08:00
66f07b5bf4 flake: switch to nixos-unstable 2023-09-12 18:14:39 +08:00
008d50995c meta: Update run_demo.sh
- Allow more than one argument to nac3standalone executable
2023-09-12 16:20:50 +08:00
474f9050ce standalone: Expose flags in command-line 2023-09-12 16:20:49 +08:00
3993a5cf3f core: Add LLVM options to WorkerRegistry 2023-09-12 10:57:05 +08:00
39724de598 core: Add CodeGenLLVMOptions
For specifying LLVM options during code generation.
2023-09-12 10:57:04 +08:00
e4940247f3 standalone: Implement command-line parser using clap
In preparation for adding more command-line options.
2023-09-12 10:08:34 +08:00
4481d48709 core: Use C-style for loop logic for iterables
Index increment is now performed at the end of the loop body.
2023-09-06 20:09:38 +08:00
b4983526bd core: Remove redundant for.cond BB for iterable loops
Simplifies logic for creating basic blocks.
2023-09-06 20:09:37 +08:00
b4a9616648 core: Add assertion for when range has step of 0
Aligns with the behavior in Python.
2023-09-06 20:09:36 +08:00
e0de82993f core: Preserve value of variable shadowed by for loop
Previously, the final value of the target expression would be one after
the last element of the loop, which does not match Python's behavior.

This commit fixes this problem while also preserving the last assigned
value of the loop beyond the loop, matching Python's behavior.
2023-09-06 20:09:36 +08:00
6805253515 core: Use AST var name for IR name
Aids debugging IR.
2023-09-06 20:09:36 +08:00
19915bac79 core: Prepend statement type to basic block label names
Aids debugging IR.
2023-09-06 20:09:36 +08:00
17b4686260 standalone: Adapt loop example to output loop variable 2023-09-06 18:56:45 +08:00
6de0884dc1 core: Use anonymous name for variables if unspecified
The current default prefix is only derived from the instruction type,
which is not helpful during the comprehension of the IR. Changing to
anonymous names (e.g. %1) helps understand that the variable is only
needed as part of a larger (possibly named) expression.
2023-09-06 14:02:15 +08:00
f1b0e05b3d core: Rename IR variables
Because it is unclear which variables are expressions and
subexpressions, all variables which are previously anonymous are named
using (1) the control flow statement if available, (2) the possible name
of the variable as inferred from the variable name in Rust, and (3) the
"addr" prefix to indicate that the values are pointers. These three
strings are joint together using '.', forming "for.i.addr" for instance.
2023-09-06 14:02:15 +08:00
ff23968544 core: Add name parameter to gen_{var_alloc,store_target}
This allows variables in the IR to be assigned a custom name as opposed
to names with a default prefix.
2023-09-06 11:00:02 +08:00
049908044a flake: update dependencies 2023-09-04 11:00:15 +08:00
d37287a33d Cargo: Update dependencies 2023-09-04 10:43:57 +08:00
283bd7c69a cargo: update dependencies 2023-07-14 10:57:21 +08:00
3d73f5c129 flake: update dependencies 2023-07-10 13:46:00 +08:00
d824c5d8b5 flake: cleanup dev shells 2023-05-30 16:28:46 +08:00
b8d637f5c4 cargo: update dependencies 2023-05-27 18:56:21 +08:00
3af287d1c4 flake: nixpkgs 23.05 2023-05-27 18:14:55 +08:00
5b53be0311 update dependencies 2023-04-30 17:11:47 +08:00
aead36f0fd update dependencies 2023-03-08 15:19:09 +08:00
c269444c0b msys2: update packages 2023-01-14 16:09:21 +08:00
52cec3c12f msys2: nix store doesn't like tildes 2023-01-14 16:09:00 +08:00
2927f2a1d0 msys2: adapt to recent pacman 2023-01-14 16:08:39 +08:00
c1c45373a6 update dependencies 2023-01-12 19:31:03 +08:00
946ea155b8 flake: switch to NixOS release 2022-11-30 11:37:48 +08:00
085c6ee738 update dependencies 2022-11-18 16:15:46 +08:00
cfa67c418a update MSYS2 URL 2022-11-03 19:00:44 +08:00
813bfa92a7 windows: fix nac3artiq module installation path 2022-08-05 22:42:32 +08:00
fff4b65169 windows: parallel LLVM build 2022-08-05 18:24:00 +08:00
c891fffd75 windows: update msys2, python 3.10 2022-08-05 17:27:07 +08:00
12acd35e15 switch to nixpkgs master, python 3.10 2022-08-05 17:24:49 +08:00
f66ca02b2d update Rust dependencies 2022-08-05 16:58:57 +08:00
b514f91441 nac3artiq: inherit kernel constructors
Closes #139
Co-authored-by: z78078 <cc@m-labs.hk>
Co-committed-by: z78078 <cc@m-labs.hk>
2022-07-28 19:18:36 +08:00
8f95b79257 nac3artiq: throw error message when constructor use rpc decorator (#306)
Co-authored-by: z78078 <cc@m-labs.hk>
Co-committed-by: z78078 <cc@m-labs.hk>
2022-07-11 15:55:55 +08:00
ebd25af38b nac3standalone: allow classes without explicit init (#221)
Reviewed-on: M-Labs/nac3#304
Co-authored-by: z78078 <cc@m-labs.hk>
Co-committed-by: z78078 <cc@m-labs.hk>
2022-07-07 10:36:25 +08:00
96b3a3bf5c work around random segmentation fault (#275)
Reviewed-on: M-Labs/nac3#302
Co-authored-by: z78078 <cc@m-labs.hk>
Co-committed-by: z78078 <cc@m-labs.hk>
2022-07-04 18:06:36 +08:00
a18d095245 nac3core: codegen fix call parameter type error 2022-07-04 14:39:33 +08:00
b242463548 update dependencies 2022-07-02 19:04:19 +08:00
8e6e4d6715 README: call for Nix 2.8 (older versions have flake bugs) 2022-06-06 18:14:21 +08:00
73c2aefe4b README: mention nac3ld 2022-06-06 18:13:21 +08:00
892597cda4 update dependencies 2022-06-06 17:54:23 +08:00
33321c5e9c README,nix: remove lld 2022-06-06 17:50:32 +08:00
50ed04b787 nac3ld: replace unsafe code 2022-06-06 14:41:14 +08:00
7cb9be0f81 nac3artiq: refactor compile methods
Avoids writing relocatable object to a file when linking with nac3ld.
2022-06-06 14:41:10 +08:00
ac560ba985 nac3artiq: switch ld.lld to nac3ld for non-host target 2022-06-06 14:40:13 +08:00
a96371145d add nac3ld 2022-06-06 14:40:13 +08:00
8addf2b55e nac3standalone: add more tests 2022-06-01 17:58:16 +08:00
5d5e9a5e02 nac3core: fix codegen error of inheritance 2022-06-01 17:58:16 +08:00
4c39dd240f update all dependencies 2022-05-31 23:09:51 +08:00
48fc5ceb8e nac3artiq: demote global value to private
... except typeinfo & now symbols.
typeinfo will be read by the runtime linker; now is for now-pinning.
2022-05-30 22:46:41 +08:00
c4ab2855e5 nac3core: pretty print codegen panic error 2022-05-30 04:09:21 +08:00
ffac37dc48 nac3core: fix exception type in primitive store 2022-05-29 19:14:00 +08:00
76473152e8 nac3core: fix llvm.expect intrinsic name
this might be one of the causes for the random segfault bug
2022-05-27 04:23:49 +08:00
b04631e935 update dependencies, switch to nixpkgs 22.05 2022-05-24 11:10:29 +08:00
09820e5aed nac3artiq: return err instead of panic for host object attribute error 2022-05-18 02:54:42 +08:00
0ec2ed4d91 update dependencies 2022-05-17 12:05:12 +08:00
2cb725b7ac nac3artiq: correct global name for const object 2022-05-16 02:50:42 +08:00
b9259b1907 update nixpkgs and LLVM 2022-05-14 16:33:03 +08:00
096f4b03c0 nac3core: fix assignment 2022-05-14 02:30:08 +08:00
a022005183 nac3core: fix broken tests 2022-05-11 03:53:53 +08:00
325ba0a408 nac3core: add debug info 2022-05-11 03:53:53 +08:00
ae6434696c nac3artiq: rename the filename of modinit
rename from __nac3_synthesized_modinit__ to <nac3_synthesized_modinit> to be more idomatic python
2022-05-11 03:52:16 +08:00
3f327113b2 update dependencies, use upstream inkwell 2022-04-27 15:41:46 +08:00
27d509d70e nac3artiq: get_const_obj should no longer make a pointer. Closes #272 2022-04-27 15:28:58 +08:00
a321b13bec fix typos 2022-04-27 11:08:10 +08:00
48cb485b89 nac3core: show outer type info in type error messages
Reviewed-on: M-Labs/nac3#274
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2022-04-22 15:31:55 +08:00
837aaa95f1 flake: contain sipyco to nac3artiq-profile 2022-04-19 10:34:55 +08:00
a19e9c0bec flake: provide llvm-as for IRRT
clang already depends on llvmPackages_13.llvm, so, unlike the statically-linked tools
from llvm-nac3, this does not make the bloat even worse.
2022-04-19 10:23:41 +08:00
5dbe1d3d7d llvm: restore llvm-config 2022-04-19 10:23:12 +08:00
e9bca3c822 llvm: set LLVM_BUILD_TOOLS=OFF 2022-04-19 00:30:11 +08:00
42d1aad507 flake: add PGO build to Hydra 2022-04-18 23:58:43 +08:00
2777a6e05f flake: use nac3devices example for PGO 2022-04-18 23:57:57 +08:00
05be5e93c4 flake: update nixpkgs 2022-04-18 18:48:05 +08:00
85f21060e4 update to LLVM 14 2022-04-18 18:47:20 +08:00
a308d24caa nac3standalone: cleanup 2022-04-18 16:02:48 +08:00
1eac111d4c cleanup 2022-04-18 15:55:37 +08:00
44199781dc nac3standalone: add tests for operators 2022-04-18 15:31:56 +08:00
711c3d3303 nac3core: support custom operators 2022-04-18 15:31:56 +08:00
0975264482 README: center icon 2022-04-18 15:11:32 +08:00
087aded3a3 add icon
Icon is copyright Evgeny Filatov and not covered by any free software license.
2022-04-18 15:07:53 +08:00
f14b32be67 nac3artiq: type check host int bound instead of panic when codegen 2022-04-16 03:01:37 +08:00
David Nadlinger
879c66cccf flake.nix: Fix outdated nixConfig keys
The old syntax seems to be silently ignored on (at least)
Nix 2.7.0.
2022-04-13 21:21:18 +01:00
wylited
35b6459c58 nac3core: replace paramter with parameter 2022-04-13 15:42:26 +08:00
e94b25f544 spelling (#264)
Co-authored-by: wylited <ds@m-labs.hk>
Co-committed-by: wylited <ds@m-labs.hk>
2022-04-13 11:32:31 +08:00
6972689469 nac3artiq: cleanup demo 2022-04-12 10:34:14 +08:00
3fb22c9182 nac3artiq: treat host numpy.float64 as float. Closes #90 2022-04-12 10:33:28 +08:00
1e7abf0268 fix tests 2022-04-12 10:06:41 +08:00
f5a6d29106 update insta snapshots 2022-04-12 09:56:49 +08:00
ca07cb66cd format typevars consistently 2022-04-12 09:28:17 +08:00
93e9a6a38a update dependencies 2022-04-12 09:13:04 +08:00
722e3df086 nac3core, artiq: optimize kernel invariant for tuple index 2022-04-11 14:58:40 +08:00
ad9ad22cb8 nac3core: optimize unwrap KernelInvariant 2022-04-11 14:58:35 +08:00
f66f66b3a4 nac3core, artiq: remove unnecessary ptr casts 2022-04-10 01:28:46 +08:00
6c485bc9dc nac3artiq: skip attribute writeback for option
option types do not have any fields to be written back to the host so it is ok to skip. If we do not skip, there will be error when getting the value of it since it can be `none`, whose type is not concrete
2022-04-10 01:28:30 +08:00
089bba96a3 nac3artiq: get_obj_value take an additional argument for expected type 2022-04-10 01:28:30 +08:00
0e0871bc38 nac3core, artiq: to_basic_value_enum takes an argument indicating the expected type 2022-04-10 01:28:22 +08:00
26187bff0b nac3core: add missing bound check and negative index handling for list subscription assignment 2022-04-09 04:56:31 +08:00
86ce513cb5 nac3standalone: fix broken test
previously this test unexpectedly passed because it is a slice assignment to extend the list, which is valid in CPython and hence in interpret_demo, and which also happened to give the same output in nac3 by memmove the elements in the list of bool
2022-04-05 18:21:46 +08:00
c29cbf6ddd nac3core: add bound check for list slice 2022-04-05 18:21:46 +08:00
7443c5ea0f nac3core: add location information to codegen context 2022-04-05 18:21:46 +08:00
f55b077e60 README: update Windows instructions 2022-04-05 18:07:38 +08:00
e05b0bf5dc flake: update nixpkgs 2022-04-05 10:10:08 +08:00
8eda0affc9 windows: add wine-msys2-build 2022-04-05 10:06:36 +08:00
75c53b40a3 windows: update msys2 packages, add setuptools to environment 2022-04-05 10:06:14 +08:00
0d10044d66 Merge pull request 'Fix float**int with negative power' (#254) from neg_powi_fix into master
Reviewed-on: M-Labs/nac3#254
2022-04-04 22:43:20 +08:00
23b7f4ef18 nac3standalone: add tests for power 2022-04-04 22:10:56 +08:00
710904f975 nac3core: fix powi with negative integer power 2022-04-04 22:10:56 +08:00
4bf452ec5a windows: do not check dependencies when making package 2022-04-04 16:03:59 +08:00
9fdce11efe windows: depend on python 2022-04-04 15:21:34 +08:00
f24ef85aed hydra: use msys2 type 2022-04-04 15:03:53 +08:00
4a19787f10 README: update 2022-04-04 15:03:44 +08:00
8209c0a475 windows: create MSYS2 package 2022-04-04 14:24:47 +08:00
4f66bdeda9 Merge pull request 'nac3core: do not get llvm value too eagerly for kernel invariant' (#253) from kernel_invariant_fix into master
Reviewed-on: M-Labs/nac3#253
2022-03-31 12:48:49 +08:00
57369896d7 update dependencies 2022-03-31 10:40:18 +08:00
2edeb31d21 nac3core: do not get llvm value too eagerly for kernel invariant 2022-03-31 10:28:16 +08:00
b8ef44d64e nac3standalone: add test for default param 2022-03-30 04:05:47 +08:00
c3156afebd nac3core: fix broken tests 2022-03-30 04:05:47 +08:00
388c9b7241 nac3core: better check and err msg for default param 2022-03-30 04:05:47 +08:00
e52d7fc97a nac3artiq: resolve unsigned int host variable as defautl param 2022-03-30 04:05:47 +08:00
6ab73a223c nac3core/artiq: support default param of option type 2022-03-30 04:05:47 +08:00
a38cc04444 nac3core: assert statement 2022-03-29 06:56:40 +08:00
1f5826d352 fix ternary if (#250)
Use store and load to handle if expression as the blocks might be changed when generating sub-expressions.

Reviewed-on: M-Labs/nac3#250
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2022-03-29 06:54:00 +08:00
94eebde4ea README: add note about MSVC Python 2022-03-28 10:45:01 +08:00
63ec382673 README: update Windows instructions 2022-03-27 19:36:02 +08:00
0ca1a7bedb windows: work around broken LLD install script 2022-03-27 19:14:02 +08:00
201ca3f63d Revert "nac3artiq: use lld.exe on Windows"
This reverts commit 19182759cd.
2022-03-27 19:09:11 +08:00
19182759cd nac3artiq: use lld.exe on Windows 2022-03-27 18:41:38 +08:00
edd039abdc windows: build LLD 2022-03-27 18:41:23 +08:00
3852cc1058 windows: don't fixup LLVM 2022-03-27 18:38:23 +08:00
0600ee8efa nac3artiq: use correct lld invokation on Windows 2022-03-27 18:25:14 +08:00
bed33a7421 nac3standalone: add tests for tuple 2022-03-27 10:31:20 +08:00
0d2b844a2e nac3artiq: avoid getting tuple as pointer value 2022-03-27 10:31:20 +08:00
8d7e300a4a nac3core: do not use const struct for tuple 2022-03-27 10:13:17 +08:00
10d623e36f nac3core/artiq: fix tuple representation 2022-03-27 07:47:14 +08:00
000b128551 nac3artiq: cast none to correct ptr type (#241) 2022-03-26 23:32:50 +08:00
e4581a6d9b nac3standalone/demo: fix return type in loop.py 2022-03-26 21:10:12 +08:00
1a82d296e7 nac3core/codegen: prevent users from modifying loop counter
Fixes #211
2022-03-26 20:58:37 +08:00
bf067e2481 nac3artiq: implement attribute writeback
We will only writeback attributes that are supported by the current RPC
implementation: primitives, tuple and lists of lists... of primitives.
2022-03-26 20:13:58 +08:00
ba8ed6c663 nac3artiq: handle recursive types properly 2022-03-26 18:54:21 +08:00
26a4834254 fix warnings 2022-03-26 18:52:08 +08:00
1ad4b0227c windows: fix src location 2022-03-26 15:46:21 +08:00
6288a66dc5 windows: fix cargo lockfile location 2022-03-26 15:23:31 +08:00
de4320eefb improve package names 2022-03-26 15:15:59 +08:00
a380cd5010 move all Nix files to one folder 2022-03-26 15:13:43 +08:00
80631fc92b Option type support (#224)
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2022-03-26 15:09:15 +08:00
55db05fdbb update dependencies 2022-03-24 22:30:15 +08:00
24a26b53ae nac3core/toplevel: fixed broken tests
We should not include class type variables in functions type variables.
2022-03-24 21:33:09 +08:00
1084ba2158 nac3core: fixed typevar with finite range
1. Function type variables should not include class type variables,
   because they are not bound to the function.
2. Defer type variable constraint evaluation until we get all fields
   definition.
2022-03-24 21:31:51 +08:00
be75fa7368 nac3core: fix assign to constant 2022-03-24 07:13:13 +08:00
ec52128a4a indentation 2022-03-23 10:45:28 +08:00
b10b49e39a windows: run cargo tests 2022-03-23 09:53:45 +08:00
d92ce201d3 runkernel: fix windows build 2022-03-23 09:32:58 +08:00
8b485f552b windows: set PYO3_CONFIG_FILE, use exec in wine-msys2 2022-03-23 09:22:33 +08:00
d9be8d3978 nac3core/typecheck/unification_table: fixed snapshot restore bug
Closes 229
2022-03-23 00:25:10 +08:00
41d62f7325 nac3core/toplevel: fixed typevar substitution bug 2022-03-23 00:25:10 +08:00
4400d9b57d windows: attempt to disable libffi further 2022-03-22 22:52:53 +08:00
8ee5db7462 Revert "windows: numpy is not necessary for build"
...but it is nice to have in the development shell.

This reverts commit 1114d11b34.
2022-03-22 22:15:18 +08:00
6d9b3abcd7 nicer MSYS2 development shell 2022-03-22 22:14:46 +08:00
f11a0776e7 README: fix build name 2022-03-22 22:12:23 +08:00
f2dc03dfa1 windows: finalize nac3artiq packaging 2022-03-22 19:58:31 +08:00
1c807ebe08 windows: use Z: consistently for Nix store paths 2022-03-22 19:43:31 +08:00
9e0b5187dd windows: make LLVM accessible to nac3artiq 2022-03-22 19:40:40 +08:00
1887a337ff windows: attempt to fix 'encodings' python errors 2022-03-22 19:38:32 +08:00
03f5b80153 windows: add nac3artiq derivation (WIP) 2022-03-22 19:19:06 +08:00
1114d11b34 windows: numpy is not necessary for build 2022-03-22 19:05:58 +08:00
a7a188da76 windows: work around -DLLVM_BUILD_TOOLS=OFF not disabling llvm-lto 2022-03-22 18:35:06 +08:00
eb6ceefdcd build LLVM with Wine + MSYS2 2022-03-22 18:03:25 +08:00
9332d1643c irrt: normalize end-of-line characters. Closes #231 2022-03-22 16:04:48 +08:00
718b076e50 irrt: use __builtin_alloca 2022-03-22 15:41:25 +08:00
9d86b46e86 nac3core: add DEBUG_DUMP_IRRT 2022-03-22 15:39:15 +08:00
263bc82434 nac3artiq: remove debug print 2022-03-21 04:23:40 +08:00
3f890f183c nac3standalone/demo: handle imports consistently 2022-03-19 09:14:27 +08:00
234823c51a nac3standalone: added typevar test 2022-03-18 16:52:52 +08:00
b97c016629 nac3core: fixed test breakage 2022-03-18 16:52:28 +08:00
14a5c7981e Revert "Revert "update dependencies""
This reverts commit 93af337ed3.
2022-03-18 08:06:13 +08:00
35ac5cb6f6 nac3core: fixed typevar bug 2022-03-18 01:07:44 +08:00
93af337ed3 Revert "update dependencies"
This reverts commit 9ccdc0180d.
2022-03-17 21:53:58 +08:00
0ca2797428 fix compilation warning 2022-03-17 21:31:45 +08:00
9ccdc0180d update dependencies 2022-03-17 21:18:07 +08:00
c5993c2a58 composer: improve class field typevar error message 2022-03-17 21:04:42 +08:00
fb8553311c nac3artiq: remove accidentally added print 2022-03-17 15:13:00 +08:00
04e7a7eb4b nac3artiq: support more exceptions 2022-03-17 15:03:22 +08:00
642e3b2bad nac3core: moved all builtin errors to nac3artiq code
This remove the need for hard-coding those definition IDs.
2022-03-17 00:04:49 +08:00
e126fef012 nac3artiq: support more builtin errors 2022-03-16 23:42:08 +08:00
8fd868a673 update dependencies 2022-03-10 17:28:56 +08:00
94aac16cc5 nac3artiq: fixed RPC codegen for lists 2022-03-10 16:48:28 +08:00
2f85bb3837 nac3core: impl call attributes
sret for returning large structs, and byval for struct args in extern
function calls.
2022-03-09 22:09:36 +08:00
e266d3c2b0 nac3parser: modify to handle UAdd in front of int constant 2022-03-09 10:46:58 +08:00
60b3807ab3 nac3standalone: add test for abs function 2022-03-08 23:26:01 +08:00
5006028e2d nac3core: abs builtin function 2022-03-08 23:23:36 +08:00
1cc276cb43 nac3standalone: add test for max function 2022-03-08 22:23:13 +08:00
8241a29908 nac3core: max builtin function 2022-03-08 22:22:00 +08:00
e9a17cf8f8 nac3standalone: add test for min function 2022-03-08 21:59:42 +08:00
adb5c69e67 nac3core: min builtin function 2022-03-08 21:59:37 +08:00
d848c2284e nac3parser: fix broken tests 2022-03-08 18:21:19 +08:00
f7e62ab5b7 nac3ast/parser/core: use i128 for u64 constants 2022-03-08 18:21:14 +08:00
9f6c7b3359 nac3core: type conversion to/from uint 2022-03-08 13:42:45 +08:00
142e99a0f1 nac3core: fix broken tests 2022-03-08 13:34:08 +08:00
79c469301a basic unsigned integer support 2022-03-08 13:34:02 +08:00
8602852241 nac3core: use signed extension to convert i32 to i64 2022-03-06 04:49:02 +08:00
42fbe8e383 nac3core: fix err msg of too many args 2022-03-05 03:59:45 +08:00
63b0f29728 Fix broken tests 2022-03-05 00:27:51 +08:00
a5e1da0b92 nac3artiq/demo/embedding_map: avoid key 0
Object key 0 is reserved for builtin exceptions.
2022-03-05 00:27:23 +08:00
294943e303 nac3core: get exception ID from symbol resolver
We need to store the exception class somewhere in order to create them
back in the host. Fixes #200
2022-03-05 00:26:35 +08:00
84b4bd920b nac3artiq: remove cached pyid_to_type if error 2022-03-04 16:23:25 +08:00
317eb80005 update dependencies 2022-03-03 17:10:22 +08:00
59ac5aae8a fix error message string (2) 2022-03-02 08:33:13 +08:00
da039e3acf fix error message string 2022-03-02 08:04:15 +08:00
d1e172501d nac3artiq: remove debug messages 2022-02-28 23:10:05 +08:00
323d77a455 nac3artiq: improve error message for out of range error 2022-02-28 23:09:14 +08:00
d41c923cfd nac3artiq: handle recursive types properly 2022-02-28 23:08:42 +08:00
5d8e87d923 more readable type annotation error string 2022-02-28 16:24:03 +08:00
a9c73a4915 fix some error strings 2022-02-28 11:10:33 +08:00
804d5db27e nac3artiq: make CompileError importable from Python 2022-02-26 17:29:13 +08:00
cbc77dddb0 nac3artiq: raise specific exception on error 2022-02-26 17:17:06 +08:00
846d1726ef nac3core: fixed keyword arguments handling 2022-02-26 16:34:30 +08:00
0686e83f4c nac3core/typecheck: fixed incorrect rollback 2022-02-25 20:01:11 +08:00
e710b6c320 nac3core: fix exception final branch handling
According to https://github.com/m-labs/artiq/pull/1855
Passed the test cases from 1855.
Fixes #196.
2022-02-25 17:42:47 +08:00
cc769a7006 nac3core: reset unification table state before printing errors
Fixes nondeterministic error messages due to nondeterministic
unification order. As all unification operations will be restored, the
error messages should not be affected by the unification order before
the failure operation.
2022-02-25 14:47:19 +08:00
5cd4fe6507 update tests 2022-02-23 11:50:03 +08:00
aa79c8d8b7 rename exception symbols in host code 2022-02-23 11:43:41 +08:00
75fde1bbf7 update tests 2022-02-23 11:39:47 +08:00
17792b76b7 rename exception symbols 2022-02-23 11:04:35 +08:00
6ae770d5eb update dependencies 2022-02-23 10:59:13 +08:00
d3cb5d6e52 Fixed type error messages 2022-02-22 17:22:15 +08:00
bb7c0a2d79 nac3artiq: remove errors from demo 2022-02-22 16:00:37 +08:00
3ad25c8f07 nac3core: sort error messages for determinism 2022-02-22 14:33:43 +08:00
ede3706ca8 type_inferencer: special case tuple index error message 2022-02-21 18:41:42 +08:00
f97f93d92c applied rustfmt and clippy auto fix 2022-02-21 18:27:46 +08:00
d9cb506f6a nac3core: refactored for better error messages 2022-02-21 18:24:19 +08:00
352831b2ca nac3core: removed legacy location definition 2022-02-13 22:39:24 +08:00
21d9182ba2 nac3core: disallow methods/fields in Exception subclass
Fixes #192
2022-02-13 21:45:22 +08:00
91f41052fe test: remove outdated comment 2022-02-13 17:24:47 +08:00
14d25b3b9d Fixed broken tests 2022-02-13 17:21:42 +08:00
265d234266 update LLVM 2022-02-13 13:20:08 +08:00
2e44745933 runkernel: add dummy artiq_personality function 2022-02-13 13:03:38 +08:00
4b8e70f746 nac3standalone: disable broken tests (#188) 2022-02-13 11:41:42 +08:00
31e76ca3b6 nac3standalone: add dummy support for artiq_personality
So existing tests can run again
2022-02-13 11:35:02 +08:00
343f6fd067 update dependencies 2022-02-13 10:51:03 +08:00
f1ebf8f96e flake: update nixpkgs 2022-02-13 10:47:22 +08:00
b18626b149 Fix compilation and test failures 2022-02-12 22:50:32 +08:00
750d912eb4 nac3core: do list bound check and negative index handling
Raise error when index out of range. Note that we use llvm.expect to
tell the optimizer that we expect not to raise an exception, so the
normal path performance would be better. If this assumption is violated,
the exception overhead might be slightly larger, but the percentage
increase in overhead should not be high since exception unwinding is
already pretty slow.
2022-02-12 22:50:32 +08:00
bf52e294ee nac3artiq: RPC support 2022-02-12 22:50:32 +08:00
e303248261 nac3core: exception type check and codegen 2022-02-12 22:50:32 +08:00
7ea5a5f84d nac3core: codegen refactoring
- No longer check if the statement will return. Instead, we check if
  the current basic block is terminated, which is simpler and handles
  exception/break/continue better.
- Use invoke statement when unwind is needed.
- Moved codegen for a block of statements into a separate function.
2022-02-12 22:13:59 +08:00
b267a656a8 nac3core: added exception type and fixed primitive representation
- Added `Exception` primitive type and some builtin exception types.
  Note that all exception types share the same layout, and should
  inherit from the base `Exception` type. There are some hacks in the
  toplevel module for handling exception types, we should revisit and
  fix them later.
- Added new primitive types to concrete type module, otherwise there
  would be some weird type errors.
- Changed the representation of strings to CSlice<u8>, instead of
  CString.
2022-02-12 22:13:59 +08:00
050c862c1a nac3core: function codegen callback changes
Added code generator argument to the callback, so it would be easier to
write complicated codegen with that callback. To prepare for RPC
codegen.
2022-02-12 21:24:41 +08:00
ffe89eec86 llvm: disable threads 2022-02-08 14:52:09 +08:00
d6ab73afb0 nac3core: style 2022-02-07 02:18:56 +08:00
6f9f455152 nac3core: list slice irrt use one function to handle var size 2022-02-07 02:09:50 +08:00
e50f1017fa nac3core: irrt list of tuple use struct value representation 2022-02-07 02:09:50 +08:00
77608346b1 nac3core: handle tuple by value 2022-02-07 02:09:50 +08:00
f5ce7376e3 flake: fix Windows build 2022-02-05 16:53:47 +08:00
1288624218 lock insta version (#179) 2022-01-31 15:18:49 +08:00
0124bcd26c update dependencies (missing part of previous commit) 2022-01-31 14:15:05 +08:00
de065cfa14 update dependencies 2022-01-31 12:28:40 +08:00
304181fd8c Merge pull request 'fix errors of non-primitive host object when running multiple kernels' (#171) from multiple_kernel_err into master
Reviewed-on: M-Labs/nac3#171
2022-01-27 14:46:22 +08:00
43048eb8d8 nac3standalone: add tests for list slice and len 2022-01-26 03:58:27 +08:00
ace0e2a2c6 nac3core: fix use of size_t in list comprehension, cleanup 2022-01-25 03:35:59 +08:00
e891683f2e flake: hack-link libstdc++ statically on Windows. Closes #175 2022-01-24 16:54:05 +08:00
8e01a20ac3 README: add Windows instructions 2022-01-24 15:54:01 +08:00
465514ca7a flake: fix mcfgthread filename 2022-01-24 15:52:04 +08:00
9c34dd9c80 flake: distribute mcfgthreads-12.dll on hydra 2022-01-24 15:49:32 +08:00
ced7acd871 check_demos: improve output 2022-01-24 11:38:43 +08:00
6ea40809b3 README: fix nix shell URL 2022-01-24 11:35:39 +08:00
f8e3f7a4ca add some basic list tests 2022-01-23 14:28:08 +08:00
ba997ae094 flake: run nac3standalone demo checks
also keep auxiliary projects in separate Nix outputs
2022-01-23 11:32:34 +08:00
2a0caf931f nac3standalone: work around bash mess with exit codes of substituted processes
https://unix.stackexchange.com/questions/376114/how-to-detect-an-error-using-process-substitution
2022-01-23 11:15:11 +08:00
64b94955fe nac3standalone: reorganize demos, compare against cpython 2022-01-23 10:35:06 +08:00
f478c6afcc update dependencies 2022-01-19 21:17:07 +08:00
0439bf6aef nac3artiq: fix errors of non-primitive object when running multiple kernels 2022-01-15 04:43:39 +08:00
fd4bf12808 fix grammar of some type error messages 2022-01-14 16:56:23 +08:00
d7b14dd705 update dependencies 2022-01-14 16:55:10 +08:00
9d342d9f0f nac3artiq: error msg improvement for synthesized __modinit__ 2022-01-14 16:28:37 +08:00
ae8f82ccb0 nac3core: fix broken tests 2022-01-14 16:28:37 +08:00
4a1a4dc076 nac3core/artiq/standalone: symbol resolver return error msg for type error of host variables 2022-01-14 16:28:34 +08:00
eba9fc8a69 nac3core: add missing location for type inference 2022-01-14 03:05:11 +08:00
4976e89ae2 nac3core: list slice support 2022-01-13 16:53:32 +08:00
82509d60ec remove obvious comment 2022-01-13 12:31:28 +08:00
2579ecbd19 nac3core: irrt module get attribute id using name instead of hard code 2022-01-11 17:25:07 +08:00
44f4c4f028 nac3core: build script use Path::join 2022-01-09 12:06:45 +08:00
8ef9e74aaf move rustfmt.toml upper 2022-01-09 11:31:06 +08:00
9c20e84c84 flake: fix/cleanup 2022-01-09 11:30:36 +08:00
b88f17ed42 switch to clang-unwrapped, build IRRT with wasm32 2022-01-09 10:56:28 +08:00
096193f7ab demo: rewrite in Rust 2022-01-09 10:51:10 +08:00
4760851638 nac3standalone: link modules and load irrt like in nac3artiq 2022-01-09 02:17:58 +08:00
1ee857de6a nac3core: format, fix clippy warning 2022-01-09 01:12:18 +08:00
4a65d82db5 introduce IRRT, implement power
based on code by Yijia
M-Labs/nac3#160
2022-01-09 00:57:50 +08:00
b638d1b4b0 nac3standalone: set up LLVM inliner like in nac3artiq 2022-01-08 21:03:58 +08:00
52ccf31bb1 update dependencies 2022-01-04 22:00:29 +08:00
4904610dc6 flake: provide mimalloc-enabled Python
The Linux linker and the libc are garbage, so there isn't much of an alternative to using the Nix wrapper and LD_PRELOAD.
2022-01-04 21:54:55 +08:00
7193e3f328 nac3core: codegen fix empty list llvm type 2021-12-30 05:09:21 +08:00
2822c613ef llvm: fix TLI-musl.patch 2021-12-29 20:52:59 +08:00
a0bf6da6c2 update dependencies 2021-12-28 12:08:55 +08:00
9cc9a0284a nac3standalone: style 2021-12-28 10:59:17 +08:00
85e06d431a nac3core: improve some type annotation error messages (#87) 2021-12-28 10:49:14 +08:00
9b3b47ce50 fix broken tests 2021-12-28 01:38:16 +08:00
88f0da7bdd add file name to AST node location 2021-12-28 01:28:55 +08:00
1bd966965e fixed M-Labs/nac3#146 2021-12-27 22:56:50 +08:00
521f136f2e redo "nac3artiq: fixed compilation error"
This reverts commit 3b5328d3cd.
2021-12-27 22:56:30 +08:00
fa04768a77 redo "nac3core: fix #84"
This reverts commit 86005da8e1.
2021-12-27 22:56:26 +08:00
6162d21a5b LLVM PGO support 2021-12-26 21:11:14 +08:00
8101483ebd flake: style 2021-12-26 18:57:02 +08:00
dc5e42c5eb flake: use LLVM 13 throughout 2021-12-26 18:56:23 +08:00
86005da8e1 Revert "nac3core: fix #84"
This reverts commit 0902d8adf4.
2021-12-26 08:35:27 +08:00
3b5328d3cd Revert "nac3artiq: fixed compilation error"
This reverts commit 34cabe0e55.
2021-12-26 08:31:37 +08:00
5aa6749241 remove num-traits 2021-12-26 00:32:08 +08:00
80d3ab1b0f remove bigints 2021-12-26 00:23:54 +08:00
ec986dfdf3 update dependencies 2021-12-25 23:03:53 +08:00
d2a5cd6d57 update to LLVM 13 2021-12-25 22:49:47 +08:00
9e3f75255e update inkwell. Closes #67 2021-12-25 22:17:06 +08:00
53f13b44cf flake: update nixpkgs 2021-12-25 21:10:19 +08:00
34cabe0e55 nac3artiq: fixed compilation error 2021-12-23 15:47:54 +08:00
6e85f549f6 Merge pull request 'nac3core: fix #84' (#146) from fix_84 into master
Reviewed-on: M-Labs/nac3#146
2021-12-23 15:28:29 +08:00
0902d8adf4 nac3core: fix #84 2021-12-23 15:26:48 +08:00
66320679be improve error messages
#112, #110, #108, #87

Reviewed-on: M-Labs/nac3#145
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2021-12-22 08:52:19 +08:00
0ff995722c Revert "nac3core: add missing expr concrete type check"
This reverts commit cb450372d6.
2021-12-20 18:13:45 +08:00
e2b44a066b return int32 in len(). Closes #141 2021-12-20 17:44:42 +08:00
2008db8097 nac3standalone: remove unused import 2021-12-20 17:39:16 +08:00
cb450372d6 nac3core: add missing expr concrete type check 2021-12-19 18:01:49 +08:00
ff27a1697e nac3core: fix for loop type inference 2021-12-19 18:01:49 +08:00
91625dd327 update kernel-only attribute annotation
Reviewed-on: M-Labs/nac3#127
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2021-12-19 11:04:53 +08:00
7420ce185b README: update 2021-12-13 19:02:46 +08:00
69b9ac5152 nac3standalone: consistent naming 2021-12-13 11:19:11 +08:00
ccfcba4066 nac3standalone: add output_long 2021-12-13 10:44:33 +08:00
b5637a04e9 nac3core: use official implementation for len 2021-12-13 10:44:33 +08:00
2c6601d97c nac3core: fix len on range with step of different sign 2021-12-13 10:44:33 +08:00
82359b81a2 nac3core: fix bool to int conversion 2021-12-13 04:13:43 +08:00
4d2fd9582a nac3core: fix broken tests 2021-12-09 01:37:05 +08:00
b7892ce952 nac3core: add len support for list and range 2021-12-09 01:37:00 +08:00
01d3249646 nac3core: add missing llvm range type 2021-12-09 01:16:05 +08:00
d2ffdeeb47 flake: update nixpkgs and work around openssh cross compilation breakage. Closes #123 2021-12-08 21:21:37 +08:00
ae902aac2f remove devshell inputs from hydraJobs
We are not recompiling packages that depend on LLVM anymore, llvm-nac3 is only used for static linking within NAC3.
2021-12-08 17:43:05 +08:00
3f73896477 remove a small amount of LLVM bloat
Also avoids libffi.dll dependency on Windows.
2021-12-08 17:41:34 +08:00
ddb4c548ae add and use local copy of LLVM Nix files
Modifications accumulate and many are not suitable for nixpkgs upstream.

Based on nixpkgs 3f629e3dd5293bd3c211c4950c418f7cfb4501af
2021-12-08 16:55:25 +08:00
6d00d4dabb nac3artiq: cache python data if possible 2021-12-05 20:30:03 +08:00
baa713a3ca flake: don't attempt to fixup Windows build 2021-12-05 14:40:10 +08:00
d2919b9620 Revert "flake: better shells"
llvm-config/llvm-sys hates pkgs.buildEnv.

This reverts commit e4f35372d3.
2021-12-05 14:35:58 +08:00
9ee2168932 Revert "flake: fix hydraJobs"
This reverts commit e8e1499478.
2021-12-05 14:35:58 +08:00
65bc1e5fa4 nac3artiq: handle name_to_pyid in compilation
python variables can change between kernel invocations
2021-12-05 13:10:54 +08:00
2938eacd16 nac3artiq: supports running multiple kernels 2021-12-05 13:10:54 +08:00
e8e1499478 flake: fix hydraJobs 2021-12-05 13:03:44 +08:00
e4f35372d3 flake: better shells 2021-12-05 12:56:47 +08:00
41f88095a5 min_artiq: add round64, floor64, ceil64 2021-12-04 20:35:52 +08:00
c98f367f90 nac3artiq: enables inlining 2021-12-04 17:52:03 +08:00
1f3aa48361 nac3parser: modify parser to handle negative integer edge cases 2021-12-03 16:35:58 +08:00
8c05d8431d flake: use upstream nixpkgs patch
https://github.com/NixOS/nixpkgs/pull/148367
2021-12-03 11:57:01 +08:00
0ae2aae645 flake: publish zipfile with Windows Python module on Hydra 2021-12-02 22:47:35 +08:00
b0eb7815da flake: consistent naming 2021-12-02 22:37:41 +08:00
26e60fca6e flake: cleanup tarball unpacking 2021-12-02 22:37:32 +08:00
22a509e7ce flake: add Hydra job for Windows build
This is a proof-of-concept; it works but requires manual fiddling with DLLs
(e.g. copy them from the Nix store into the Windows environment), and LLD
is not available on Windows.
2021-12-02 22:29:44 +08:00
4526c28edb Merge branch 'windows' 2021-12-02 22:26:55 +08:00
25fc9db66d cargo: specify inkwell LLVM target explicitly
Windows LLVM linking otherwise breaks on the non-existing targets.
2021-12-02 22:24:33 +08:00
6315027a8b flake: use *.pyd for Windows Python module 2021-12-02 22:24:23 +08:00
c0f8d5c602 flake: Windows libs working 2021-12-02 22:01:19 +08:00
998f49261d flake: fix Windows libs further 2021-12-02 21:02:48 +08:00
aab43b1c07 flake: unbreak Windows library link (WIP) 2021-12-02 20:00:50 +08:00
a6275fbb57 flake: add libffi on Windows 2021-12-02 19:08:20 +08:00
8a46032f4c flake: unbreak llvm-config for cross-compilation of static libs 2021-12-02 18:46:04 +08:00
1c31aa6e8e consistent naming 2021-12-02 10:45:46 +08:00
b030aec191 Merge pull request 'Add floor and ceil, move built-in functions to a separate file' (#120) from built_in_floor_ceil into master
Reviewed-on: M-Labs/nac3#120
2021-12-02 10:40:50 +08:00
aa2d79fea6 Merge branch 'master' into built_in_floor_ceil 2021-12-02 01:08:55 +08:00
1e6848ab92 nac3core: distinguish i64 and i32 in bool conversion 2021-12-02 01:02:42 +08:00
a91b2d602c flake: switch to nixos- branch 2021-12-01 22:49:43 +08:00
c683958e4a nac3artiq: clarify comment about virtual class 2021-12-01 22:49:20 +08:00
142f82f987 remove debug prints 2021-12-01 22:48:06 +08:00
dfd3548ed2 TypeVar and virtual support in Symbol Resolver (#99)
Add `TypeVar` and `virtual` support for Symbol Resolver in nac3artiq and nac3standalone

Reviewed-on: M-Labs/nac3#99
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2021-12-01 22:44:53 +08:00
31fba04cee flake: fix Windows build, now finding LLVM and Python 2021-12-01 18:30:26 +08:00
fa2fe8ed5d nac3core: add ceil and floor 2021-12-01 03:23:58 +08:00
7ede4f15b6 nac3core: move builtin definitions to another file 2021-12-01 02:52:00 +08:00
0fe346106d nac3core: fix converting int to bool (#119) 2021-11-30 03:02:26 +08:00
681d85d3be remove debug print 2021-11-28 12:57:28 +08:00
14119a2c80 Merge pull request 'KernelInvariant' (#114) from KernelInvariant into master
Reviewed-on: M-Labs/nac3#114
2021-11-28 12:49:31 +08:00
b35075245b nac3artiq: remove debug print 2021-11-27 21:29:57 +08:00
4b17511b4a Merge branch 'master' into KernelInvariant 2021-11-27 21:29:27 +08:00
7ee82de312 nac3core: fixed weird type inference error 2021-11-27 20:27:46 +08:00
701ca36e99 flake: windows build WIP 2021-11-26 17:26:18 +08:00
5e1b0a10a0 flake: patch nixpkgs to fix mingw llvm_12 build 2021-11-26 17:01:44 +08:00
9f316a3294 flake: revert nixpkgs to unbreak rust cross-compilation 2021-11-26 17:00:20 +08:00
0ae1fe82b4 remove unnecessary cargo config
extra-link-arg has been stabilized
2021-11-23 15:35:33 +08:00
de8fc264d7 fix unsupported default parameter error message 2021-11-23 15:34:44 +08:00
970f075490 flake: switch to nixpkgs 21.11 release 2021-11-23 11:22:08 +08:00
4587088835 Constant Default Parameter Support (#98)
Add support for constant default parameter

Reviewed-on: M-Labs/nac3#98
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2021-11-23 07:32:09 +08:00
49476d06e1 nac3core: clearer comments 2021-11-22 15:06:16 +08:00
664e02cec4 nac3core: fix clippy warning 2021-11-22 14:55:39 +08:00
c6f75c8bde nac3standalone: fix error message when no entry point is found 2021-11-22 14:52:52 +08:00
01b51b62ee nac3core: composer better error msg in for uninit field 2021-11-21 06:11:55 +08:00
aae9925014 nac3standalone: report when entry point run function cannot be found 2021-11-21 06:11:55 +08:00
d336200bf4 nac3core: fix broken tests due to the fix of rigid typevar handling 2021-11-21 06:11:55 +08:00
a50df6560e nac3core: fix handling on rigid typevar 2021-11-21 06:11:55 +08:00
a9635f0979 nac3core: top level use codegen official get_subst_key 2021-11-21 06:11:55 +08:00
c2706fa720 nac3core: fix polymorphic class method partial instantiation 2021-11-21 06:11:55 +08:00
f5ec103c82 nac3artiq: kernel invariant support 2021-11-20 21:15:15 +08:00
ba08deada6 nac3core: refactor codegen 2021-11-20 19:50:25 +08:00
439cef636f runkernel: improve print_int debug functions 2021-11-19 12:39:57 +08:00
1e47b364c5 nac3artiq: support now-pinning on RISC-V with wide data bus (#97) 2021-11-16 17:37:40 +08:00
8ab3ee9cce nac3core: AugAssign support (#82) 2021-11-13 12:24:22 +08:00
9ae08d6e3d nac3artiq: add stubs for now-pinning on rv32g (#97) 2021-11-13 12:10:55 +08:00
d6b92adf70 nac3artiq: add stack guard 2021-11-12 20:03:52 +08:00
aa84fefa56 fix previous commit (again) 2021-11-12 15:47:21 +08:00
5ad7aa5a93 flake: fix previous commit 2021-11-12 15:37:39 +08:00
b64d2399f2 flake: build devShell dependencies on Hydra 2021-11-12 15:08:24 +08:00
ebca596be6 flake: update nixpkgs 2021-11-12 15:04:21 +08:00
4aeea87702 flake: export nixpkgs-patched 2021-11-12 14:57:46 +08:00
e25a9bbcda typo 2021-11-11 23:44:14 +08:00
978eaf16a4 nac3artiq: support RISC-V with and without FPU. Closes #83 2021-11-11 23:43:50 +08:00
4547eee82a llvm: switch RISC-V ABI when FPU is present
Patch is a bit of a hack and ignores 64-bit CPUs.

Also only build the LLVM targets we need.
2021-11-11 23:42:32 +08:00
96607432c1 nac3core: use Python 3.9 list/tuple annotations in test
Closes #85
2021-11-11 20:05:08 +08:00
dba1a8b3d4 nac3standalone: link libm in demo runner 2021-11-11 19:44:18 +08:00
612b6768c0 nac3artiq: bail early on non-NAC3 classes 2021-11-11 16:35:40 +08:00
c004da85f7 nac3artiq: drop host-only base classes. Closes #80 2021-11-11 16:08:29 +08:00
7fc04936cb runkernel: add print_int debug function 2021-11-10 17:34:13 +08:00
b57b869c49 min_artiq: remove unused imports 2021-11-10 14:01:39 +08:00
50f1aca1aa nac3artiq: move module registration list to CPython side
In ARTIQ, we cannot create a global NAC3 object because we do not
know the ISA in advance.
2021-11-07 10:29:14 +08:00
ffa89e9308 fix clippy warnings 2021-11-06 23:00:18 +08:00
34cf303e6c nac3artiq: modified demo to use KernelInvariants 2021-11-06 22:50:28 +08:00
b1e83a1fd4 nac3core: type check invariants
This rejects code that tries to assign to KernelInvariant fields and
methods.
2021-11-06 22:48:08 +08:00
7385b91113 nac3artiq: support kernel entry short form from original ARTIQ 2021-11-06 18:41:59 +08:00
016cbf2b90 nac3artiq: return bytes in compile_method_to_mem 2021-11-06 14:29:23 +08:00
37eae090e5 nac3artiq: fix linker inputs 2021-11-06 14:23:54 +08:00
204baabfd2 nac3artiq: add compile_method_to_mem 2021-11-06 14:14:53 +08:00
597857ccd0 typo 2021-11-06 14:14:40 +08:00
efc9edbc14 nac3parser: fix decorator and above comments 2021-11-06 14:13:17 +08:00
7d66195eae nac3artiq: embed linker script, put intermediate objects in temp dir 2021-11-06 13:04:00 +08:00
1fea51d9b3 Merge pull request 'nac3parser: add comment support' (#68) from with_nac3comment into master
Reviewed-on: M-Labs/nac3#68
2021-11-05 20:46:42 +08:00
99b29d8ded Merge branch 'master' into with_nac3comment 2021-11-05 20:46:29 +08:00
3db95b120b nac3core: implements bool conversion function 2021-11-05 20:34:34 +08:00
8dbb4ad58a nac3core/toplevel: make test less fragile
test results should not depend on internal states if possible
2021-11-05 20:28:21 +08:00
ee67b22ebc Merge branch 'master' into with_nac3comment 2021-11-05 20:01:36 +08:00
afb94dd299 nac3artiq: move demo to dedicated folder 2021-11-05 18:28:31 +08:00
d6f0607ff0 nac3artiq: rename class decorator to nac3 2021-11-05 18:08:36 +08:00
610448fa73 nac3artiq: include parallel in demo 2021-11-05 18:07:18 +08:00
e8228710e7 min_artiq: remove unnecessary definitions 2021-11-05 17:50:26 +08:00
032e1d84cf nac3parser: add and fix tests due to comment support 2021-11-04 15:03:34 +08:00
b239806558 nac3core: adapt to ast change due to comment support 2021-11-04 15:02:51 +08:00
694c7e945c nac3ast: generated ast with comment fields 2021-11-04 15:01:50 +08:00
3b1cc02d06 nac3parser, ast: add comment support core changes 2021-11-04 15:00:27 +08:00
32d1fe811b flake: update nixpkgs 2021-11-03 21:54:27 +08:00
36e4028f5b fix and run parser tests 2021-11-03 17:39:48 +08:00
b6ff46c39e README: update 2021-11-03 17:22:14 +08:00
bf7e2c295a integrate nac3parser 2021-11-03 17:11:00 +08:00
48ce6bb6c5 rustpython-parser: string interner, optimizations, thread local cache
corresponds to M-Labs RustPython fork at efdf7829ba1a5f87d30df8eaff12a330544f3cbd
branch parser-mod
2021-11-03 16:36:28 +08:00
80c7bc1cbd add RustPython parser
based on RustPython 67b338863ee6f16b0df0a7d1aa9debba55284651
2021-11-03 16:34:10 +08:00
e89bc93b5f ignore expressions in class definition body (#26) 2021-11-02 23:30:12 +08:00
47f563908a basic string support (#30) 2021-11-02 23:22:49 +08:00
0e914ab7e9 composer: add range keyword 2021-11-02 18:56:14 +08:00
613020a717 test: add missing id_to_name entry 2021-11-02 18:34:48 +08:00
ee2c0d8bab flake: add cargo-insta to dev shell 2021-11-02 18:13:59 +08:00
0d1e9262af flake: update cargoSha256 2021-11-02 15:17:10 +08:00
bc0f82cad8 Revert "nac3artiq/codegen: fixed smax problem"
We have LLVM 12 now and can use the intrinsic.

This reverts commit 98d9f73afb.
2021-11-02 14:00:28 +08:00
624dfe8cd1 upgrade to LLVM 12 2021-11-02 14:00:20 +08:00
e47597bb8a Merge branch 'context-manager' 2021-11-02 11:17:00 +08:00
98d9f73afb nac3artiq/codegen: fixed smax problem
It turns out the smax intrinsic I use is a new one that is not supported
in LLVM11. Now implemented with signed integer compare and select.
2021-11-02 11:10:21 +08:00
da2886565b runkernel: sort out cargo rigmarole with rustc link arg 2021-11-01 00:28:27 +08:00
b37cf6de08 nac3artiq: share isa->time_fns map 2021-11-01 00:03:15 +08:00
083eacc268 with parallel/sequential support
Behavior of parallel and sequential:
Each function call (indirectly, can be inside a sequential block) within a parallel
block will update the end variable to the maximum now_mu in the block.
Each function call directly inside a parallel block will reset the timeline after
execution. A parallel block within a sequential block (or not within any block) will
set the timeline to the max now_mu within the block (and the outer max now_mu will also
be updated).

Implementation: We track the start and end separately.
- If there is a start variable, it indicates that we are directly inside a
parallel block and we have to reset the timeline after every function call.
- If there is a end variable, it indicates that we are (indirectly) inside a
parallel block, and we should update the max end value.

Note: requires testing, it is difficult to inspect the output IR
2021-10-31 23:54:37 +08:00
137efebb33 runkernel: add simple host kernel runner 2021-10-31 23:52:43 +08:00
443b95d909 nac3artiq: do not use custom linker script when targeting host 2021-10-31 23:51:50 +08:00
8b73a123cc nac3artiq: support compiling for the host 2021-10-31 23:02:21 +08:00
84c5201243 with parallel/sequential support
Behavior of parallel and sequential:
Each function call (indirectly, can be inside a sequential block) within a parallel
block will update the end variable to the maximum now_mu in the block.
Each function call directly inside a parallel block will reset the timeline after
execution. A parallel block within a sequential block (or not within any block) will
set the timeline to the max now_mu within the block (and the outer max now_mu will also
be updated).

Implementation: We track the start and end separately.
- If there is a start variable, it indicates that we are directly inside a
parallel block and we have to reset the timeline after every function call.
- If there is a end variable, it indicates that we are (indirectly) inside a
parallel block, and we should update the max end value.

Note: requires testing, it is difficult to inspect the output IR
2021-10-31 17:16:21 +08:00
558c3f03ef nac3core/codegen: list comprehension support 2021-10-24 16:53:43 +08:00
45673b0ecc nac3core/codegen: cleanup 2021-10-24 16:53:43 +08:00
181607008d nac3core/codegen: supports list iter 2021-10-24 14:39:50 +08:00
fb92b6d364 nac3core: supports range iterator 2021-10-23 23:53:36 +08:00
2f6ba69770 nac3core/typecheck: check if value is none 2021-10-23 21:31:14 +08:00
cc83bbc63a nac3core/codegen: fix broken test 2021-10-17 13:07:45 +08:00
279f47f633 nac3core/codegen: avoid sending unifiers
Previously, we have to copy types from one unification table to another,
and make the table sendable. This requires cloning (processing) the
whole table 3 times per function call which is not efficient and uses
more memory than required when the unification table is large.

We now use a concrete type table to only copy the type we need. This
reduces the overhead as we only need to process the unification table
for once (when we do the function codegen), and reduces memory usage by
a bit (but not noticeable when the unification table is small, i.e. the
types are simple).
2021-10-17 13:02:18 +08:00
9850cbe313 nac3core/codegen: optimize for every function
This speeds up compilation and reduces memory usage.
2021-10-17 12:56:11 +08:00
1f5bea2448 nac3core/codegen: refactor according to #23 2021-10-16 22:17:36 +08:00
c4259d14d1 fixed some clippy warnings 2021-10-16 18:08:13 +08:00
26076c37ba nac3core/typecheck: supports recursive type inference 2021-10-16 15:56:49 +08:00
fd0b11087e nac3core: use round instead of rint. Closes #61 2021-10-11 08:18:52 +08:00
3a1dd893a1 nac3artiq/demo: get closer to regular ARTIQ 2021-10-10 17:45:38 +08:00
a4ccac2329 nac3artiq: implements #55, #56 2021-10-10 16:26:01 +08:00
77542170fd nac3core: fixes #60 2021-10-10 15:01:06 +08:00
a3ce5be10b nac3core: fixes #32 and #57 2021-10-09 16:20:49 +08:00
a22552a012 nac3artiq: work around #56 2021-10-09 15:52:45 +08:00
6ba74ed9f6 nac3artiq: allow creating drivers on device 2021-10-09 15:51:47 +08:00
8b32c8270d nac3artiq: explain delayed registration 2021-10-09 15:21:41 +08:00
5749141efb nac3artiq: add simple KernelInvariant CPython wrapper 2021-10-08 23:46:46 +08:00
3b10172810 nac3artiq: get closer to original ARTIQ semantics in demo
Currently crashes the compiler with:
thread '<unnamed>' panicked at 'called `Option::unwrap()` on a `None` value', nac3core/src/codegen/expr.rs:395:58
2021-10-08 23:41:41 +08:00
82efb0e720 missing file from previous commit 2021-10-08 23:21:36 +08:00
d3a21d75fa handle time cursor functions on the Rust side entirely
This is preparation for with sequential/with parallel support.
2021-10-08 23:14:22 +08:00
a07674a042 nac3artiq: host object supports typevar 2021-10-08 22:45:08 +08:00
c5bcd352a5 flake: add hydraJobs 2021-10-08 08:18:42 +08:00
79d3c5caae switch to Nix flakes 2021-10-08 00:04:22 +08:00
c697e522d3 nac3artiq: #33 demo
The python API is changed a bit to allow running constructor with
@kernel annotation.
2021-10-07 15:58:19 +08:00
08947d20c2 nac3artiq: implements #33 2021-10-07 15:57:45 +08:00
62673cf608 nac3artiq: add back builtins (fix #53) 2021-10-06 16:46:41 +08:00
11144301ca nac3artiq: added simple host value support 2021-10-06 16:07:42 +08:00
4fcb54e463 nac3core: fix #46, better toplevel return type error msg 2021-10-03 18:07:45 +08:00
24b2111c64 nac3core: fix #45 toplevel better error msg for methods/functions 2021-10-03 17:25:28 +08:00
f5ce1afe0b fix tests and switch to insta
Use a library called 'insta' to better organize those longer correct test outputs in toplevel tests. 'insta' creates `.snap` files as snapshots of the test output, and will automatically do the diff if the output is different. This makes maintaining test cases with larger outputs a lot easier.

Reviewed-on: M-Labs/nac3#42
Co-authored-by: ychenfo <yc@m-labs.hk>
Co-committed-by: ychenfo <yc@m-labs.hk>
2021-10-03 16:39:12 +08:00
915460ecb7 nac3artiq: fix typo 2021-10-03 16:18:15 +08:00
b2c7f51d57 nac3artiq: guarantee ordering of pinned now stores 2021-10-03 10:00:42 +08:00
248d8cbece nac3artiq: handle now-pinning depending on target 2021-10-02 23:40:06 +08:00
c429a86586 nac3artiq: refactor timeline functions 2021-10-02 23:35:28 +08:00
c5e731f16d nac3artiq: implement timeline functions 2021-10-02 23:22:46 +08:00
0cbe4778d2 nac3standalone: demonstrate scalar conversion functions in mandelbrot 2021-10-02 19:21:59 +08:00
c93305739d nac3artiq: fix misleading error message 2021-10-02 19:17:33 +08:00
ba93931758 implement timeline functions for RISC-V (WIP) 2021-10-02 19:05:35 +08:00
3dd916b6ac nac3artiq: update unsendable comment 2021-10-02 18:28:44 +08:00
8447aa3000 nac3artiq: allows kernel function 2021-10-01 00:02:15 +08:00
1d2a32b140 nac3core/toplevel: impl scalar conversion
Implemented scalar conversion functions as builtin functions.
`round` for int64 is now implemented as `round64`.
2021-09-30 23:39:29 +08:00
07a9229d52 nac3artiq: implements #36 2021-09-30 22:30:54 +08:00
f0fdfe42cb nac3core: better impl of #24 2021-09-30 17:07:48 +08:00
928b5bafb5 nac3artiq: add missing symlink 2021-09-29 15:36:30 +08:00
dceaf42500 nac3artiq: support ISA selection 2021-09-29 15:33:12 +08:00
bfd041d361 nac3artiq: filter class definitions 2021-09-27 22:25:19 +08:00
6141f01180 nac3artiq: parse whole Python module, filter ast 2021-09-27 22:12:25 +08:00
8d839db553 typo 2021-09-27 19:12:18 +08:00
316db42940 nac3embedded -> nac3artiq, README cleanup 2021-09-27 10:30:54 +08:00
64404bba20 syscall -> extern (#21) 2021-09-27 10:13:03 +08:00
d4ed76d76e nac3core: implementing #24 2021-09-26 22:17:09 +08:00
3c121dfcda nac3core/toplevel/composer: fixes #29 2021-09-25 22:02:19 +08:00
693ac7d336 nac3core/toplevel: added personality symbol config 2021-09-25 21:44:00 +08:00
dd998c8afc nac3embedded: RTIO LED blinking demo 2021-09-25 14:17:11 +08:00
7ab762a174 demo: add more syscalls and features 2021-09-24 14:45:44 +08:00
7ab2114882 nac3embedded: switch to Zynq (#24) 2021-09-24 14:45:09 +08:00
4535b60fc0 nac3embedded: add device_db for artiq_run of the compiler output 2021-09-24 13:26:23 +08:00
bf48151748 nac3embedded: do not use *.so for output to avoid confusing cpython 2021-09-24 13:25:48 +08:00
bed8ce1f26 nac3embedded: set ELF entry point symbol 2021-09-24 13:25:18 +08:00
c26689c7a7 shell.nix: fix syntax 2021-09-24 12:53:48 +08:00
ac17bf50f8 nac3embedded: RTIO syscalls 2021-09-24 11:39:26 +08:00
13bd18bfcb nac3embedded: produce final shared library 2021-09-24 11:07:52 +08:00
5c236271c3 nac3embedded: string interning 2021-09-24 09:58:58 +08:00
14662a66dc nac3embedded: run linker (WIP) 2021-09-23 21:30:47 +08:00
c4fbfeaca9 nac3standalone: added thread number arg 2021-09-23 20:02:56 +08:00
20a752fd3a Merge pull request 'optimization (#13)' (#15) from optimization into master
Reviewed-on: M-Labs/nac3#15
2021-09-23 19:58:43 +08:00
6a69211c55 Merge remote-tracking branch 'origin/master' into optimization 2021-09-23 19:58:24 +08:00
59dac8bdf5 nac3embedded: compile for RISC-V ARTIQ coredevice 2021-09-23 19:38:48 +08:00
edd60e3f9a nac3embedded: compile again 2021-09-23 19:30:03 +08:00
799ed58d21 nac3core/type_inferencer: avoid type var for assign 2021-09-22 19:25:47 +08:00
105d605e6d nac3core: fix clippy warnings 2021-09-22 18:04:06 +08:00
97f5b7c324 fixed performance regression 2021-09-22 18:04:06 +08:00
7d48883583 fixed tests 2021-09-22 18:04:06 +08:00
084efe92af nac3core: use string interning 2021-09-22 18:04:06 +08:00
891056631f nac3core: use Arc to reduce copy 2021-09-22 18:04:06 +08:00
1b5ac3cd25 nac3core: do not alloc call if it is monomorphic 2021-09-22 18:04:06 +08:00
5ed2b450d3 nac3core/typecheck: no type variable for monomorphic functions 2021-09-22 18:04:06 +08:00
a508baae20 added syscall annotation
and temporarily disabled the keyword check for top-level functions
2021-09-22 17:58:46 +08:00
013e7cfc2a codegen: support pass statement. Closes #10 2021-09-22 15:17:13 +08:00
db14b4b635 demo: remove old obj files 2021-09-22 15:02:05 +08:00
8acb39f31f fix parallel compilation 2021-09-22 15:00:32 +08:00
d561450bf5 demo: fix classes example 2021-09-22 14:57:24 +08:00
956cca6ac8 cleanup demos 2021-09-22 14:57:13 +08:00
4a5f2d495e added time measurement to track performance 2021-09-22 14:45:56 +08:00
4fe643f45b allows function ending with a number 2021-09-22 14:45:42 +08:00
1c170f5c41 nac3core: type inferencer fix the pass statement 2021-09-21 13:19:13 +08:00
df6c9c8a35 fix #11 2021-09-21 11:29:51 +08:00
20905a9b67 nac3core: better field initialization check 2021-09-21 03:02:12 +08:00
e66693282c nac3core: change the place to unify constructor type for function body type check
add really basic field initialize check
2021-09-20 23:44:39 +08:00
dd1be541b8 nac3core: allow class to have no __init__, function/method name with module path added to ensure uniqueness 2021-09-20 23:36:19 +08:00
3c930ae9ab fixed #12 2021-09-20 15:51:42 +08:00
35a94a8fc0 nac3core: fix broken test 2021-09-20 01:58:07 +08:00
4939ff4dbd simple implementation of classes 2021-09-19 22:54:06 +08:00
bf1769cef6 nac3standalone: more tests 2021-09-19 17:50:01 +08:00
2b74895b71 nac3standalone, nac3core: can use top level composer to compile and run mandelbrot 2021-09-19 16:19:49 +08:00
1b0f3d07cc nac3core: top level fix field of funinstance 2021-09-17 22:32:13 +08:00
ed5dfd4100 nac3core: top level inferencer call with type var more test 2021-09-17 16:31:33 +08:00
41e63f24d0 nac3core: top level add test utility to print stringfied type 2021-09-17 16:31:21 +08:00
d0df705c5a nac3core: toplevel type var test 2021-09-17 00:39:42 +08:00
a0662c58e6 nac3core: fix recursive top level function call 2021-09-17 00:39:42 +08:00
526c18bda0 nac3core: top level inferencer without type var should be ok 2021-09-17 00:39:42 +08:00
a10ab81ee7 toplevel composer: add ast to class methods, suppress warning 2021-09-17 00:39:42 +08:00
f5353419ac codegen: minimized lock holding time
The previous way of holding the lock would prohibit multithread code
generation for llvm
2021-09-16 21:36:42 +08:00
180392e2ab typecheck: fixed recursive substitution 2021-09-12 21:33:21 +08:00
471547855e nac3core: toplevel change class method name handling, cleanup comments 2021-09-12 13:14:46 +08:00
2ac3f9a176 nac3core: separate top level compoer to a new file 2021-09-12 05:10:10 +08:00
cb310965b8 nac3core: toplevel register consider module path 2021-09-12 05:00:26 +08:00
118f19762a nac3core: toplevel format 2021-09-12 04:40:40 +08:00
b419634f8a nac3core: top level fields inheritance check, more tests 2021-09-12 04:34:30 +08:00
147298ff40 nac3core: top level fix class fields as nac3 spec 2021-09-12 03:49:21 +08:00
c7cb02b0f3 nac3core: toplevel fix parse type annotation dead lock 2021-09-12 03:01:56 +08:00
03b5e51822 nac3standalone: cleanup 2021-09-10 21:27:08 +08:00
4eacd1aa9e nac3core: top level err test 2021-09-10 21:26:39 +08:00
9eef51f29f nac3core: top level class method self parameter fixed 2021-09-10 16:14:08 +08:00
917d447605 nac3core: clean up, fix broken test 2021-09-09 02:09:35 +08:00
f1013d9a17 nac3core: top level fix type var within list tuple, test of type var application compatibility 2021-09-09 02:03:44 +08:00
2ce507964c nac3core: fix broken top level test due to hashmap order 2021-09-09 00:44:56 +08:00
5a1a8ecee3 nac3core: self is not not allowed to explicitly appear in method type annotations 2021-09-08 21:53:54 +08:00
1300b5ebdd nac3core: clean up and format 2021-09-08 19:45:36 +08:00
87f25e1c5d nac3core: remove mutex on dyn symbol resolve 2021-09-08 19:27:32 +08:00
55335fc05d nac3core: top level simple type var handled 2021-09-08 02:27:12 +08:00
247b364191 nac3core: top level fix cyclic ancestor analysis, add tests 2021-09-07 17:30:15 +08:00
bbcec6ae6f nac3core: toplevel fix bug in make self annotation and return type check 2021-09-07 10:03:31 +08:00
235b6e34d1 nac3core: top level derive fmt::Debug, fix dead lock 2021-09-07 00:20:40 +08:00
54b4572c5f nac3core: allow interior mutability to dyn symbolresolver, add add_id_def to symbolresolver trait, remove primitive from top level def list 2021-09-06 19:23:04 +08:00
dc7c014b10 nac3core: top level more test 2021-08-31 17:40:38 +08:00
1ae6acc061 nac3core: top level fix function/methods none return type 2021-08-31 15:41:48 +08:00
98d032b72a nac3core: top level fix duplicate def, start adding tests 2021-08-31 15:23:57 +08:00
7bbd608492 nac3core: top level cleanup, rewrite ancestors handling, __init__ occruence check 2021-08-31 13:54:16 +08:00
4a9593efa3 nac3core: top level clean up and fix ancestors analysis 2021-08-30 22:47:55 +08:00
098bd1e6e6 nac3core: top level check inheritance method overload 2021-08-30 17:39:29 +08:00
82c2edcf8d nac3core: toplevel cleanup and add list and tuple support 2021-08-30 14:16:11 +08:00
40e58d02ed nac3core: toplevel all ancestors are put into the def list, disallow generic base class for now 2021-08-30 14:15:57 +08:00
e2a9bdd8bc nac3core: toplevel no duplicate type var too early 2021-08-30 14:15:36 +08:00
236989defc nac3core: remove unnecessary inline and function parameters 2021-08-27 16:52:31 +08:00
22a728833d nac3core: fixed broken test 2021-08-27 16:50:53 +08:00
2223c86d9b nac3standalone: compile multiple functions 2021-08-27 16:25:59 +08:00
72aebed559 nac3core: unification table optimization
avoid cloning values that we no longer need.
2021-08-27 13:05:06 +08:00
8c1c7fcfc3 nac3core: fixed broken tests 2021-08-27 13:04:51 +08:00
6633eabb89 nac3core: optimized by using HashSet 2021-08-27 12:36:51 +08:00
d81249cabe nac3standalone: enabled optimization and recorded time 2021-08-27 12:35:21 +08:00
bf4e0009c0 codegen: do not generate cont_bb if unreachable 2021-08-27 11:46:12 +08:00
52dd792b3e nac3standalone: added return check 2021-08-27 11:39:36 +08:00
a24e204824 type_inferencer: check defined identifiers during inference 2021-08-27 11:13:43 +08:00
35ef0386db move helper function to another file 2021-08-27 10:21:51 +08:00
b9a580d271 handle class method/fields type var 2021-08-27 09:53:09 +08:00
018d6643e1 top level: top level function type var handled
top level: class methods/fields type var handling
2021-08-27 01:41:34 +08:00
935e7410fd check type params in class generic base declaration 2021-08-26 11:54:37 +08:00
1a21fb1072 fix codegen test about top level composer return type change 2021-08-25 18:00:01 +08:00
35a331552b cyclic inheritance check added 2021-08-25 17:47:26 +08:00
0bab477ab0 get rid of nested tuple in type annotation helper function 2021-08-25 17:47:26 +08:00
862d205f67 remove self kind and extra primitive info in the return of top level composer constructor, adding some helper function for type annotation 2021-08-25 17:47:26 +08:00
e2b11c3fee codegen: fixed deadlock and added call test 2021-08-25 17:44:01 +08:00
0608fd9659 fixed test and nac3standalone 2021-08-25 15:30:36 +08:00
173102fc56 codegen/expr: function codegen and refactoring 2021-08-25 15:29:58 +08:00
93270d7227 use forked version of rustpython
to implement Clone for AST nodes
2021-08-25 15:28:32 +08:00
1ffa1a8bb0 typecheck/typedef: added copy_from
This function would copy concrete type from one unifier to another
unifier, and can handle recursive types. This would be used in code
generation for moving types from one unification table to another one.
2021-08-25 12:02:10 +08:00
01f7a31aae put parse ast into type annotation into one function 2021-08-24 17:44:37 +08:00
32773c14e0 move top level related things to a separate module 2021-08-24 17:19:17 +08:00
c356062239 symbol_resolver: handle list and tuples 2021-08-24 14:58:19 +08:00
56f082ca7c handle type var associated with class/function partially, change llvm version of nac3embedded to 11
format
2021-08-23 17:00:32 +08:00
39f300b62a clean up and add duplicate function/parameter/class name test
formatted
2021-08-23 14:22:46 +08:00
7b1fe36e90 formatted 2021-08-23 11:13:45 +08:00
fb5b4697a9 fix rebase conflict and some test failure with unifier's error message 2021-08-23 10:34:11 +08:00
364054331c handle class fields and methods 2021-08-23 02:54:45 +08:00
40b062ce0f change the parse type annotation parameter type, refactoring top level 2021-08-23 02:54:45 +08:00
f5b8b58826 added tuple assignment check 2021-08-21 15:11:01 +08:00
c4d6b3691a codegen/expr: fixed warnings 2021-08-21 15:10:50 +08:00
957ceb74e4 nac3core/typecheck: added basic location information 2021-08-21 14:51:46 +08:00
e47d063efc codegen: store to list element 2021-08-19 17:14:38 +08:00
0e2da0d180 codegen: gep related fixes
we can now compile simple programs that uses tuples and lists
2021-08-19 16:54:15 +08:00
39545c0005 nac3standalone usable 2021-08-19 15:30:52 +08:00
3279f7a776 codegen for simple function call, and various fixes 2021-08-19 15:30:15 +08:00
f205a8282a Merge pull request 'hm-inference' (#6) from hm-inference into master
Reviewed-on: M-Labs/nac3#6
2021-08-19 11:46:50 +08:00
d1215bf5ac nac3core/codegen/expr: fixed typo 2021-08-19 11:45:33 +08:00
6e424a6a3e fixed codegen test 2021-08-19 11:32:22 +08:00
9a07ef3301 Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference 2021-08-19 11:32:04 +08:00
c238c264e7 add type vars to the primitive binop function def 2021-08-19 11:18:58 +08:00
f8a697e3d4 switch to LLVM 11 2021-08-19 11:14:35 +08:00
4b38fe66a2 format 2021-08-18 17:33:48 +08:00
9cb07e6f04 start to handle base inheritance methods, fields 2021-08-18 17:32:55 +08:00
6279dbb589 formating 2021-08-18 16:33:50 +08:00
529442590f some parsing of top level class fields and methods 2021-08-18 16:28:17 +08:00
4fcd48e4c8 try to use def list ast tuple and remove method_to_def_id map 2021-08-18 10:01:11 +08:00
619963dc8c removed locks in toplevelcomposer 2021-08-17 16:36:06 +08:00
276daa03f7 start refactorinng for less redundancy 2021-08-17 14:01:18 +08:00
a94145348a fix on comments and redundant code, start handling 'self' things 2021-08-17 11:07:16 +08:00
fa40fd73c6 formatted 2021-08-16 20:17:08 +08:00
79ce13722a partially parsed class methods nad fields 2021-08-16 17:40:12 +08:00
eb814dd8c3 clean unused use 2021-08-16 13:57:21 +08:00
3734663188 add RefCell to FunSignature in TypeEnum 2021-08-16 13:53:45 +08:00
d8c3c063ec split top level handling in several functions 2021-08-16 13:53:39 +08:00
d3ad894521 removed code comment 2021-08-13 16:30:33 +08:00
784111fdbe Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference 2021-08-13 16:28:04 +08:00
d30918bea0 worker thread panic handling 2021-08-13 16:20:14 +08:00
e2adf82229 threadpool for parallel code generation 2021-08-13 14:48:46 +08:00
33391c55c2 add Sync bound to Symbol resolver in top level 2021-08-13 14:22:49 +08:00
3f65e1b133 start refactor top_level 2021-08-13 13:57:24 +08:00
ba5bb78f11 top level parse class base/generic 2021-08-13 13:57:24 +08:00
e176aa660d commit for pull new symbol resolver 2021-08-13 13:57:24 +08:00
cb01c79603 removed Arc from TypeEnum 2021-08-13 13:33:59 +08:00
1db8378f60 formatting 2021-08-12 16:36:23 +08:00
8c7ccb626b fixed symbol_resolver blanket implementation 2021-08-12 14:44:50 +08:00
1f6c16e08b fixed compilation failure 2021-08-12 13:56:51 +08:00
77943a8117 added primitive codegen test 2021-08-12 13:56:06 +08:00
3a93e2b048 TypeEnum::TObj.param is now RefCell for interior mutability 2021-08-12 13:17:51 +08:00
824a5cb01a register top level clean up 2021-08-12 10:51:41 +08:00
17ee8fe6d0 starting cleaning up and further add Arc<Mutex> 2021-08-12 10:51:41 +08:00
d46a4b2d38 symbol_resolver: fixed type variable handling 2021-08-12 10:25:32 +08:00
de8b67b605 refactored symbol resolver 2021-08-11 17:28:29 +08:00
0af4e95914 Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference 2021-08-11 15:42:32 +08:00
99276c8f31 formatted 2021-08-11 15:18:21 +08:00
42a636b4ce add Arc<Mutex<dyn SymbolResolver>> and change from Box<SymbolResolve> to Arc<SymbolResolver>, need format and cleanup 2021-08-11 15:11:51 +08:00
e112354d25 codegen refactored 2021-08-11 14:37:26 +08:00
43236db9bd update some previous work on top level with the clean up 2021-08-11 13:31:59 +08:00
1bec6cf2db continue working on the top level 2021-08-11 11:16:53 +08:00
a73ab922e2 cleanup 2021-08-10 21:57:31 +08:00
82ce816177 refactored top level parsing, need review 2021-08-10 10:37:06 +08:00
6ad953f877 top level class roughly handled, push for review 2021-08-10 10:37:06 +08:00
4db871c244 put alloca in init block 2021-08-09 16:37:28 +08:00
cc0692a34c modified alloca 2021-08-09 16:19:20 +08:00
7a90ff5791 while loop constructs 2021-08-09 16:10:17 +08:00
d8c713ce3d assignment statement 2021-08-09 15:39:50 +08:00
1ffb792000 make tuple a ptr to a struct instead of a struct 2021-08-07 17:41:48 +08:00
057fcfe3df default parameter value generation 2021-08-07 17:31:01 +08:00
86ca02796b function parameter handling 2021-08-07 17:25:14 +08:00
711482d09c expr codegen cleanup 2021-08-07 15:30:03 +08:00
7a38ab3119 codegen for function call 2021-08-07 15:06:39 +08:00
34d3317ea0 store operation method signature 2021-08-07 10:41:53 +08:00
c405e46b00 moving location and symbol_resolver out from typecheck 2021-08-07 10:28:41 +08:00
18db2ddd53 change the type TypeEnum::TObj {object_id} to DefinitionId as with top_level
change TopLevelDef::Class {object_id} to DefinitionId
2021-08-06 10:57:01 +08:00
fe26070364 cleanup basic_test_env 2021-08-06 10:57:01 +08:00
095f28468b added if expr 2021-08-05 16:52:41 +08:00
29286210b5 implementing codegen 2021-08-05 14:56:09 +08:00
b01d0f6fbb formatting 2021-08-05 14:56:09 +08:00
3dcd846302 added rayon dependency 2021-08-05 14:56:09 +08:00
c0227210df bit shift lhs rhs same type; float ** int and float ** float both supported 2021-08-05 11:55:46 +08:00
99c71687a6 fixed: bitwise shift rhs can only be int32; better structured code 2021-08-04 16:46:16 +08:00
d052f007fb fix typo of primitives method 2021-08-04 12:03:56 +08:00
8452579c67 use parking_lot RwLock
The std::sync::RwLock is platform dependent, and is unfair on Linux
(may starve writer)
2021-08-03 14:11:41 +08:00
f00c1813e3 top-level related changes 2021-08-03 13:38:27 +08:00
d4d12a9d1d added crossbeam dependency 2021-08-03 12:38:55 +08:00
a3acf09bda typedef: make it send
Rc in calls is not send, so we use Arc instead.
2021-08-03 12:38:12 +08:00
52dc112410 unification table: modified conversion impl
from UnificationTable<Rc<RefCell<T>> <==> UnificationTable<T>
to UnificationTable<Rc<T>> <==> UnificationTable<T>
2021-08-03 12:35:58 +08:00
d4807293b0 clean up unused variabls and comments 2021-08-03 10:41:52 +08:00
d4721db4a3 not creating temp for borrow, more concise code 2021-08-03 09:45:39 +08:00
a7e3eeea0d add primitive magic method support; change from TypeEnum::TObj { fields: Mapping<String>, ..} to TypeEnum::TObj {fields: RefCell<Mapping<String>>, .. } for interior mutability 2021-08-02 17:36:37 +08:00
f7bbc3e10d Merge branch 'hm-inference' into hm-inference_anto 2021-08-02 11:33:36 +08:00
7e0d55443a better structured primitive magic methods impl 2021-08-02 11:28:05 +08:00
197a72c658 added comment 2021-07-30 16:43:25 +08:00
eba92ed8bd added method to get all instantiations 2021-07-30 16:32:50 +08:00
b87c627c41 updated with field in the test environment 2021-07-30 15:46:57 +08:00
ae79533cfd Merge remote-tracking branch 'origin/hm-inference' into hm-inference_anto 2021-07-30 15:41:53 +08:00
9983aa62e6 add primitive magic methods 2021-07-30 15:40:14 +08:00
7ad8e2d81d cleanup some error reporting code 2021-07-30 13:50:46 +08:00
743a9384a3 added rigid type variable 2021-07-30 11:28:27 +08:00
f2c5a9b352 added location -> call mapping
This allows code generation module to get function instantiation
parameter directly.
2021-07-30 11:01:11 +08:00
09e76efcf7 start adding primitive magic methods 2021-07-29 15:36:19 +08:00
832513e210 new is_concrete type check 2021-07-28 17:25:19 +08:00
f665ea358b fixed fold 2021-07-28 10:44:58 +08:00
e15473d2c9 fixed pattern matching 2021-07-27 14:39:53 +08:00
5f0490cd84 added virtual test 2021-07-27 11:58:35 +08:00
1d13b16f94 updated function check 2021-07-26 16:00:29 +08:00
8d0856a58d added documentation 2021-07-26 14:38:18 +08:00
bf31c48bba fixed missing unification 2021-07-26 14:20:47 +08:00
0941de9ee1 Revert "shell.nix: set LLVM_SYS_100_PREFIX. Closes #4"
This reverts commit 53ebe8d8b2.
2021-07-26 12:29:16 +08:00
8618837816 fixed range unification 2021-07-26 12:00:06 +08:00
53ebe8d8b2 shell.nix: set LLVM_SYS_100_PREFIX. Closes #4 2021-07-24 09:31:24 +08:00
d7df93bef1 fixed range check 2021-07-23 17:22:05 +08:00
d140164a38 fixed virtual unification 2021-07-23 16:19:00 +08:00
ddcf4b7e39 refactored typedef 2021-07-23 15:57:37 +08:00
88c45172b2 basic check for use-before-def 2021-07-22 17:07:49 +08:00
c315227a28 init function check 2021-07-22 15:36:37 +08:00
d484fa1e5c added return type check 2021-07-22 11:49:00 +08:00
09c9218852 use custom unification table implementation
as the ena implementation did not expose the underlying vector store, we
cannot map over it to get a table without Rc<RefCell<T>> so that we can
send it around...
2021-07-22 11:37:29 +08:00
4f81690128 modified occur check 2021-07-21 16:10:11 +08:00
b3d849ea7a list test 2021-07-21 16:06:06 +08:00
3e03398d9b obj test 2021-07-21 15:59:01 +08:00
2f5c3b3cb7 more cleanup and started adding tests 2021-07-21 15:36:35 +08:00
25ff24a320 modified interface 2021-07-21 14:24:46 +08:00
0296844d5f cleanup 2021-07-21 13:28:05 +08:00
e95bfe1d31 added statements 2021-07-20 16:56:04 +08:00
bc9b453b3e function call implementation 2021-07-20 16:13:43 +08:00
fa31e8f336 fold listcomp 2021-07-20 13:45:17 +08:00
22455e43ac lambda fold 2021-07-20 11:47:19 +08:00
016166de46 skeleton done 2021-07-19 17:26:51 +08:00
eb4b2bb7f6 refactored using constrain
to allow easier modification later with subtyping
2021-07-19 17:05:48 +08:00
e732f7e089 removed integer encoding 2021-07-19 16:51:58 +08:00
d4b85d0bac expression type inference (WIP) 2021-07-19 13:35:01 +08:00
c913fb28bd use signed integer for TSeq 2021-07-19 13:34:45 +08:00
f51603f6da cleanup 2021-07-19 09:52:25 +08:00
d67407716c function unification... 2021-07-16 15:55:52 +08:00
f4121b570d added documentation 2021-07-16 14:34:52 +08:00
8b078dfa1b naming 2021-07-16 13:59:08 +08:00
62736bd4bf cleanup: we don't actually need arena 2021-07-16 13:58:02 +08:00
c2d00aa762 occur check 2021-07-15 16:51:55 +08:00
d94f25583b added tests 2021-07-15 16:00:23 +08:00
1df3f4e757 most of unification... 2021-07-14 17:20:12 +08:00
97fe450a0b occur check 2021-07-14 16:40:50 +08:00
e8c5189fce simplified code with Rc<RefCell<T>> 2021-07-14 15:58:58 +08:00
291e642699 partial implementation 2021-07-14 15:24:00 +08:00
e554737b68 tmp 2021-07-14 08:12:47 +08:00
84c980fed3 type scheme instantiation 2021-06-30 17:18:56 +08:00
2985b88351 refactor for HM style inference... 2021-06-30 16:28:18 +08:00
263 changed files with 66319 additions and 1865 deletions

32
.clang-format Normal file
View File

@ -0,0 +1,32 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

1
.clippy.toml Normal file
View File

@ -0,0 +1 @@
doc-valid-idents = ["CPython", "NumPy", ".."]

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
__pycache__ __pycache__
/target /target
/nac3standalone/demo/linalg/target
nix/windows/msys2

24
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,24 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [pre-commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]

1525
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,15 @@
[workspace] [workspace]
members = [ members = [
"nac3ld",
"nac3ast",
"nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3embedded", "nac3artiq",
"runkernel",
] ]
resolver = "2"
[profile.release]
debug = true

View File

@ -1,34 +1,62 @@
# nac3 compiler <div align="center">
![icon](https://git.m-labs.hk/M-Labs/nac3/raw/branch/master/nac3.svg)
</div>
# NAC3
NAC3 is a major, backward-incompatible rewrite of the compiler for the [ARTIQ](https://m-labs.hk/artiq) physics experiment control and data acquisition system. It features greatly improved compilation speeds, a much better type system, and more predictable and transparent operation.
NAC3 has a modular design and its applicability reaches beyond ARTIQ. The ``nac3core`` module does not contain anything specific to ARTIQ, and can be used in any project that requires compiling Python to machine code.
**WARNING: NAC3 is currently experimental software and several important features are not implemented yet.**
## Packaging
NAC3 is packaged using the [Nix](https://nixos.org) Flakes system. Install Nix 2.8+ and enable flakes by adding ``experimental-features = nix-command flakes`` to ``nix.conf`` (e.g. ``~/.config/nix/nix.conf``).
## Try NAC3
### Linux
After setting up Nix as above, use ``nix shell git+https://github.com/m-labs/artiq.git?ref=nac3`` to get a shell with the NAC3 version of ARTIQ. See the ``examples`` directory in ARTIQ (``nac3`` Git branch) for some samples of NAC3 kernel code.
### Windows
Install [MSYS2](https://www.msys2.org/), and open "MSYS2 CLANG64". Edit ``/etc/pacman.conf`` to add:
```
[artiq]
SigLevel = Optional TrustAll
Server = https://msys2.m-labs.hk/artiq-nac3
```
Then run the following commands:
```
pacman -Syu
pacman -S mingw-w64-clang-x86_64-artiq
```
## For developers
This repository contains: This repository contains:
- nac3core: Core compiler library, containing type-checking, static analysis (in - ``nac3ast``: Python abstract syntax tree definition (based on RustPython).
the future) and code generation. - ``nac3parser``: Python parser (based on RustPython).
- nac3embedded: Integration with CPython runtime. - ``nac3core``: Core compiler library, containing type-checking and code generation.
- nac3standalone: Standalone compiler tool. - ``nac3standalone``: Standalone compiler tool (core language only).
- ``nac3ld``: Minimalist RISC-V and ARM linker.
- ``nac3artiq``: Integration with ARTIQ and implementation of ARTIQ-specific extensions to the core language.
- ``runkernel``: Simple program that runs compiled ARTIQ kernels on the host and displays RTIO operations. Useful for testing without hardware.
The core compiler would know nothing about symbol resolution, host variables Use ``nix develop`` in this repository to enter a development shell.
etc. The nac3embedded/nac3standalone library would provide (implement) the If you are using a different shell than bash you can use e.g. ``nix develop --command fish``.
symbol resolver to the core compiler for resolving the type and value for
unknown symbols. The core compiler would only type check classes and functions
requested by the nac3embedded/nac3standalone lib (the API should allow the
caller to specify which methods should be compiled). After type checking, the
compiler would analyse the set of functions/classes that are used and perform
code generation.
value could be integer values, boolean values, bytes (for memcpy), function ID Build NAC3 with ``cargo build --release``. See the demonstrations in ``nac3artiq`` and ``nac3standalone``.
(full name + concrete type)
## Current Plan ### Pre-Commit Hooks
Type checking:
- [x] Basic interface for symbol resolver.
- [x] Track location information in context object (for diagnostics).
- [ ] Refactor old expression and statement type inference code. (anto)
- [ ] Error diagnostics utilities. (pca)
- [ ] Move tests to external files, write scripts for testing. (pca)
- [ ] Implement function type checking (instantiate bounded type parameters),
loop unrolling, type inference for lists with virtual objects. (pca)
You are strongly recommended to use the provided pre-commit hooks to automatically reformat files and check for non-optimal Rust practices using Clippy. Run `pre-commit install` to install the hook and `pre-commit` will automatically run `cargo fmt` and `cargo clippy` for you.
Several things to note:
- If `cargo fmt` or `cargo clippy` returns an error, the pre-commit hook will fail. You should fix all errors before trying to commit again.
- If `cargo fmt` reformats some files, the pre-commit hook will also fail. You should review the changes and, if satisfied, try to commit again.

27
flake.lock generated Normal file
View File

@ -0,0 +1,27 @@
{
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1735834308,
"narHash": "sha256-dklw3AXr3OGO4/XT1Tu3Xz9n/we8GctZZ75ZWVqAVhk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "6df24922a1400241dae323af55f30e4318a6ca65",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

212
flake.nix Normal file
View File

@ -0,0 +1,212 @@
{
description = "The third-generation ARTIQ compiler";
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-unstable;
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
llvm-tools-irrt = pkgs.runCommandNoCC "llvm-tools-irrt" {}
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
outputs = [ "out" "runkernel" "standalone" ];
src = self;
cargoLock = {
lockFile = ./Cargo.lock;
};
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
''
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
'';
installPhase =
''
PYTHON_SITEPACKAGES=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $PYTHON_SITEPACKAGES
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $PYTHON_SITEPACKAGES/nac3artiq.so
mkdir -p $runkernel/bin
cp target/x86_64-unknown-linux-gnu/release/runkernel $runkernel/bin
mkdir -p $standalone/bin
cp target/x86_64-unknown-linux-gnu/release/nac3standalone $standalone/bin
'';
}
);
python3-mimalloc = pkgs.python3 // rec {
withMimalloc = pkgs.python3.buildEnv.override({ makeWrapperArgs = [ "--set LD_PRELOAD ${pkgs.mimalloc}/lib/libmimalloc.so" ]; });
withPackages = f: let packages = f pkgs.python3.pkgs; in withMimalloc.override { extraLibs = packages; };
};
# LLVM PGO support
llvm-nac3-instrumented = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_BUILD_INSTRUMENTED=IR" ];
};
nac3artiq-instrumented = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-instrumented";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-instrumented ];
buildInputs = [ pkgs.python3 llvm-nac3-instrumented ];
cargoBuildFlags = [ "--package" "nac3artiq" "--features" "init-llvm-profile" ];
doCheck = false;
configurePhase =
''
export CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUSTFLAGS="-C link-arg=-L${pkgs.llvmPackages_14.compiler-rt}/lib/linux -C link-arg=-lclang_rt.profile-x86_64"
'';
installPhase =
''
TARGET_DIR=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $TARGET_DIR
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $TARGET_DIR/nac3artiq.so
'';
}
);
nac3artiq-profile = pkgs.stdenvNoCC.mkDerivation {
name = "nac3artiq-profile";
srcs = [
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];
buildPhase =
''
srcs=($srcs)
sipyco=''${srcs[0]}
artiq=''${srcs[1]}
export PYTHONPATH=$sipyco:$artiq
python -m artiq.frontend.artiq_ddb_template $artiq/artiq/examples/nac3devices/nac3devices.json > device_db.py
cp $artiq/artiq/examples/nac3devices/nac3devices.py .
python -m artiq.frontend.artiq_compile nac3devices.py
'';
installPhase =
''
mkdir $out
llvm-profdata merge -o $out/llvm.profdata /build/llvm/build/profiles/*
'';
};
llvm-nac3-pgo = pkgs.callPackage ./nix/llvm {
stdenv = pkgs.llvmPackages_14.stdenv;
extraCmakeFlags = [ "-DLLVM_PROFDATA_FILE=${nac3artiq-profile}/llvm.profdata" ];
};
nac3artiq-pgo = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage {
name = "nac3artiq-pgo";
src = self;
inherit (nac3artiq) cargoLock;
nativeBuildInputs = [ pkgs.python3 packages.x86_64-linux.llvm-tools-irrt llvm-nac3-pgo ];
buildInputs = [ pkgs.python3 llvm-nac3-pgo ];
cargoBuildFlags = [ "--package" "nac3artiq" ];
cargoTestFlags = [ "--package" "nac3ast" "--package" "nac3parser" "--package" "nac3core" "--package" "nac3artiq" ];
installPhase =
''
TARGET_DIR=$out/${pkgs.python3Packages.python.sitePackages}
mkdir -p $TARGET_DIR
cp target/x86_64-unknown-linux-gnu/release/libnac3artiq.so $TARGET_DIR/nac3artiq.so
'';
}
);
};
packages.x86_64-w64-mingw32 = import ./nix/windows { inherit pkgs; };
devShells.x86_64-linux.default = pkgs.mkShell {
name = "nac3-dev-shell";
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
# runtime dependencies
lld_14 # for running kernels on the host
(packages.x86_64-linux.python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ]))
# development tools
cargo-insta
clippy
pre-commit
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";
buildInputs = with pkgs; [
curl
pacman
fakeroot
packages.x86_64-w64-mingw32.wine-msys2
];
};
hydraJobs = {
inherit (packages.x86_64-linux) llvm-nac3 nac3artiq nac3artiq-pgo;
llvm-nac3-msys2 = packages.x86_64-w64-mingw32.llvm-nac3;
nac3artiq-msys2 = packages.x86_64-w64-mingw32.nac3artiq;
nac3artiq-msys2-pkg = packages.x86_64-w64-mingw32.nac3artiq-pkg;
};
};
nixConfig = {
extra-trusted-public-keys = "nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc=";
extra-substituters = "https://nixbld.m-labs.hk";
};
}

56
nac3.svg Normal file
View File

@ -0,0 +1,56 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
id="a"
width="128"
height="128"
viewBox="0 0 95.99999 95.99999"
version="1.1"
sodipodi:docname="nac3.svg"
inkscape:version="1.1.1 (3bf5ae0d25, 2021-09-20)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<defs
id="defs11" />
<sodipodi:namedview
id="namedview9"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageshadow="2"
inkscape:pageopacity="0.0"
inkscape:pagecheckerboard="0"
inkscape:document-units="mm"
showgrid="false"
units="px"
width="128px"
inkscape:zoom="5.9448568"
inkscape:cx="60.472441"
inkscape:cy="60.556547"
inkscape:window-width="2560"
inkscape:window-height="1371"
inkscape:window-x="0"
inkscape:window-y="32"
inkscape:window-maximized="1"
inkscape:current-layer="a" />
<rect
x="40.072601"
y="-26.776209"
width="55.668747"
height="55.668747"
transform="matrix(0.71803815,0.69600374,-0.71803815,0.69600374,0,0)"
style="fill:#be211e;stroke:#000000;stroke-width:4.37375px;stroke-linecap:round;stroke-linejoin:round"
id="rect2" />
<line
x1="38.00692"
y1="63.457153"
x2="57.993061"
y2="63.457153"
style="fill:none;stroke:#000000;stroke-width:4.37269px;stroke-linecap:round;stroke-linejoin:round"
id="line4" />
<path
d="m 48.007301,57.843329 c -1.943097,0 -3.877522,-0.41727 -5.686157,-1.246007 -3.218257,-1.474616 -5.650382,-4.075418 -6.849639,-7.323671 -2.065624,-5.588921 -1.192751,-10.226647 2.575258,-13.827 0.611554,-0.584909 1.518048,-0.773041 2.323689,-0.488206 0.80673,0.286405 1.369495,0.998486 1.447563,1.827234 0.237469,2.549302 2.439719,5.917376 4.28414,6.55273 0.396859,0.13506 0.820953,-0.05859 1.097084,-0.35222 0.339254,-0.360754 0.451065,-0.961893 -1.013597,-3.191372 -2.089851,-3.181137 -4.638728,-8.754903 -0.262407,-15.069853 0.494457,-0.713491 1.384673,-1.068907 2.256469,-0.909156 0.871795,0.161332 1.583757,0.806404 1.752251,1.651189 0.716448,3.591862 2.962357,6.151755 5.199306,8.023138 1.935503,1.61861 4.344688,3.867387 5.435687,7.096643 2.283183,6.758017 -1.202511,14.114988 -8.060822,16.494025 -1.467083,0.509226 -2.98513,0.762536 -4.498836,0.762536 z M 39.358865,40.002192 c -0.304711,0.696206 -0.541636,2.080524 -0.56865,2.237454 -0.330316,1.918771 0.168305,3.803963 0.846157,5.539951 0.856828,2.19436 2.437543,3.942467 4.583411,4.925713 2.143691,0.981675 4.554131,1.097816 6.789992,0.322666 4.571485,-1.586549 6.977584,-6.532238 5.363036,-11.02597 v -5.27e-4 C 55.455481,39.447968 54.023463,38.162043 52.221335,36.65432 50.876945,35.529534 49.409662,33.987726 48.417983,32.135555 48.01343,31.37996 47.79547,30.34303 47.76669,29.413263 c -0.187481,0.669514 -0.212441,2.325923 -0.150396,2.93691 0.179209,1.764456 1.333476,3.644546 2.340611,5.171243 1.311568,1.988179 2.72058,6.037272 0.459681,8.367985 -1.54192,1.58953 -4.038511,2.052034 -5.839973,1.38492 -2.398314,-0.888147 -3.942744,-2.690627 -4.941118,-4.768029 -0.121194,-0.25217 -0.532464,-1.174187 -0.276619,-2.5041 z"
id="path6"
style="stroke-width:1.09317" />
</svg>

After

Width:  |  Height:  |  Size: 3.3 KiB

21
nac3artiq/Cargo.toml Normal file
View File

@ -0,0 +1,21 @@
[package]
name = "nac3artiq"
version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[lib]
name = "nac3artiq"
crate-type = ["cdylib"]
[dependencies]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.13"
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

26
nac3artiq/demo/demo.py Normal file
View File

@ -0,0 +1,26 @@
from min_artiq import *
@nac3
class Demo:
core: KernelInvariant[Core]
led0: KernelInvariant[TTLOut]
led1: KernelInvariant[TTLOut]
def __init__(self):
self.core = Core()
self.led0 = TTLOut(self.core, 18)
self.led1 = TTLOut(self.core, 19)
@kernel
def run(self):
self.core.reset()
while True:
with parallel:
self.led0.pulse(100.*ms)
self.led1.pulse(100.*ms)
self.core.delay(100.*ms)
if __name__ == "__main__":
Demo().run()

View File

@ -0,0 +1,16 @@
# python demo.py
# artiq_run module.elf
device_db = {
"core": {
"type": "local",
"module": "artiq.coredevice.core",
"class": "Core",
"arguments": {
"host": "kc705",
"ref_period": 1e-9,
"ref_multiplier": 8,
"target": "rv32g"
}
},
}

View File

@ -0,0 +1,39 @@
class EmbeddingMap:
def __init__(self):
self.object_inverse_map = {}
self.object_map = {}
self.string_map = {}
self.string_reverse_map = {}
self.function_map = {}
self.attributes_writeback = []
def store_function(self, key, fun):
self.function_map[key] = fun
return key
def store_object(self, obj):
obj_id = id(obj)
if obj_id in self.object_inverse_map:
return self.object_inverse_map[obj_id]
key = len(self.object_map) + 1
self.object_map[key] = obj
self.object_inverse_map[obj_id] = key
return key
def store_str(self, s):
if s in self.string_reverse_map:
return self.string_reverse_map[s]
key = len(self.string_map)
self.string_map[key] = s
self.string_reverse_map[s] = key
return key
def retrieve_function(self, key):
return self.function_map[key]
def retrieve_object(self, key):
return self.object_map[key]
def retrieve_str(self, key):
return self.string_map[key]

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

300
nac3artiq/demo/min_artiq.py Normal file
View File

@ -0,0 +1,300 @@
from inspect import getfullargspec
from functools import wraps
from types import SimpleNamespace
from numpy import int32, int64
from typing import Generic, TypeVar
from math import floor, ceil
import nac3artiq
from embedding_map import EmbeddingMap
__all__ = [
"Kernel", "KernelInvariant", "virtual", "ConstGeneric",
"Option", "Some", "none", "UnwrapNoneError",
"round64", "floor64", "ceil64",
"extern", "kernel", "portable", "nac3",
"rpc", "ms", "us", "ns",
"print_int32", "print_int64",
"Core", "TTLOut",
"parallel", "sequential"
]
T = TypeVar('T')
class Kernel(Generic[T]):
pass
class KernelInvariant(Generic[T]):
pass
# The virtual class must exist before nac3artiq.NAC3 is created.
class virtual(Generic[T]):
pass
class Option(Generic[T]):
_nac3_option: T
def __init__(self, v: T):
self._nac3_option = v
def is_none(self):
return self._nac3_option is None
def is_some(self):
return not self.is_none()
def unwrap(self):
if self.is_none():
raise UnwrapNoneError()
return self._nac3_option
def __repr__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(repr(self._nac3_option))
def __str__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(str(self._nac3_option))
def Some(v: T) -> Option[T]:
return Option(v)
none = Option(None)
class _ConstGenericMarker:
pass
def ConstGeneric(name, constraint):
return TypeVar(name, _ConstGenericMarker, constraint)
def round64(x):
return round(x)
def floor64(x):
return floor(x)
def ceil64(x):
return ceil(x)
import device_db
core_arguments = device_db.device_db["core"]["arguments"]
artiq_builtins = {
"none": none,
"virtual": virtual,
"_ConstGenericMarker": _ConstGenericMarker,
"Option": Option,
}
compiler = nac3artiq.NAC3(core_arguments["target"], artiq_builtins)
allow_registration = True
# Delay NAC3 analysis until all referenced variables are supposed to exist on the CPython side.
registered_functions = set()
registered_classes = set()
def register_function(fun):
assert allow_registration
registered_functions.add(fun)
def register_class(cls):
assert allow_registration
registered_classes.add(cls)
def extern(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""
register_function(function_or_method)
argspec = getfullargspec(function_or_method)
if argspec.args and argspec.args[0] == "self":
@wraps(function_or_method)
def run_on_core(self, *args, **kwargs):
fake_method = SimpleNamespace(__self__=self, __name__=function_or_method.__name__)
self.core.run(fake_method, *args, **kwargs)
else:
@wraps(function_or_method)
def run_on_core(*args, **kwargs):
raise RuntimeError("Kernel functions need explicit core.run()")
return run_on_core
def portable(function):
"""Decorates a function or method to be executed on the same device (host/core device) as the caller."""
register_function(function)
return function
def nac3(cls):
"""
Decorates a class to be analyzed by NAC3.
All classes containing kernels or portable methods must use this decorator.
"""
register_class(cls)
return cls
ms = 1e-3
us = 1e-6
ns = 1e-9
@extern
def rtio_init():
raise NotImplementedError("syscall not simulated")
@extern
def rtio_get_counter() -> int64:
raise NotImplementedError("syscall not simulated")
@extern
def rtio_output(target: int32, data: int32):
raise NotImplementedError("syscall not simulated")
@extern
def rtio_input_timestamp(timeout_mu: int64, channel: int32) -> int64:
raise NotImplementedError("syscall not simulated")
@extern
def rtio_input_data(channel: int32) -> int32:
raise NotImplementedError("syscall not simulated")
# These is not part of ARTIQ and only available in runkernel. Defined here for convenience.
@extern
def print_int32(x: int32):
raise NotImplementedError("syscall not simulated")
@extern
def print_int64(x: int64):
raise NotImplementedError("syscall not simulated")
@nac3
class Core:
ref_period: KernelInvariant[float]
def __init__(self):
self.ref_period = core_arguments["ref_period"]
def run(self, method, *args, **kwargs):
global allow_registration
embedding = EmbeddingMap()
if allow_registration:
compiler.analyze(registered_functions, registered_classes, set())
allow_registration = False
if hasattr(method, "__self__"):
obj = method.__self__
name = method.__name__
else:
obj = method
name = ""
compiler.compile_method_to_file(obj, name, args, "module.elf", embedding)
@kernel
def reset(self):
rtio_init()
at_mu(rtio_get_counter() + int64(125000))
@kernel
def break_realtime(self):
min_now = rtio_get_counter() + int64(125000)
if now_mu() < min_now:
at_mu(min_now)
@portable
def seconds_to_mu(self, seconds: float) -> int64:
return int64(round(seconds/self.ref_period))
@portable
def mu_to_seconds(self, mu: int64) -> float:
return float(mu)*self.ref_period
@kernel
def delay(self, dt: float):
delay_mu(self.seconds_to_mu(dt))
@nac3
class TTLOut:
core: KernelInvariant[Core]
channel: KernelInvariant[int32]
target_o: KernelInvariant[int32]
def __init__(self, core: Core, channel: int32):
self.core = core
self.channel = channel
self.target_o = channel << 8
@kernel
def output(self):
pass
@kernel
def set_o(self, o: bool):
rtio_output(self.target_o, 1 if o else 0)
@kernel
def on(self):
self.set_o(True)
@kernel
def off(self):
self.set_o(False)
@kernel
def pulse_mu(self, duration: int64):
self.on()
delay_mu(duration)
self.off()
@kernel
def pulse(self, duration: float):
self.on()
self.core.delay(duration)
self.off()
@nac3
class KernelContextManager:
@kernel
def __enter__(self):
pass
@kernel
def __exit__(self):
pass
@nac3
class UnwrapNoneError(Exception):
"""raised when unwrapping a none value"""
artiq_builtin = True
parallel = KernelContextManager()
sequential = KernelContextManager()

1
nac3artiq/demo/nac3artiq.so Symbolic link
View File

@ -0,0 +1 @@
../../target/release/libnac3artiq.so

26
nac3artiq/demo/str_abi.py Normal file
View File

@ -0,0 +1,26 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
core: KernelInvariant[Core]
attr1: KernelInvariant[str]
attr2: KernelInvariant[int32]
def __init__(self):
self.core = Core()
self.attr2 = 32
self.attr1 = "SAMPLE"
@kernel
def run(self):
print_int32(self.attr2)
self.attr1
if __name__ == "__main__":
Demo().run()

View File

@ -0,0 +1,40 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
attr1: KernelInvariant[int32] = 2
attr2: int32 = 4
attr3: Kernel[int32]
@kernel
def __init__(self):
self.attr3 = 8
@nac3
class NAC3Devices:
core: KernelInvariant[Core]
attr4: KernelInvariant[int32] = 16
def __init__(self):
self.core = Core()
@kernel
def run(self):
Demo.attr1 # Supported
# Demo.attr2 # Field not accessible on Kernel
# Demo.attr3 # Only attributes can be accessed in this way
# Demo.attr1 = 2 # Attributes are immutable
self.attr4 # Attributes can be accessed within class
obj = Demo()
obj.attr1 # Attributes can be accessed by class objects
NAC3Devices.attr4 # Attributes accessible for classes without __init__
if __name__ == "__main__":
NAC3Devices().run()

1541
nac3artiq/src/codegen.rs Normal file

File diff suppressed because it is too large Load Diff

56
nac3artiq/src/kernel.ld Normal file
View File

@ -0,0 +1,56 @@
/* Force ld to make the ELF header as loadable. */
PHDRS
{
headers PT_LOAD FILEHDR PHDRS ;
text PT_LOAD ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;
eh_frame PT_GNU_EH_FRAME ;
}
SECTIONS
{
/* Push back .text section enough so that ld.lld not complain */
. = SIZEOF_HEADERS;
.text :
{
*(.text .text.*)
} : text
.rodata :
{
*(.rodata .rodata.*)
}
.eh_frame :
{
KEEP(*(.eh_frame))
} : text
.eh_frame_hdr :
{
KEEP(*(.eh_frame_hdr))
} : text : eh_frame
.data :
{
*(.data)
} : data
.dynamic :
{
*(.dynamic)
} : data : dynamic
.bss (NOLOAD) : ALIGN(4)
{
__bss_start = .;
*(.sbss .sbss.* .bss .bss.*);
. = ALIGN(4);
_end = .;
}
. = ALIGN(0x1000);
_sstack_guard = .;
}

1296
nac3artiq/src/lib.rs Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

324
nac3artiq/src/timeline.rs Normal file
View File

@ -0,0 +1,324 @@
use itertools::Either;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline.
pub trait TimeFns {
/// Emits LLVM IR for `now_mu`.
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx>;
/// Emits LLVM IR for `at_mu`.
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>);
/// Emits LLVM IR for `delay_mu`.
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>);
}
pub struct NowPinningTimeFns64 {}
// For FPGA design reasons, on VexRiscv with 64-bit data bus, the "now" CSR is split into two 32-bit
// values that are each padded to 64-bits.
impl TimeFns for NowPinningTimeFns64 {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").map(Into::into).unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder
.build_right_shift(time, i64_type.const_int(32, false), false, "")
.unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
}
pub static NOW_PINNING_TIME_FNS_64: NowPinningTimeFns64 = NowPinningTimeFns64 {};
pub struct NowPinningTimeFns {}
impl TimeFns for NowPinningTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let i64_type = ctx.ctx.i64_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "now")
.map(BasicValueEnum::into_int_value)
.unwrap();
let i64_32 = i64_type.const_int(32, false);
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
ctx.builder.build_or(now_lo, now_hi, "now_mu").map(Into::into).unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "").unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc").unwrap();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"now_trunc",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
}
pub static NOW_PINNING_TIME_FNS: NowPinningTimeFns = NowPinningTimeFns {};
pub struct ExternTimeFns {}
impl TimeFns for ExternTimeFns {
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| {
ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None)
});
ctx.builder
.build_call(now_mu, &[], "now_mu")
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
let at_mu = ctx.module.get_function("at_mu").unwrap_or_else(|| {
ctx.module.add_function(
"at_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| {
ctx.module.add_function(
"delay_mu",
ctx.ctx.void_type().fn_type(&[ctx.ctx.i64_type().into()], false),
None,
)
});
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
}
}
pub static EXTERN_TIME_FNS: ExternTimeFns = ExternTimeFns {};

15
nac3ast/Cargo.toml Normal file
View File

@ -0,0 +1,15 @@
[package]
name = "nac3ast"
version = "0.1.0"
authors = ["RustPython Team", "M-Labs"]
edition = "2021"
[features]
default = ["constant-optimization", "fold"]
constant-optimization = ["fold"]
fold = []
[dependencies]
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

127
nac3ast/Python.asdl Normal file
View File

@ -0,0 +1,127 @@
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, identifier* config_comment)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment, identifier* config_comment)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list, identifier* config_comment)
| Return(expr? value, identifier* config_comment)
| Delete(expr* targets, identifier* config_comment)
| Assign(expr* targets, expr value, string? type_comment, identifier* config_comment)
| AugAssign(expr target, operator op, expr value, identifier* config_comment)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, bool simple, identifier* config_comment)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment, identifier* config_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment, identifier* config_comment)
| While(expr test, stmt* body, stmt* orelse, identifier* config_comment)
| If(expr test, stmt* body, stmt* orelse, identifier* config_comment)
| With(withitem* items, stmt* body, string? type_comment, identifier* config_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment, identifier* config_comment)
| Raise(expr? exc, expr? cause, identifier* config_comment)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody, identifier* config_comment)
| Assert(expr test, expr? msg, identifier* config_comment)
| Import(alias* names, identifier* config_comment)
| ImportFrom(identifier? module, alias* names, int level, identifier* config_comment)
| Global(identifier* names, identifier* config_comment)
| Nonlocal(identifier* names, identifier* config_comment)
| Expr(expr value, identifier* config_comment)
| Pass(identifier* config_comment)
| Break(identifier* config_comment)
| Continue(identifier* config_comment)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr?* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, conversion_flag? conversion, expr? format_spec)
| JoinedStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, bool is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr?* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
withitem = (expr context_expr, expr? optional_vars)
type_ignore = TypeIgnore(int lineno, string tag)
}

385
nac3ast/asdl.py Normal file
View File

@ -0,0 +1,385 @@
#-------------------------------------------------------------------------------
# Parser for ASDL [1] definition files. Reads in an ASDL description and parses
# it into an AST that describes it.
#
# The EBNF we're parsing here: Figure 1 of the paper [1]. Extended to support
# modules and attributes after a product. Words starting with Capital letters
# are terminals. Literal tokens are in "double quotes". Others are
# non-terminals. Id is either TokenId or ConstructorId.
#
# module ::= "module" Id "{" [definitions] "}"
# definitions ::= { TypeId "=" type }
# type ::= product | sum
# product ::= fields ["attributes" fields]
# fields ::= "(" { field, "," } field ")"
# field ::= TypeId ["?" | "*"] [Id]
# sum ::= constructor { "|" constructor } ["attributes" fields]
# constructor ::= ConstructorId [fields]
#
# [1] "The Zephyr Abstract Syntax Description Language" by Wang, et. al. See
# http://asdl.sourceforge.net/
#-------------------------------------------------------------------------------
from collections import namedtuple
import re
__all__ = [
'builtin_types', 'parse', 'AST', 'Module', 'Type', 'Constructor',
'Field', 'Sum', 'Product', 'VisitorBase', 'Check', 'check']
# The following classes define nodes into which the ASDL description is parsed.
# Note: this is a "meta-AST". ASDL files (such as Python.asdl) describe the AST
# structure used by a programming language. But ASDL files themselves need to be
# parsed. This module parses ASDL files and uses a simple AST to represent them.
# See the EBNF at the top of the file to understand the logical connection
# between the various node types.
builtin_types = {'identifier', 'string', 'int', 'constant', 'bool', 'conversion_flag'}
class AST:
def __repr__(self):
raise NotImplementedError
class Module(AST):
def __init__(self, name, dfns):
self.name = name
self.dfns = dfns
self.types = {type.name: type.value for type in dfns}
def __repr__(self):
return 'Module({0.name}, {0.dfns})'.format(self)
class Type(AST):
def __init__(self, name, value):
self.name = name
self.value = value
def __repr__(self):
return 'Type({0.name}, {0.value})'.format(self)
class Constructor(AST):
def __init__(self, name, fields=None):
self.name = name
self.fields = fields or []
def __repr__(self):
return 'Constructor({0.name}, {0.fields})'.format(self)
class Field(AST):
def __init__(self, type, name=None, seq=False, opt=False):
self.type = type
self.name = name
self.seq = seq
self.opt = opt
def __str__(self):
if self.seq:
extra = "*"
elif self.opt:
extra = "?"
else:
extra = ""
return "{}{} {}".format(self.type, extra, self.name)
def __repr__(self):
if self.seq:
extra = ", seq=True"
elif self.opt:
extra = ", opt=True"
else:
extra = ""
if self.name is None:
return 'Field({0.type}{1})'.format(self, extra)
else:
return 'Field({0.type}, {0.name}{1})'.format(self, extra)
class Sum(AST):
def __init__(self, types, attributes=None):
self.types = types
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Sum({0.types}, {0.attributes})'.format(self)
else:
return 'Sum({0.types})'.format(self)
class Product(AST):
def __init__(self, fields, attributes=None):
self.fields = fields
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Product({0.fields}, {0.attributes})'.format(self)
else:
return 'Product({0.fields})'.format(self)
# A generic visitor for the meta-AST that describes ASDL. This can be used by
# emitters. Note that this visitor does not provide a generic visit method, so a
# subclass needs to define visit methods from visitModule to as deep as the
# interesting node.
# We also define a Check visitor that makes sure the parsed ASDL is well-formed.
class VisitorBase(object):
"""Generic tree visitor for ASTs."""
def __init__(self):
self.cache = {}
def visit(self, obj, *args):
klass = obj.__class__
meth = self.cache.get(klass)
if meth is None:
methname = "visit" + klass.__name__
meth = getattr(self, methname, None)
self.cache[klass] = meth
if meth:
try:
meth(obj, *args)
except Exception as e:
print("Error visiting %r: %s" % (obj, e))
raise
class Check(VisitorBase):
"""A visitor that checks a parsed ASDL tree for correctness.
Errors are printed and accumulated.
"""
def __init__(self):
super(Check, self).__init__()
self.cons = {}
self.errors = 0
self.types = {}
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type):
self.visit(type.value, str(type.name))
def visitSum(self, sum, name):
for t in sum.types:
self.visit(t, name)
def visitConstructor(self, cons, name):
key = str(cons.name)
conflict = self.cons.get(key)
if conflict is None:
self.cons[key] = name
else:
print('Redefinition of constructor {}'.format(key))
print('Defined in {} and {}'.format(conflict, name))
self.errors += 1
for f in cons.fields:
self.visit(f, key)
def visitField(self, field, name):
key = str(field.type)
l = self.types.setdefault(key, [])
l.append(name)
def visitProduct(self, prod, name):
for f in prod.fields:
self.visit(f, name)
def check(mod):
"""Check the parsed ASDL tree for correctness.
Return True if success. For failure, the errors are printed out and False
is returned.
"""
v = Check()
v.visit(mod)
for t in v.types:
if t not in mod.types and not t in builtin_types:
v.errors += 1
uses = ", ".join(v.types[t])
print('Undefined type {}, used in {}'.format(t, uses))
return not v.errors
# The ASDL parser itself comes next. The only interesting external interface
# here is the top-level parse function.
def parse(filename):
"""Parse ASDL from the given file and return a Module node describing it."""
with open(filename) as f:
parser = ASDLParser()
return parser.parse(f.read())
# Types for describing tokens in an ASDL specification.
class TokenKind:
"""TokenKind is provides a scope for enumerated token kinds."""
(ConstructorId, TypeId, Equals, Comma, Question, Pipe, Asterisk,
LParen, RParen, LBrace, RBrace) = range(11)
operator_table = {
'=': Equals, ',': Comma, '?': Question, '|': Pipe, '(': LParen,
')': RParen, '*': Asterisk, '{': LBrace, '}': RBrace}
Token = namedtuple('Token', 'kind value lineno')
class ASDLSyntaxError(Exception):
def __init__(self, msg, lineno=None):
self.msg = msg
self.lineno = lineno or '<unknown>'
def __str__(self):
return 'Syntax error on line {0.lineno}: {0.msg}'.format(self)
def tokenize_asdl(buf):
"""Tokenize the given buffer. Yield Token objects."""
for lineno, line in enumerate(buf.splitlines(), 1):
for m in re.finditer(r'\s*(\w+|--.*|.)', line.strip()):
c = m.group(1)
if c[0].isalpha():
# Some kind of identifier
if c[0].isupper():
yield Token(TokenKind.ConstructorId, c, lineno)
else:
yield Token(TokenKind.TypeId, c, lineno)
elif c[:2] == '--':
# Comment
break
else:
# Operators
try:
op_kind = TokenKind.operator_table[c]
except KeyError:
raise ASDLSyntaxError('Invalid operator %s' % c, lineno)
yield Token(op_kind, c, lineno)
class ASDLParser:
"""Parser for ASDL files.
Create, then call the parse method on a buffer containing ASDL.
This is a simple recursive descent parser that uses tokenize_asdl for the
lexing.
"""
def __init__(self):
self._tokenizer = None
self.cur_token = None
def parse(self, buf):
"""Parse the ASDL in the buffer and return an AST with a Module root.
"""
self._tokenizer = tokenize_asdl(buf)
self._advance()
return self._parse_module()
def _parse_module(self):
if self._at_keyword('module'):
self._advance()
else:
raise ASDLSyntaxError(
'Expected "module" (found {})'.format(self.cur_token.value),
self.cur_token.lineno)
name = self._match(self._id_kinds)
self._match(TokenKind.LBrace)
defs = self._parse_definitions()
self._match(TokenKind.RBrace)
return Module(name, defs)
def _parse_definitions(self):
defs = []
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
self._match(TokenKind.Equals)
type = self._parse_type()
defs.append(Type(typename, type))
return defs
def _parse_type(self):
if self.cur_token.kind == TokenKind.LParen:
# If we see a (, it's a product
return self._parse_product()
else:
# Otherwise it's a sum. Look for ConstructorId
sumlist = [Constructor(self._match(TokenKind.ConstructorId),
self._parse_optional_fields())]
while self.cur_token.kind == TokenKind.Pipe:
# More constructors
self._advance()
sumlist.append(Constructor(
self._match(TokenKind.ConstructorId),
self._parse_optional_fields()))
return Sum(sumlist, self._parse_optional_attributes())
def _parse_product(self):
return Product(self._parse_fields(), self._parse_optional_attributes())
def _parse_fields(self):
fields = []
self._match(TokenKind.LParen)
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
is_seq, is_opt = self._parse_optional_field_quantifier()
id = (self._advance() if self.cur_token.kind in self._id_kinds
else None)
fields.append(Field(typename, id, seq=is_seq, opt=is_opt))
if self.cur_token.kind == TokenKind.RParen:
break
elif self.cur_token.kind == TokenKind.Comma:
self._advance()
self._match(TokenKind.RParen)
return fields
def _parse_optional_fields(self):
if self.cur_token.kind == TokenKind.LParen:
return self._parse_fields()
else:
return None
def _parse_optional_attributes(self):
if self._at_keyword('attributes'):
self._advance()
return self._parse_fields()
else:
return None
def _parse_optional_field_quantifier(self):
is_seq, is_opt = False, False
if self.cur_token.kind == TokenKind.Question:
is_opt = True
self._advance()
if self.cur_token.kind == TokenKind.Asterisk:
is_seq = True
self._advance()
return is_seq, is_opt
def _advance(self):
""" Return the value of the current token and read the next one into
self.cur_token.
"""
cur_val = None if self.cur_token is None else self.cur_token.value
try:
self.cur_token = next(self._tokenizer)
except StopIteration:
self.cur_token = None
return cur_val
_id_kinds = (TokenKind.ConstructorId, TokenKind.TypeId)
def _match(self, kind):
"""The 'match' primitive of RD parsers.
* Verifies that the current token is of the given kind (kind can
be a tuple, in which the kind must match one of its members).
* Returns the value of the current token
* Reads in the next token
"""
if (isinstance(kind, tuple) and self.cur_token.kind in kind or
self.cur_token.kind == kind
):
value = self.cur_token.value
self._advance()
return value
else:
raise ASDLSyntaxError(
'Unmatched {} (found {})'.format(kind, self.cur_token.kind),
self.cur_token.lineno)
def _at_keyword(self, keyword):
return (self.cur_token.kind == TokenKind.TypeId and
self.cur_token.value == keyword)

609
nac3ast/asdl_rs.py Executable file
View File

@ -0,0 +1,609 @@
#! /usr/bin/env python
"""Generate Rust code from an ASDL description."""
import os
import sys
import textwrap
import json
from argparse import ArgumentParser
from pathlib import Path
import asdl
TABSIZE = 4
AUTOGEN_MESSAGE = "// File automatically generated by {}.\n\n"
builtin_type_mapping = {
'identifier': 'Ident',
'string': 'String',
'int': 'usize',
'constant': 'Constant',
'bool': 'bool',
'conversion_flag': 'ConversionFlag',
}
assert builtin_type_mapping.keys() == asdl.builtin_types
def get_rust_type(name):
"""Return a string for the C name of the type.
This function special cases the default types provided by asdl.
"""
if name in asdl.builtin_types:
return builtin_type_mapping[name]
else:
return "".join(part.capitalize() for part in name.split("_"))
def is_simple(sum):
"""Return True if a sum is a simple.
A sum is simple if its types have no fields, e.g.
unaryop = Invert | Not | UAdd | USub
"""
for t in sum.types:
if t.fields:
return False
return True
def asdl_of(name, obj):
if isinstance(obj, asdl.Product) or isinstance(obj, asdl.Constructor):
fields = ", ".join(map(str, obj.fields))
if fields:
fields = "({})".format(fields)
return "{}{}".format(name, fields)
else:
if is_simple(obj):
types = " | ".join(type.name for type in obj.types)
else:
sep = "\n{}| ".format(" " * (len(name) + 1))
types = sep.join(
asdl_of(type.name, type) for type in obj.types
)
return "{} = {}".format(name, types)
class EmitVisitor(asdl.VisitorBase):
"""Visit that emits lines"""
def __init__(self, file):
self.file = file
self.identifiers = set()
super(EmitVisitor, self).__init__()
def emit_identifier(self, name):
name = str(name)
if name in self.identifiers:
return
self.emit("_Py_IDENTIFIER(%s);" % name, 0)
self.identifiers.add(name)
def emit(self, line, depth):
if line:
line = (" " * TABSIZE * depth) + line
self.file.write(line + "\n")
class TypeInfo:
def __init__(self, name):
self.name = name
self.has_userdata = None
self.children = set()
self.boxed = False
def __repr__(self):
return f"<TypeInfo: {self.name}>"
def determine_userdata(self, typeinfo, stack):
if self.name in stack:
return None
stack.add(self.name)
for child, child_seq in self.children:
if child in asdl.builtin_types:
continue
childinfo = typeinfo[child]
child_has_userdata = childinfo.determine_userdata(typeinfo, stack)
if self.has_userdata is None and child_has_userdata is True:
self.has_userdata = True
stack.remove(self.name)
return self.has_userdata
class FindUserdataTypesVisitor(asdl.VisitorBase):
def __init__(self, typeinfo):
self.typeinfo = typeinfo
super().__init__()
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
stack = set()
for info in self.typeinfo.values():
info.determine_userdata(self.typeinfo, stack)
def visitType(self, type):
self.typeinfo[type.name] = TypeInfo(type.name)
self.visit(type.value, type.name)
def visitSum(self, sum, name):
info = self.typeinfo[name]
if is_simple(sum):
info.has_userdata = False
else:
if len(sum.types) > 1:
info.boxed = True
if sum.attributes:
# attributes means Located, which has the `custom: U` field
info.has_userdata = True
for variant in sum.types:
self.add_children(name, variant.fields)
def visitProduct(self, product, name):
info = self.typeinfo[name]
if product.attributes:
# attributes means Located, which has the `custom: U` field
info.has_userdata = True
if len(product.fields) > 2:
info.boxed = True
self.add_children(name, product.fields)
def add_children(self, name, fields):
self.typeinfo[name].children.update((field.type, field.seq) for field in fields)
def rust_field(field_name):
if field_name == 'type':
return 'type_'
else:
return field_name
class TypeInfoEmitVisitor(EmitVisitor):
def __init__(self, file, typeinfo):
self.typeinfo = typeinfo
super().__init__(file)
def has_userdata(self, typ):
return self.typeinfo[typ].has_userdata
def get_generics(self, typ, *generics):
if self.has_userdata(typ):
return [f"<{g}>" for g in generics]
else:
return ["" for g in generics]
class StructVisitor(TypeInfoEmitVisitor):
"""Visitor to generate typedefs for AST."""
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
if is_simple(sum):
self.simple_sum(sum, name, depth)
else:
self.sum_with_constructors(sum, name, depth)
def emit_attrs(self, depth):
self.emit("#[derive(Clone, Debug, PartialEq)]", depth)
def simple_sum(self, sum, name, depth):
rustname = get_rust_type(name)
self.emit_attrs(depth)
self.emit(f"pub enum {rustname} {{", depth)
for variant in sum.types:
self.emit(f"{variant.name},", depth + 1)
self.emit("}", depth)
self.emit("", depth)
def sum_with_constructors(self, sum, name, depth):
typeinfo = self.typeinfo[name]
generics, generics_applied = self.get_generics(name, "U = ()", "U")
enumname = rustname = get_rust_type(name)
# all the attributes right now are for location, so if it has attrs we
# can just wrap it in Located<>
if sum.attributes:
enumname = rustname + "Kind"
self.emit_attrs(depth)
self.emit(f"pub enum {enumname}{generics} {{", depth)
for t in sum.types:
self.visit(t, typeinfo, depth + 1)
self.emit("}", depth)
if sum.attributes:
self.emit(f"pub type {rustname}<U = ()> = Located<{enumname}{generics_applied}, U>;", depth)
self.emit("", depth)
def visitConstructor(self, cons, parent, depth):
if cons.fields:
self.emit(f"{cons.name} {{", depth)
for f in cons.fields:
self.visit(f, parent, "", depth + 1)
self.emit("},", depth)
else:
self.emit(f"{cons.name},", depth)
def visitField(self, field, parent, vis, depth):
typ = get_rust_type(field.type)
fieldtype = self.typeinfo.get(field.type)
if fieldtype and fieldtype.has_userdata:
typ = f"{typ}<U>"
# don't box if we're doing Vec<T>, but do box if we're doing Vec<Option<Box<T>>>
if fieldtype and fieldtype.boxed and (not field.seq or field.opt):
typ = f"Box<{typ}>"
if field.opt:
typ = f"Option<{typ}>"
if field.seq:
typ = f"Vec<{typ}>"
name = rust_field(field.name)
self.emit(f"{vis}{name}: {typ},", depth)
def visitProduct(self, product, name, depth):
typeinfo = self.typeinfo[name]
generics, generics_applied = self.get_generics(name, "U = ()", "U")
dataname = rustname = get_rust_type(name)
if product.attributes:
dataname = rustname + "Data"
self.emit_attrs(depth)
self.emit(f"pub struct {dataname}{generics} {{", depth)
for f in product.fields:
self.visit(f, typeinfo, "pub ", depth + 1)
self.emit("}", depth)
if product.attributes:
# attributes should just be location info
self.emit(f"pub type {rustname}<U = ()> = Located<{dataname}{generics_applied}, U>;", depth);
self.emit("", depth)
class FoldTraitDefVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod, depth):
self.emit("pub trait Fold<U> {", depth)
self.emit("type TargetU;", depth + 1)
self.emit("type Error;", depth + 1)
self.emit("fn map_user(&mut self, user: U) -> Result<Self::TargetU, Self::Error>;", depth + 2)
for dfn in mod.dfns:
self.visit(dfn, depth + 2)
self.emit("}", depth)
def visitType(self, type, depth):
name = type.name
apply_u, apply_target_u = self.get_generics(name, "U", "Self::TargetU")
enumname = get_rust_type(name)
self.emit(f"fn fold_{name}(&mut self, node: {enumname}{apply_u}) -> Result<{enumname}{apply_target_u}, Self::Error> {{", depth)
self.emit(f"fold_{name}(self, node)", depth + 1)
self.emit("}", depth)
class FoldImplVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod, depth):
self.emit("fn fold_located<U, F: Fold<U> + ?Sized, T, MT>(folder: &mut F, node: Located<T, U>, f: impl FnOnce(&mut F, T) -> Result<MT, F::Error>) -> Result<Located<MT, F::TargetU>, F::Error> {", depth)
self.emit("Ok(Located { custom: folder.map_user(node.custom)?, location: node.location, node: f(folder, node.node)? })", depth + 1)
self.emit("}", depth)
for dfn in mod.dfns:
self.visit(dfn, depth)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
apply_t, apply_u, apply_target_u = self.get_generics(name, "T", "U", "F::TargetU")
enumname = get_rust_type(name)
is_located = bool(sum.attributes)
self.emit(f"impl<T, U> Foldable<T, U> for {enumname}{apply_t} {{", depth)
self.emit(f"type Mapped = {enumname}{apply_u};", depth + 1)
self.emit("fn fold<F: Fold<T, TargetU = U> + ?Sized>(self, folder: &mut F) -> Result<Self::Mapped, F::Error> {", depth + 1)
self.emit(f"folder.fold_{name}(self)", depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
self.emit(f"pub fn fold_{name}<U, F: Fold<U> + ?Sized>(#[allow(unused)] folder: &mut F, node: {enumname}{apply_u}) -> Result<{enumname}{apply_target_u}, F::Error> {{", depth)
if is_located:
self.emit("fold_located(folder, node, |folder, node| {", depth)
enumname += "Kind"
self.emit("match node {", depth + 1)
for cons in sum.types:
fields_pattern = self.make_pattern(cons.fields)
self.emit(f"{enumname}::{cons.name} {{ {fields_pattern} }} => {{", depth + 2)
self.gen_construction(f"{enumname}::{cons.name}", cons.fields, depth + 3)
self.emit("}", depth + 2)
self.emit("}", depth + 1)
if is_located:
self.emit("})", depth)
self.emit("}", depth)
def visitProduct(self, product, name, depth):
apply_t, apply_u, apply_target_u = self.get_generics(name, "T", "U", "F::TargetU")
structname = get_rust_type(name)
is_located = bool(product.attributes)
self.emit(f"impl<T, U> Foldable<T, U> for {structname}{apply_t} {{", depth)
self.emit(f"type Mapped = {structname}{apply_u};", depth + 1)
self.emit("fn fold<F: Fold<T, TargetU = U> + ?Sized>(self, folder: &mut F) -> Result<Self::Mapped, F::Error> {", depth + 1)
self.emit(f"folder.fold_{name}(self)", depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
self.emit(f"pub fn fold_{name}<U, F: Fold<U> + ?Sized>(#[allow(unused)] folder: &mut F, node: {structname}{apply_u}) -> Result<{structname}{apply_target_u}, F::Error> {{", depth)
if is_located:
self.emit("fold_located(folder, node, |folder, node| {", depth)
structname += "Data"
fields_pattern = self.make_pattern(product.fields)
self.emit(f"let {structname} {{ {fields_pattern} }} = node;", depth + 1)
self.gen_construction(structname, product.fields, depth + 1)
if is_located:
self.emit("})", depth)
self.emit("}", depth)
def make_pattern(self, fields):
return ",".join(rust_field(f.name) for f in fields)
def gen_construction(self, cons_path, fields, depth):
self.emit(f"Ok({cons_path} {{", depth)
for field in fields:
name = rust_field(field.name)
self.emit(f"{name}: Foldable::fold({name}, folder)?,", depth + 1)
self.emit("})", depth)
class FoldModuleVisitor(TypeInfoEmitVisitor):
def visitModule(self, mod):
depth = 0
self.emit('#[cfg(feature = "fold")]', depth)
self.emit("pub mod fold {", depth)
self.emit("use super::*;", depth + 1)
self.emit("use crate::fold_helpers::Foldable;", depth + 1)
FoldTraitDefVisitor(self.file, self.typeinfo).visit(mod, depth + 1)
FoldImplVisitor(self.file, self.typeinfo).visit(mod, depth + 1)
self.emit("}", depth)
class ClassDefVisitor(EmitVisitor):
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
for cons in sum.types:
self.visit(cons, sum.attributes, depth)
def visitConstructor(self, cons, attrs, depth):
self.gen_classdef(cons.name, cons.fields, attrs, depth)
def visitProduct(self, product, name, depth):
self.gen_classdef(name, product.fields, product.attributes, depth)
def gen_classdef(self, name, fields, attrs, depth):
structname = "Node" + name
self.emit(f'#[pyclass(module = "_ast", name = {json.dumps(name)}, base = "AstNode")]', depth)
self.emit(f"struct {structname};", depth)
self.emit("#[pyimpl(flags(HAS_DICT, BASETYPE))]", depth)
self.emit(f"impl {structname} {{", depth)
self.emit(f"#[extend_class]", depth + 1)
self.emit("fn extend_class_with_fields(ctx: &PyContext, class: &PyTypeRef) {", depth + 1)
fields = ",".join(f"ctx.new_str({json.dumps(f.name)})" for f in fields)
self.emit(f'class.set_str_attr("_fields", ctx.new_list(vec![{fields}]));', depth + 2)
attrs = ",".join(f"ctx.new_str({json.dumps(attr.name)})" for attr in attrs)
self.emit(f'class.set_str_attr("_attributes", ctx.new_list(vec![{attrs}]));', depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
class ExtendModuleVisitor(EmitVisitor):
def visitModule(self, mod):
depth = 0
self.emit("pub fn extend_module_nodes(vm: &VirtualMachine, module: &PyObjectRef) {", depth)
self.emit("extend_module!(vm, module, {", depth + 1)
for dfn in mod.dfns:
self.visit(dfn, depth + 2)
self.emit("})", depth + 1)
self.emit("}", depth)
def visitType(self, type, depth):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
for cons in sum.types:
self.visit(cons, depth)
def visitConstructor(self, cons, depth):
self.gen_extension(cons.name, depth)
def visitProduct(self, product, name, depth):
self.gen_extension(name, depth)
def gen_extension(self, name, depth):
self.emit(f"{json.dumps(name)} => Node{name}::make_class(&vm.ctx),", depth)
class TraitImplVisitor(EmitVisitor):
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type, depth=0):
self.visit(type.value, type.name, depth)
def visitSum(self, sum, name, depth):
enumname = get_rust_type(name)
if sum.attributes:
enumname += "Kind"
self.emit(f"impl NamedNode for ast::{enumname} {{", depth)
self.emit(f"const NAME: &'static str = {json.dumps(name)};", depth + 1)
self.emit("}", depth)
self.emit(f"impl Node for ast::{enumname} {{", depth)
self.emit("fn ast_to_object(self, _vm: &VirtualMachine) -> PyObjectRef {", depth + 1)
self.emit("match self {", depth + 2)
for variant in sum.types:
self.constructor_to_object(variant, enumname, depth + 3)
self.emit("}", depth + 2)
self.emit("}", depth + 1)
self.emit("fn ast_from_object(_vm: &VirtualMachine, _object: PyObjectRef) -> PyResult<Self> {", depth + 1)
self.gen_sum_fromobj(sum, name, enumname, depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
def constructor_to_object(self, cons, enumname, depth):
fields_pattern = self.make_pattern(cons.fields)
self.emit(f"ast::{enumname}::{cons.name} {{ {fields_pattern} }} => {{", depth)
self.make_node(cons.name, cons.fields, depth + 1)
self.emit("}", depth)
def visitProduct(self, product, name, depth):
structname = get_rust_type(name)
if product.attributes:
structname += "Data"
self.emit(f"impl NamedNode for ast::{structname} {{", depth)
self.emit(f"const NAME: &'static str = {json.dumps(name)};", depth + 1)
self.emit("}", depth)
self.emit(f"impl Node for ast::{structname} {{", depth)
self.emit("fn ast_to_object(self, _vm: &VirtualMachine) -> PyObjectRef {", depth + 1)
fields_pattern = self.make_pattern(product.fields)
self.emit(f"let ast::{structname} {{ {fields_pattern} }} = self;", depth + 2)
self.make_node(name, product.fields, depth + 2)
self.emit("}", depth + 1)
self.emit("fn ast_from_object(_vm: &VirtualMachine, _object: PyObjectRef) -> PyResult<Self> {", depth + 1)
self.gen_product_fromobj(product, name, structname, depth + 2)
self.emit("}", depth + 1)
self.emit("}", depth)
def make_node(self, variant, fields, depth):
lines = []
self.emit(f"let _node = AstNode.into_ref_with_type(_vm, Node{variant}::static_type().clone()).unwrap();", depth)
if fields:
self.emit("let _dict = _node.as_object().dict().unwrap();", depth)
for f in fields:
self.emit(f"_dict.set_item({json.dumps(f.name)}, {rust_field(f.name)}.ast_to_object(_vm), _vm).unwrap();", depth)
self.emit("_node.into_object()", depth)
def make_pattern(self, fields):
return ",".join(rust_field(f.name) for f in fields)
def gen_sum_fromobj(self, sum, sumname, enumname, depth):
if sum.attributes:
self.extract_location(sumname, depth)
self.emit("let _cls = _object.class();", depth)
self.emit("Ok(", depth)
for cons in sum.types:
self.emit(f"if _cls.is(Node{cons.name}::static_type()) {{", depth)
self.gen_construction(f"{enumname}::{cons.name}", cons, sumname, depth + 1)
self.emit("} else", depth)
self.emit("{", depth)
msg = f'format!("expected some sort of {sumname}, but got {{}}",_vm.to_repr(&_object)?)'
self.emit(f"return Err(_vm.new_type_error({msg}));", depth + 1)
self.emit("})", depth)
def gen_product_fromobj(self, product, prodname, structname, depth):
if product.attributes:
self.extract_location(prodname, depth)
self.emit("Ok(", depth)
self.gen_construction(structname, product, prodname, depth + 1)
self.emit(")", depth)
def gen_construction(self, cons_path, cons, name, depth):
self.emit(f"ast::{cons_path} {{", depth)
for field in cons.fields:
self.emit(f"{rust_field(field.name)}: {self.decode_field(field, name)},", depth + 1)
self.emit("}", depth)
def extract_location(self, typename, depth):
row = self.decode_field(asdl.Field('int', 'lineno'), typename)
column = self.decode_field(asdl.Field('int', 'col_offset'), typename)
self.emit(f"let _location = ast::Location::new({row}, {column});", depth)
def wrap_located_node(self, depth):
self.emit(f"let node = ast::Located::new(_location, node);", depth)
def decode_field(self, field, typename):
name = json.dumps(field.name)
if field.opt and not field.seq:
return f"get_node_field_opt(_vm, &_object, {name})?.map(|obj| Node::ast_from_object(_vm, obj)).transpose()?"
else:
return f"Node::ast_from_object(_vm, get_node_field(_vm, &_object, {name}, {json.dumps(typename)})?)?"
class ChainOfVisitors:
def __init__(self, *visitors):
self.visitors = visitors
def visit(self, object):
for v in self.visitors:
v.visit(object)
v.emit("", 0)
def write_ast_def(mod, typeinfo, f):
f.write('pub use crate::location::Location;\n')
f.write('pub use crate::constant::*;\n')
f.write('\n')
f.write('type Ident = String;\n')
f.write('\n')
StructVisitor(f, typeinfo).emit_attrs(0)
f.write('pub struct Located<T, U = ()> {\n')
f.write(' pub location: Location,\n')
f.write(' pub custom: U,\n')
f.write(' pub node: T,\n')
f.write('}\n')
f.write('\n')
f.write('impl<T> Located<T> {\n')
f.write(' pub fn new(location: Location, node: T) -> Self {\n')
f.write(' Self { location, custom: (), node }\n')
f.write(' }\n')
f.write('}\n')
f.write('\n')
c = ChainOfVisitors(StructVisitor(f, typeinfo),
FoldModuleVisitor(f, typeinfo))
c.visit(mod)
def write_ast_mod(mod, f):
f.write('use super::*;\n')
f.write('\n')
c = ChainOfVisitors(ClassDefVisitor(f),
TraitImplVisitor(f),
ExtendModuleVisitor(f))
c.visit(mod)
def main(input_filename, ast_mod_filename, ast_def_filename, dump_module=False):
auto_gen_msg = AUTOGEN_MESSAGE.format("/".join(Path(__file__).parts[-2:]))
mod = asdl.parse(input_filename)
if dump_module:
print('Parsed Module:')
print(mod)
if not asdl.check(mod):
sys.exit(1)
typeinfo = {}
FindUserdataTypesVisitor(typeinfo).visit(mod)
with ast_def_filename.open("w") as def_file, \
ast_mod_filename.open("w") as mod_file:
def_file.write(auto_gen_msg)
write_ast_def(mod, typeinfo, def_file)
mod_file.write(auto_gen_msg)
write_ast_mod(mod, mod_file)
print(f"{ast_def_filename}, {ast_mod_filename} regenerated.")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("input_file", type=Path)
parser.add_argument("-M", "--mod-file", type=Path, required=True)
parser.add_argument("-D", "--def-file", type=Path, required=True)
parser.add_argument("-d", "--dump-module", action="store_true")
args = parser.parse_args()
main(args.input_file, args.mod_file, args.def_file, args.dump_module)

1177
nac3ast/src/ast_gen.rs Normal file

File diff suppressed because it is too large Load Diff

183
nac3ast/src/constant.rs Normal file
View File

@ -0,0 +1,183 @@
#[derive(Clone, Debug, PartialEq)]
pub enum Constant {
None,
Bool(bool),
Str(String),
Bytes(Vec<u8>),
Int(i128),
Tuple(Vec<Constant>),
Float(f64),
Complex { real: f64, imag: f64 },
Ellipsis,
}
impl From<String> for Constant {
fn from(s: String) -> Constant {
Self::Str(s)
}
}
impl From<Vec<u8>> for Constant {
fn from(b: Vec<u8>) -> Constant {
Self::Bytes(b)
}
}
impl From<bool> for Constant {
fn from(b: bool) -> Constant {
Self::Bool(b)
}
}
impl From<i32> for Constant {
fn from(i: i32) -> Constant {
Self::Int(i128::from(i))
}
}
impl From<i64> for Constant {
fn from(i: i64) -> Constant {
Self::Int(i128::from(i))
}
}
/// Transforms a value prior to formatting it.
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(u8)]
pub enum ConversionFlag {
/// Converts by calling `str(<value>)`.
Str = b's',
/// Converts by calling `ascii(<value>)`.
Ascii = b'a',
/// Converts by calling `repr(<value>)`.
Repr = b'r',
}
impl ConversionFlag {
#[must_use]
pub fn try_from_byte(b: u8) -> Option<Self> {
match b {
b's' => Some(Self::Str),
b'a' => Some(Self::Ascii),
b'r' => Some(Self::Repr),
_ => None,
}
}
}
#[cfg(feature = "constant-optimization")]
#[derive(Default)]
pub struct ConstantOptimizer {
_priv: (),
}
#[cfg(feature = "constant-optimization")]
impl ConstantOptimizer {
#[inline]
#[must_use]
pub fn new() -> Self {
Self { _priv: () }
}
}
#[cfg(feature = "constant-optimization")]
impl<U> crate::fold::Fold<U> for ConstantOptimizer {
type TargetU = U;
type Error = std::convert::Infallible;
#[inline]
fn map_user(&mut self, user: U) -> Result<Self::TargetU, Self::Error> {
Ok(user)
}
fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> {
match node.node {
crate::ExprKind::Tuple { elts, ctx } => {
let elts =
elts.into_iter().map(|x| self.fold_expr(x)).collect::<Result<Vec<_>, _>>()?;
let expr =
if elts.iter().all(|e| matches!(e.node, crate::ExprKind::Constant { .. })) {
let tuple = elts
.into_iter()
.map(|e| match e.node {
crate::ExprKind::Constant { value, .. } => value,
_ => unreachable!(),
})
.collect();
crate::ExprKind::Constant { value: Constant::Tuple(tuple), kind: None }
} else {
crate::ExprKind::Tuple { elts, ctx }
};
Ok(crate::Expr { node: expr, custom: node.custom, location: node.location })
}
_ => crate::fold::fold_expr(self, node),
}
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "constant-optimization")]
#[test]
fn test_constant_opt() {
use super::*;
use crate::fold::Fold;
use crate::*;
let location = Location::new(0, 0, FileName::default());
let custom = ();
let ast = Located {
location,
custom,
node: ExprKind::Tuple {
ctx: ExprContext::Load,
elts: vec![
Located {
location,
custom,
node: ExprKind::Constant { value: 1.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 2.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Tuple {
ctx: ExprContext::Load,
elts: vec![
Located {
location,
custom,
node: ExprKind::Constant { value: 3.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 4.into(), kind: None },
},
Located {
location,
custom,
node: ExprKind::Constant { value: 5.into(), kind: None },
},
],
},
},
],
},
};
let new_ast = ConstantOptimizer::new().fold_expr(ast).unwrap_or_else(|e| match e {});
assert_eq!(
new_ast,
Located {
location,
custom,
node: ExprKind::Constant {
value: Constant::Tuple(vec![
1.into(),
2.into(),
Constant::Tuple(vec![3.into(), 4.into(), 5.into(),])
]),
kind: None
},
}
);
}
}

View File

@ -0,0 +1,67 @@
use crate::constant;
use crate::fold::Fold;
use crate::StrRef;
pub(crate) trait Foldable<T, U> {
type Mapped;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error>;
}
impl<T, U, X> Foldable<T, U> for Vec<X>
where
X: Foldable<T, U>,
{
type Mapped = Vec<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
self.into_iter().map(|x| x.fold(folder)).collect()
}
}
impl<T, U, X> Foldable<T, U> for Option<X>
where
X: Foldable<T, U>,
{
type Mapped = Option<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
self.map(|x| x.fold(folder)).transpose()
}
}
impl<T, U, X> Foldable<T, U> for Box<X>
where
X: Foldable<T, U>,
{
type Mapped = Box<X::Mapped>;
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
(*self).fold(folder).map(Box::new)
}
}
macro_rules! simple_fold {
($($t:ty),+$(,)?) => {
$(impl<T, U> $crate::fold_helpers::Foldable<T, U> for $t {
type Mapped = Self;
#[inline]
fn fold<F: Fold<T, TargetU = U> + ?Sized>(
self,
_folder: &mut F,
) -> Result<Self::Mapped, F::Error> {
Ok(self)
}
})+
};
}
simple_fold!(usize, String, bool, StrRef, constant::Constant, constant::ConversionFlag);

51
nac3ast/src/impls.rs Normal file
View File

@ -0,0 +1,51 @@
use crate::{Constant, ExprKind};
impl<U> ExprKind<U> {
/// Returns a short name for the node suitable for use in error messages.
#[must_use]
pub fn name(&self) -> &'static str {
match self {
ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => {
"operator"
}
ExprKind::Subscript { .. } => "subscript",
ExprKind::Await { .. } => "await expression",
ExprKind::Yield { .. } | ExprKind::YieldFrom { .. } => "yield expression",
ExprKind::Compare { .. } => "comparison",
ExprKind::Attribute { .. } => "attribute",
ExprKind::Call { .. } => "function call",
ExprKind::Constant { value, .. } => match value {
Constant::Str(_)
| Constant::Int(_)
| Constant::Float(_)
| Constant::Complex { .. }
| Constant::Bytes(_) => "literal",
Constant::Tuple(_) => "tuple",
Constant::Bool(_) | Constant::None => "keyword",
Constant::Ellipsis => "ellipsis",
},
ExprKind::List { .. } => "list",
ExprKind::Tuple { .. } => "tuple",
ExprKind::Dict { .. } => "dict display",
ExprKind::Set { .. } => "set display",
ExprKind::ListComp { .. } => "list comprehension",
ExprKind::DictComp { .. } => "dict comprehension",
ExprKind::SetComp { .. } => "set comprehension",
ExprKind::GeneratorExp { .. } => "generator expression",
ExprKind::Starred { .. } => "starred",
ExprKind::Slice { .. } => "slice",
ExprKind::JoinedStr { values } => {
if values.iter().any(|e| matches!(e.node, ExprKind::JoinedStr { .. })) {
"f-string expression"
} else {
"literal"
}
}
ExprKind::FormattedValue { .. } => "f-string expression",
ExprKind::Name { .. } => "name",
ExprKind::Lambda { .. } => "lambda",
ExprKind::IfExp { .. } => "conditional expression",
ExprKind::NamedExpr { .. } => "named expression",
}
}
}

21
nac3ast/src/lib.rs Normal file
View File

@ -0,0 +1,21 @@
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::too_many_lines,
clippy::wildcard_imports
)]
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]
mod fold_helpers;
mod impls;
mod location;
pub use ast_gen::*;
pub use location::{FileName, Location};
pub type Suite<U = ()> = Vec<Stmt<U>>;

116
nac3ast/src/location.rs Normal file
View File

@ -0,0 +1,116 @@
//! Datatypes to support source location information.
use crate::ast_gen::StrRef;
use std::cmp::Ordering;
use std::fmt;
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct FileName(pub StrRef);
impl Default for FileName {
fn default() -> Self {
FileName("unknown".into())
}
}
impl From<String> for FileName {
fn from(s: String) -> Self {
FileName(s.into())
}
}
/// A location somewhere in the sourcecode.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct Location {
pub row: usize,
pub column: usize,
pub file: FileName,
}
impl fmt::Display for Location {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}:{}:{}", self.file.0, self.row, self.column)
}
}
impl Ord for Location {
fn cmp(&self, other: &Self) -> Ordering {
let file_cmp = self.file.0.to_string().cmp(&other.file.0.to_string());
if file_cmp != Ordering::Equal {
return file_cmp;
}
let row_cmp = self.row.cmp(&other.row);
if row_cmp != Ordering::Equal {
return row_cmp;
}
self.column.cmp(&other.column)
}
}
impl PartialOrd for Location {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Location {
pub fn visualize<'a>(
&self,
line: &'a str,
desc: impl fmt::Display + 'a,
) -> impl fmt::Display + 'a {
struct Visualize<'a, D: fmt::Display> {
loc: Location,
line: &'a str,
desc: D,
}
impl<D: fmt::Display> fmt::Display for Visualize<'_, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}\n{}\n{arrow:>pad$}",
self.desc,
self.line,
pad = self.loc.column,
arrow = "",
)
}
}
Visualize { loc: *self, line, desc }
}
}
impl Location {
#[must_use]
pub fn new(row: usize, column: usize, file: FileName) -> Self {
Location { row, column, file }
}
#[must_use]
pub fn row(&self) -> usize {
self.row
}
#[must_use]
pub fn column(&self) -> usize {
self.column
}
pub fn reset(&mut self) {
self.row = 1;
self.column = 1;
}
pub fn go_right(&mut self) {
self.column += 1;
}
pub fn go_left(&mut self) {
self.column -= 1;
}
pub fn newline(&mut self) {
self.row += 1;
self.column = 1;
}
}

View File

@ -2,12 +2,33 @@
name = "nac3core" name = "nac3core"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2018" edition = "2021"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies] [dependencies]
num-bigint = "0.3" itertools = "0.13"
num-traits = "0.2" crossbeam = "0.8"
inkwell = { git = "https://github.com/TheDan64/inkwell", branch = "master", features = ["llvm10-0"] } indexmap = "2.6"
rustpython-parser = { git = "https://github.com/RustPython/RustPython", branch = "master" } parking_lot = "0.12"
indoc = "1.0" rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.5"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"
indoc = "2.0"
insta = "=1.11.0"
[build-dependencies]
regex = "1.10"

109
nac3core/build.rs Normal file
View File

@ -0,0 +1,109 @@
use std::{
env,
fs::File,
io::Write,
path::Path,
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.output()
.inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
})
.unwrap();
// https://github.com/rust-lang/regex/issues/244
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
filtered_output.push('\n');
}
let filtered_output = Regex::new("(#\\d+)|(, *![0-9A-Za-z.]+)|(![0-9A-Za-z.]+)|(!\".*?\")")
.unwrap()
.replace_all(&filtered_output, "");
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}

15
nac3core/irrt/irrt.cpp Normal file
View File

@ -0,0 +1,15 @@
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/string.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -0,0 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -0,0 +1,25 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -0,0 +1,85 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -0,0 +1,25 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -0,0 +1,96 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -0,0 +1,95 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -0,0 +1,13 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -0,0 +1,132 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -0,0 +1,340 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
if (ndarray->ndims != 0) {
return ndarray->shape[0];
}
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace ndarray::basic
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,165 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -0,0 +1,51 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
};
} // namespace

View File

@ -0,0 +1,219 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see the comment of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray::indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access and more.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`.
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace ndarray::indexing
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,146 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
void* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
} else {
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -0,0 +1,98 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -0,0 +1,97 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace ndarray::reshape
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,143 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -0,0 +1,47 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -0,0 +1,156 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else {
lower = 0;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -0,0 +1,23 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

View File

@ -0,0 +1,21 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -0,0 +1,320 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -0,0 +1,9 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -0,0 +1,20 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,10 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,325 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{
into_var_map, FunSignature, FuncArg, Type, TypeEnum, TypeVar, TypeVarId, Unifier,
},
},
};
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct ConcreteType(usize);
#[derive(Clone, Debug)]
pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
pub enum Primitive {
Int32,
Int64,
UInt32,
UInt64,
Float,
Bool,
None,
Range,
Str,
Exception,
}
#[derive(Debug)]
pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
},
TObj {
obj_id: DefinitionId,
fields: HashMap<StrRef, (ConcreteType, bool)>,
params: IndexMap<TypeVarId, ConcreteType>,
},
TVirtual {
ty: ConcreteType,
},
TFunc {
args: Vec<ConcreteFuncArg>,
ret: ConcreteType,
vars: HashMap<TypeVarId, ConcreteType>,
},
TLiteral {
values: Vec<SymbolValue>,
},
}
impl ConcreteTypeStore {
#[must_use]
pub fn new() -> ConcreteTypeStore {
ConcreteTypeStore {
store: vec![
ConcreteTypeEnum::TPrimitive(Primitive::Int32),
ConcreteTypeEnum::TPrimitive(Primitive::Int64),
ConcreteTypeEnum::TPrimitive(Primitive::Float),
ConcreteTypeEnum::TPrimitive(Primitive::Bool),
ConcreteTypeEnum::TPrimitive(Primitive::None),
ConcreteTypeEnum::TPrimitive(Primitive::Range),
ConcreteTypeEnum::TPrimitive(Primitive::Str),
ConcreteTypeEnum::TPrimitive(Primitive::Exception),
ConcreteTypeEnum::TPrimitive(Primitive::UInt32),
ConcreteTypeEnum::TPrimitive(Primitive::UInt64),
],
}
}
#[must_use]
pub fn get(&self, cty: ConcreteType) -> &ConcreteTypeEnum {
&self.store[cty.0]
}
pub fn from_signature(
&mut self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
signature: &FunSignature,
cache: &mut HashMap<Type, Option<ConcreteType>>,
) -> ConcreteTypeEnum {
ConcreteTypeEnum::TFunc {
args: signature
.args
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
vars: signature
.vars
.iter()
.map(|(id, ty)| (*id, self.from_unifier_type(unifier, primitives, *ty, cache)))
.collect(),
}
}
pub fn from_unifier_type(
&mut self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ty: Type,
cache: &mut HashMap<Type, Option<ConcreteType>>,
) -> ConcreteType {
let ty = unifier.get_representative(ty);
if unifier.unioned(ty, primitives.int32) {
ConcreteType(0)
} else if unifier.unioned(ty, primitives.int64) {
ConcreteType(1)
} else if unifier.unioned(ty, primitives.float) {
ConcreteType(2)
} else if unifier.unioned(ty, primitives.bool) {
ConcreteType(3)
} else if unifier.unioned(ty, primitives.none) {
ConcreteType(4)
} else if unifier.unioned(ty, primitives.range) {
ConcreteType(5)
} else if unifier.unioned(ty, primitives.str) {
ConcreteType(6)
} else if unifier.unioned(ty, primitives.exception) {
ConcreteType(7)
} else if unifier.unioned(ty, primitives.uint32) {
ConcreteType(8)
} else if unifier.unioned(ty, primitives.uint64) {
ConcreteType(9)
} else if let Some(cty) = cache.get(&ty) {
if let Some(cty) = cty {
*cty
} else {
let index = self.store.len();
// placeholder
self.store.push(ConcreteTypeEnum::TPrimitive(Primitive::Int32));
let result = ConcreteType(index);
cache.insert(ty, Some(result));
result
}
} else {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
fields: fields
.iter()
.filter_map(|(name, ty)| {
// here we should not have type vars, but some partial instantiated
// class methods can still have uninstantiated type vars, so
// filter out all the methods, as this will not affect codegen
if let TypeEnum::TFunc(..) = &*unifier.get_ty(ty.0) {
None
} else {
Some((
*name,
(
self.from_unifier_type(unifier, primitives, ty.0, cache),
ty.1,
),
))
}
})
.collect(),
params: params
.iter()
.map(|(id, ty)| {
(*id, self.from_unifier_type(unifier, primitives, *ty, cache))
})
.collect(),
},
TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
},
TypeEnum::TFunc(signature) => {
self.from_signature(unifier, primitives, signature, cache)
}
TypeEnum::TLiteral { values, .. } => {
ConcreteTypeEnum::TLiteral { values: values.clone() }
}
_ => unreachable!("{:?}", ty_enum.get_type_name()),
};
let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() {
self.store[*index] = result;
*index
} else {
self.store.push(result);
self.store.len() - 1
};
cache.insert(ty, Some(ConcreteType(index)));
ConcreteType(index)
}
}
pub fn to_unifier_type(
&self,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
cty: ConcreteType,
cache: &mut HashMap<ConcreteType, Option<Type>>,
) -> Type {
if let Some(ty) = cache.get_mut(&cty) {
return if let Some(ty) = ty {
*ty
} else {
*ty = Some(unifier.get_dummy_var().ty);
ty.unwrap()
};
}
cache.insert(cty, None);
let result = match &self.store[cty.0] {
ConcreteTypeEnum::TPrimitive(primitive) => {
let ty = match primitive {
Primitive::Int32 => primitives.int32,
Primitive::Int64 => primitives.int64,
Primitive::UInt32 => primitives.uint32,
Primitive::UInt64 => primitives.uint64,
Primitive::Float => primitives.float,
Primitive::Bool => primitives.bool,
Primitive::None => primitives.none,
Primitive::Range => primitives.range,
Primitive::Str => primitives.str,
Primitive::Exception => primitives.exception,
};
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TObj { obj_id, fields, params } => TypeEnum::TObj {
obj_id: *obj_id,
fields: fields
.iter()
.map(|(name, cty)| {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
})
.collect::<HashMap<_, _>>(),
params: into_var_map(params.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
},
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
args: args
.iter()
.map(|arg| FuncArg {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),
vars: into_var_map(vars.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
}),
ConcreteTypeEnum::TLiteral { values, .. } => {
TypeEnum::TLiteral { values: values.clone(), loc: None }
}
};
let result = unifier.add_ty(result);
if let Some(ty) = cache.get(&cty).unwrap() {
unifier.unify(*ty, result).unwrap();
}
cache.insert(cty, Some(result));
result
}
pub fn add_cty(&mut self, cty: ConcreteTypeEnum) -> ConcreteType {
self.store.push(cty);
ConcreteType(self.store.len() - 1)
}
}
impl Default for ConcreteTypeStore {
fn default() -> Self {
Self::new()
}
}

3205
nac3core/src/codegen/expr.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,193 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either;
use super::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
};
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
exp: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "ldexp";
let llvm_f64 = ctx.ctx.f64_type();
let llvm_i32 = ctx.ctx.i32_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
debug_assert_eq!(exp.get_type(), llvm_i32);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -0,0 +1,295 @@
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value.
/// - obj: Optional object for method call.
/// - fun: Function signature and definition ID.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
fn gen_call<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String>
where
Self: Sized,
{
gen_call(self, ctx, obj, fun, params)
}
/// Generate object constructor and returns the constructed object.
/// - signature: Function signature of the constructor.
/// - def: Class definition for the constructor class.
/// - params: Function parameters.
fn gen_constructor<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
signature: &FunSignature,
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String>
where
Self: Sized,
{
gen_constructor(self, ctx, signature, def, params)
}
/// Generate a function instance.
/// - obj: Optional object for method call.
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String),
id: usize,
) -> Result<String, String> {
gen_func_instance(ctx, &obj, fun, id)
}
/// Generate the code for an expression.
fn gen_expr<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String>
where
Self: Sized,
{
gen_expr(self, ctx, expr)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
name: Option<&str>,
) -> Result<PointerValue<'ctx>, String> {
gen_var(ctx, ty, name)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_array_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<ArraySliceValue<'ctx>, String> {
gen_array_var(ctx, ty, size, name)
}
/// Return a pointer pointing to the target of the expression.
fn gen_store_target<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
pattern: &Expr<Option<Type>>,
name: Option<&str>,
) -> Result<Option<PointerValue<'ctx>>, String>
where
Self: Sized,
{
gen_store_target(self, ctx, pattern, name)
}
/// Generate code for an assignment expression.
fn gen_assign<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
}
/// Generate code for a while expression.
/// Return true if the while loop must early return
fn gen_while(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_while(self, ctx, stmt)
}
/// Generate code for a for expression.
/// Return true if the for loop must early return
fn gen_for(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_for(self, ctx, stmt)
}
/// Generate code for an if expression.
/// Return true if the statement must early return
fn gen_if(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_if(self, ctx, stmt)
}
fn gen_with(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_with(self, ctx, stmt)
}
/// Generate code for a statement
///
/// Return true if the statement must early return
fn gen_stmt(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String>
where
Self: Sized,
{
gen_stmt(self, ctx, stmt)
}
/// Generates code for a block statement.
fn gen_block<'a, I: Iterator<Item = &'a Stmt<Option<Type>>>>(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmts: I,
) -> Result<(), String>
where
Self: Sized,
{
gen_block(self, ctx, stmts)
}
/// See [`bool_to_i1`].
fn bool_to_i1<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i1(&ctx.builder, bool_value)
}
/// See [`bool_to_i8`].
fn bool_to_i8<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
) -> IntValue<'ctx> {
bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
}
}
pub struct DefaultCodeGenerator {
name: String,
size_t: u32,
}
impl DefaultCodeGenerator {
#[must_use]
pub fn new(name: String, size_t: u32) -> DefaultCodeGenerator {
assert!(matches!(size_t, 32 | 64));
DefaultCodeGenerator { name, size_t }
}
}
impl CodeGenerator for DefaultCodeGenerator {
/// Returns the name for this [`CodeGenerator`].
fn get_name(&self) -> &str {
&self.name
}
/// Returns an LLVM integer type representing `size_t`.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
// it should be unsigned, but we don't really need unsigned and this could save us from
// having to do a bit cast...
if self.size_t == 32 {
ctx.i32_type()
} else {
ctx.i64_type()
}
}
}

View File

@ -0,0 +1,174 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = {
let ty_vec = vec![
llvm_i32.into(), // dest start idx
llvm_i32.into(), // dest end idx
llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
llvm_i32.into(), // dest arr len
llvm_i32.into(), // src start idx
llvm_i32.into(), // src end idx
llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr
llvm_i32.into(), // src arr len
llvm_i32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -0,0 +1,168 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,252 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
values::{BasicValue, BasicValueEnum, IntValue},
IntPredicate,
};
use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
);
let irrt_mod = Module::parse_bitcode_from_buffer(&bitcode_buf, ctx).unwrap();
let inline_attr = Attribute::get_named_enum_kind_id("alwaysinline");
for symbol in &[
"__nac3_int_exp_int32_t",
"__nac3_int_exp_int64_t",
"__nac3_range_slice_len",
"__nac3_slice_index_bound",
] {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
///
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
#[must_use]
pub fn get_usize_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.
///
/// equivalent code:
/// ```pseudo_code
/// match (start, end, step):
/// case (s, e, None | Some(step)) if step > 0:
/// return (
/// match s:
/// case None:
/// 0
/// case Some(s):
/// handle_in_bound(s)
/// ,match e:
/// case None:
/// length - 1
/// case Some(e):
/// handle_in_bound(e) - 1
/// ,step == None ? 1 : step
/// )
/// case (s, e, Some(step)) if step < 0:
/// return (
/// match s:
/// case None:
/// length - 1
/// case Some(s):
/// s = handle_in_bound(s)
/// if s == length:
/// s - 1
/// else:
/// s
/// ,match e:
/// case None:
/// 0
/// case Some(e):
/// handle_in_bound(e) + 1
/// ,step
/// )
/// ```
pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
start: &Option<Box<Expr<Option<Type>>>>,
end: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
llvm_i32.const_zero()
},
{
let e = if let Some(s) = e.as_ref() {
match handle_slice_index_bound(s, ctx, generator, length)? {
Some(v) => v,
None => return Ok(None),
}
} else {
length
};
ctx.builder.build_int_sub(e, one, "final_end").unwrap()
},
one,
),
(s, e, Some(step)) => {
let step = if let Some(v) = generator.gen_expr(ctx, step)? {
v.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?.into_int_value()
} else {
return Ok(None);
};
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
)
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"slice step cannot be zero",
[None, None, None],
ctx.current_loc,
);
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1").unwrap();
let neg = ctx
.builder
.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg")
.unwrap();
(
match s {
Some(s) => {
let Some(s) = handle_slice_index_bound(s, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
ctx.builder
.build_and(
ctx.builder
.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
)
.unwrap(),
neg,
"should_minus_one",
)
.unwrap(),
ctx.builder.build_int_sub(s, one, "s_min").unwrap(),
s,
"final_start",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, len_id, zero, "stt")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
match e {
Some(e) => {
let Some(e) = handle_slice_index_bound(e, ctx, generator, length)? else {
return Ok(None);
};
ctx.builder
.build_select(
neg,
ctx.builder.build_int_add(e, one, "end_add_one").unwrap(),
ctx.builder.build_int_sub(e, one, "end_sub_one").unwrap(),
"final_end",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
None => ctx
.builder
.build_select(neg, zero, len_id, "end")
.map(BasicValueEnum::into_int_value)
.unwrap(),
},
step,
)
}
}))
}

View File

@ -0,0 +1,80 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,310 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_ndarray = ndarray.get_type().as_base_type();
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,82 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,34 @@
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
infer_and_call_function(
ctx,
&name,
None,
&[
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(),
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
],
None,
None,
);
}

View File

@ -0,0 +1,86 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
create_and_call_function(
ctx,
&name,
None,
&[
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_base_value().into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
}

View File

@ -0,0 +1,66 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,17 @@
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -0,0 +1,40 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -0,0 +1,48 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -0,0 +1,56 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,39 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}

View File

@ -0,0 +1,46 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(generator, ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,381 @@
use inkwell::{
intrinsics::Intrinsic,
types::AnyTypeEnum::IntType,
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Either;
use super::CodeGenContext;
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> PointerValue<'ctx> {
const FN_NAME: &str = "llvm.stacksave";
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_pointer_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.stackrestore`](https://llvm.org/docs/LangRef.html#llvm-stackrestore-intrinsic) intrinsic.
///
/// - `ptr`: The pointer storing the address to restore the stack to.
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
/*
SEE https://github.com/TheDan64/inkwell/issues/496
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
/// * `src` - The pointer to the source. Must be a pointer to an integer type.
/// * `len` - The number of bytes to copy.
/// * `is_volatile` - Whether the `memcpy` operation should be `volatile`.
pub fn call_memcpy<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
const FN_NAME: &str = "llvm.memcpy";
debug_assert!(dest.get_type().get_element_type().is_int_type());
debug_assert!(src.get_type().get_element_type().is_int_type());
debug_assert_eq!(
dest.get_type().get_element_type().into_int_type().get_bit_width(),
src.get_type().get_element_type().into_int_type().get_bit_width(),
);
debug_assert!(matches!(len.get_type().get_bit_width(), 32 | 64));
debug_assert_eq!(is_volatile.get_type().get_bit_width(), 1);
let llvm_dest_t = dest.get_type();
let llvm_src_t = src.get_type();
let llvm_len_t = len.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(
&ctx.module,
&[llvm_dest_t.into(), llvm_src_t.into(), llvm_len_t.into()],
)
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[dest.into(), src.into(), len.into(), is_volatile.into()], "")
.unwrap();
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
pub fn call_memcpy_generic<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.powi";
let llvm_val_t = val.get_type();
let llvm_power_t = power.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(&ctx.module, &[llvm_val_t.into(), llvm_power_t.into()])
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

1229
nac3core/src/codegen/mod.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,413 @@
use inkwell::{
values::{BasicValue, BasicValueEnum, PointerValue},
IntPredicate,
};
use nac3parser::ast::StrRef;
use super::{
macros::codegen_unreachable,
stmt::gen_for_callback,
types::ndarray::{NDArrayType, NDIterType},
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{
helper::{arraylike_flatten_element_type, extract_ndims},
numpy::unpack_ndarray_var_tys,
DefinitionId,
},
typecheck::typedef::{FunSignature, Type},
};
/// Generates LLVM IR for `ndarray.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
.construct_numpy_empty(generator, context, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
.construct_numpy_zeros(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
.construct_numpy_ones(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.full`.
pub fn gen_ndarray_full<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims);
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims).construct_numpy_full(
generator,
context,
&shape,
fill_value_arg,
None,
);
Ok(ndarray.as_base_value())
}
pub fn gen_ndarray_array<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let obj_ty = fun.0.args[0].ty;
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
let copy_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
let copy_ty = fun.0.args[1].ty;
arg.1.clone().to_basic_value_enum(context, generator, copy_ty)?
} else {
context.gen_symbol_val(
generator,
fun.0.args[1].default_value.as_ref().unwrap(),
fun.0.args[1].ty,
)
};
// The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
// the `ndims` of the function return type.
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims);
let copy = generator.bool_to_i1(context, copy_arg.into_int_value());
let ndarray = NDArrayType::from_unifier_type(generator, context, fun.0.ret)
.construct_numpy_array(generator, context, (obj_ty, obj_arg), copy, None)
.atleast_nd(generator, context, ndims);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.eye`.
pub fn gen_ndarray_eye<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let nrows_ty = fun.0.args[0].ty;
let nrows_arg = args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)?;
let ncols_ty = fun.0.args[1].ty;
let ncols_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
{
arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)
} else {
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
}?;
let offset_ty = fun.0.args[2].ty;
let offset_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
{
arg.1.clone().to_basic_value_enum(context, generator, offset_ty)
} else {
Ok(context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
offset_ty,
))
}?;
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_usize = generator.get_size_type(context.ctx);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let nrows = context
.builder
.build_int_s_extend_or_bit_cast(nrows_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ncols = context
.builder
.build_int_s_extend_or_bit_cast(ncols_arg.into_int_value(), llvm_usize, "")
.unwrap();
let offset = context
.builder
.build_int_s_extend_or_bit_cast(offset_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
.construct_numpy_eye(generator, context, dtype, nrows, ncols, offset, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.identity`.
pub fn gen_ndarray_identity<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let n_ty = fun.0.args[0].ty;
let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?;
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_usize = generator.get_size_type(context.ctx);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let n = context
.builder
.build_int_s_extend_or_bit_cast(n_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
.construct_numpy_identity(generator, context, dtype, n, None);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.copy`.
pub fn gen_ndarray_copy<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
_fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_some());
assert!(args.is_empty());
let this_ty = obj.as_ref().unwrap().0;
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
.map_value(this_arg.into_pointer_value(), None);
let ndarray = this.make_copy(generator, context);
Ok(ndarray.as_base_value())
}
/// Generates LLVM IR for `ndarray.fill`.
pub fn gen_ndarray_fill<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_some());
assert_eq!(args.len(), 1);
let this_ty = obj.as_ref().unwrap().0;
let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
.map_value(this_arg.into_pointer_value(), None);
this.fill(generator, context, value_arg);
Ok(())
}
/// Generates LLVM IR for `ndarray.dot`.
/// Calculate inner product of two vectors or literals
/// For matrix multiplication use `np_matmul`
///
/// The input `NDArray` are flattened and treated as 1D
/// The operation is equivalent to `np.dot(arr1.ravel(), arr2.ravel())`
pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(x1_ty, x1): (Type, BasicValueEnum<'ctx>),
(x2_ty, x2): (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot";
match (x1, x2) {
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let a = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(n1, None);
let b = NDArrayType::from_unifier_type(generator, ctx, x2_ty).map_value(n2, None);
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
assert_eq!(a.get_type().ndims(), 1);
assert_eq!(b.get_type().ndims(), 1);
let common_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
// Check shapes.
let a_size = a.size(generator, ctx);
let b_size = b.size(generator, ctx);
let same_shape =
ctx.builder.build_int_compare(IntPredicate::EQ, a_size, b_size, "").unwrap();
ctx.make_assert(
generator,
same_shape,
"0:ValueError",
"shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)",
[Some(a_size), Some(b_size), None],
ctx.current_loc,
);
let dtype_llvm = ctx.get_llvm_type(generator, common_dtype);
let result = ctx.builder.build_alloca(dtype_llvm, "np_dot_result").unwrap();
ctx.builder.build_store(result, dtype_llvm.const_zero()).unwrap();
// Do dot product.
gen_for_callback(
generator,
ctx,
Some("np_dot"),
|generator, ctx| {
let a_iter = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, a);
let b_iter = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, b);
Ok((a_iter, b_iter))
},
|generator, ctx, (a_iter, _b_iter)| {
// Only a_iter drives the condition, b_iter should have the same status.
Ok(a_iter.has_element(generator, ctx))
},
|_, ctx, _hooks, (a_iter, b_iter)| {
let a_scalar = a_iter.get_scalar(ctx);
let b_scalar = b_iter.get_scalar(ctx);
let old_result = ctx.builder.build_load(result, "").unwrap();
let new_result: BasicValueEnum<'ctx> = match old_result {
BasicValueEnum::IntValue(old_result) => {
let a_scalar = a_scalar.into_int_value();
let b_scalar = b_scalar.into_int_value();
let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_int_add(old_result, x, "").unwrap().into()
}
BasicValueEnum::FloatValue(old_result) => {
let a_scalar = a_scalar.into_float_value();
let b_scalar = b_scalar.into_float_value();
let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_float_add(old_result, x, "").unwrap().into()
}
_ => {
panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype));
}
};
ctx.builder.build_store(result, new_result).unwrap();
Ok(())
},
|generator, ctx, (a_iter, b_iter)| {
a_iter.next(generator, ctx);
b_iter.next(generator, ctx);
Ok(())
},
)
.unwrap();
Ok(ctx.builder.build_load(result, "").unwrap())
}
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => codegen_unreachable!(
ctx,
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),
}
}

1930
nac3core/src/codegen/stmt.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,469 @@
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::{
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use super::{
concrete_type::ConcreteTypeStore,
types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
}
impl Resolver {
pub fn add_id_def(&self, id: StrRef, def: DefinitionId) {
self.id_to_def.write().insert(id, def);
}
}
impl SymbolResolver for Resolver {
fn get_default_param_value(
&self,
_: &nac3parser::ast::Expr,
) -> Option<crate::symbol_resolver::SymbolValue> {
unimplemented!()
}
fn get_symbol_type(
&self,
_: &mut Unifier,
_: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`"))
}
fn get_symbol_value<'ctx>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> {
self.id_to_def
.read()
.get(&id)
.copied()
.ok_or_else(|| HashSet::from([format!("cannot find symbol `{id}`")]))
}
fn get_string_id(&self, _: &str) -> i32 {
unimplemented!()
}
fn get_exception_id(&self, _tyid: usize) -> usize {
unimplemented!()
}
}
#[test]
fn test_primitives() {
let source = indoc! { "
c = a + b
d = a if c == 1 else 0
return d
"};
let statements = parse_program(source, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let resolver =
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
args: vec![
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
],
ret: primitives.int32,
vars: VarMap::new(),
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache);
let signature = store.add_cty(signature);
let mut function_data = FunctionData {
resolver: resolver.clone(),
bound_variables: Vec::new(),
return_type: Some(primitives.int32),
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
defined_identifiers: identifiers.clone(),
in_handler: false,
};
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("b".into(), inferencer.primitives.int32);
let statements = statements
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
inferencer.check_block(&statements, &mut identifiers).unwrap();
let top_level = Arc::new(TopLevelContext {
definitions: Arc::new(RwLock::new(std::mem::take(&mut *top_level.definitions.write()))),
unifiers: Arc::new(RwLock::new(vec![(unifier.get_shared_unifier(), primitives)])),
personality_symbol: None,
});
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "testing".into(),
body: Arc::new(statements),
unifier_index: 0,
calls: Arc::new(calls),
resolver,
store,
signature,
id: 0,
};
let f = Arc::new(WithCall::new(Box::new(|module| {
// the following IR is equivalent to
// ```
// ; ModuleID = 'test.ll'
// source_filename = "test"
//
// ; Function Attrs: norecurse nounwind readnone
// define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 {
// init:
// %add = add i32 %1, %0
// %cmp = icmp eq i32 %add, 1
// %ifexpr = select i1 %cmp, i32 %0, i32 0
// ret i32 %ifexpr
// }
//
// attributes #0 = { norecurse nounwind readnone }
// ```
// after O2 optimization
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
init:
%add = add i32 %1, %0, !dbg !9
%cmp = icmp eq i32 %add, 1, !dbg !10
%. = select i1 %cmp, i32 %0, i32 0, !dbg !11
ret i32 %., !dbg !12
}
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !5, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !8)
!5 = !DISubroutineType(flags: DIFlagPublic, types: !6)
!6 = !{!7}
!7 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!8 = !{}
!9 = !DILocation(line: 1, column: 9, scope: !4)
!10 = !DILocation(line: 2, column: 15, scope: !4)
!11 = !DILocation(line: 0, scope: !4)
!12 = !DILocation(line: 3, column: 8, scope: !4)
"}
.trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
})));
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_simple_call() {
let source_1 = indoc! { "
a = foo(a)
return a * 2
"};
let statements_1 = parse_program(source_1, FileName::default()).unwrap();
let source_2 = indoc! { "
return a + 1
"};
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32,
vars: VarMap::new(),
};
let fun_ty = unifier.add_ty(TypeEnum::TFunc(signature.clone()));
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(&mut unifier, &primitives, &signature, &mut cache);
let signature = store.add_cty(signature);
let foo_id = top_level.definitions.read().len();
top_level.definitions.write().push(Arc::new(RwLock::new(TopLevelDef::Function {
name: "foo".to_string(),
simple_name: "foo".into(),
signature: fun_ty,
var_id: vec![],
instance_to_stmt: HashMap::new(),
instance_to_symbol: HashMap::new(),
resolver: None,
codegen_callback: None,
loc: None,
})));
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
if let TopLevelDef::Function { resolver: r, .. } =
&mut *top_level.definitions.read()[foo_id].write()
{
*r = Some(resolver.clone());
} else {
unreachable!()
}
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let mut function_data = FunctionData {
resolver: resolver.clone(),
bound_variables: Vec::new(),
return_type: Some(primitives.int32),
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
defined_identifiers: identifiers.clone(),
in_handler: false,
};
inferencer.variable_mapping.insert("a".into(), inferencer.primitives.int32);
inferencer.variable_mapping.insert("foo".into(), fun_ty);
let statements_1 = statements_1
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
let calls1 = inferencer.calls.clone();
inferencer.calls.clear();
let statements_2 = statements_2
.into_iter()
.map(|v| inferencer.fold_stmt(v))
.collect::<Result<Vec<_>, _>>()
.unwrap();
if let TopLevelDef::Function { instance_to_stmt, .. } =
&mut *top_level.definitions.read()[foo_id].write()
{
instance_to_stmt.insert(
String::new(),
FunInstance {
body: Arc::new(statements_2),
calls: Arc::new(inferencer.calls.clone()),
subst: IndexMap::default(),
unifier_id: 0,
},
);
} else {
unreachable!()
}
inferencer.check_block(&statements_1, &mut identifiers).unwrap();
let top_level = Arc::new(TopLevelContext {
definitions: Arc::new(RwLock::new(std::mem::take(&mut *top_level.definitions.write()))),
unifiers: Arc::new(RwLock::new(vec![(unifier.get_shared_unifier(), primitives)])),
personality_symbol: None,
});
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "testing".to_string(),
body: Arc::new(statements_1),
calls: Arc::new(calls1),
unifier_index: 0,
resolver,
signature,
store,
id: 0,
};
let f = Arc::new(WithCall::new(Box::new(|module| {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
init:
%add.i = shl i32 %0, 1, !dbg !10
%mul = add i32 %add.i, 2, !dbg !10
ret i32 %mul, !dbg !10
}
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @foo.0(i32 %0) local_unnamed_addr #0 !dbg !11 {
init:
%add = add i32 %0, 1, !dbg !12
ret i32 %add, !dbg !12
}
attributes #0 = { mustprogress nofree norecurse nosync nounwind readnone willreturn }
!llvm.module.flags = !{!0, !1}
!llvm.dbg.cu = !{!2, !4}
!0 = !{i32 2, !\"Debug Info Version\", i32 3}
!1 = !{i32 2, !\"Dwarf Version\", i32 4}
!2 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!3 = !DIFile(filename: \"unknown\", directory: \"\")
!4 = distinct !DICompileUnit(language: DW_LANG_Python, file: !3, producer: \"NAC3\", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug)
!5 = distinct !DISubprogram(name: \"testing\", linkageName: \"testing\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !2, retainedNodes: !9)
!6 = !DISubroutineType(flags: DIFlagPublic, types: !7)
!7 = !{!8}
!8 = !DIBasicType(name: \"_\", flags: DIFlagPublic)
!9 = !{}
!10 = !DILocation(line: 2, column: 12, scope: !5)
!11 = distinct !DISubprogram(name: \"foo.0\", linkageName: \"foo.0\", scope: null, file: !3, line: 1, type: !6, scopeLine: 1, flags: DIFlagPublic, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !4, retainedNodes: !9)
!12 = !DILocation(line: 1, column: 12, scope: !11)
"}
.trim();
assert_eq!(expected, module.print_to_string().to_str().unwrap().trim());
})));
Target::initialize_all(&InitializationConfig::default());
let llvm_options = CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_classes_list_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), 2);
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -0,0 +1,357 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::{
codegen::{
types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
};
let fields = ListStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let element_type = element_type.unwrap_or(llvm_usize.into());
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, Some(element_type), llvm_usize);
Self { ty: llvm_list, item: Some(element_type), llvm_usize }
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, None, llvm_usize);
Self { ty: llvm_list, item: None, llvm_usize }
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self {
ty: Self::llvm_type(ctx.ctx, llvm_elem_type, llvm_usize),
item: llvm_elem_type,
llvm_usize,
}
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.item
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,125 @@
//! This module contains abstraction over all intrinsic composite types of NAC3.
//!
//! # `raw_alloca` vs `alloca` vs `construct`
//!
//! There are three ways of creating a new object instance using the abstractions provided by this
//! module.
//!
//! - `raw_alloca`: Allocates the object on the stack, returning an instance of
//! [`impl BasicValue`][inkwell::values::BasicValue]. This is similar to a `malloc` expression in
//! C++ but the object is allocated on the stack.
//! - `alloca`: Similar to `raw_alloca`, but also wraps the allocated object with
//! [`<Self as ProxyType<'ctx>>::Value`][ProxyValue], and returns the wrapped object. The returned
//! object will not initialize any value or fields. This is similar to a type-safe `malloc`
//! expression in C++ but the object is allocated on the stack.
//! - `construct`: Similar to `alloca`, but performs some initialization on the value or fields of
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
//! on the stack.
use inkwell::{
context::Context,
types::BasicType,
values::{IntValue, PointerValue},
};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use range::*;
pub use tuple::*;
mod list;
pub mod ndarray;
mod range;
pub mod structure;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Returns the type that should be used in `alloca` IR statements.
fn alloca_type(&self) -> impl BasicType<'ctx>;
/// Creates a new value of this type by invoking `alloca` at the current builder location,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
.unwrap()
}
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
}
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
ctx.builder
.build_array_alloca(
self.alloca_type().as_basic_type_enum(),
size,
name.unwrap_or_default(),
)
.unwrap(),
size,
name,
)
}
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
.unwrap()
}
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -0,0 +1,243 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::{
codegen::{
irrt,
stmt::gen_if_else_expr_callback,
types::{ndarray::NDArrayType, ListType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
list_ty: Type,
) -> (BasicTypeEnum<'ctx>, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
(ctx.get_llvm_type(generator, dtype), ndims)
}
impl<'ctx> NDArrayType<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
assert!(self.ndims >= ndims_int);
assert_eq!(dtype, self.dtype);
let list_value = list.as_i8_list(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = self.llvm_usize.const_int(ndims_int, false);
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
let shape = TypedArrayLikeAdapter::from(
shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, &shape,
);
let ndarray = Self::new(generator, ctx.ctx, dtype, ndims_int)
.construct_uninitialized(generator, ctx, name);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
// Copy all contents from the list.
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(
generator, ctx, list_value, ndarray,
);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
if ndims == 1 {
// `list` is not nested
assert_eq!(ndims, 1);
assert!(self.ndims >= ndims);
assert_eq!(dtype, self.dtype);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let ndarray = Self::new(generator, ctx.ctx, dtype, 1)
.construct_uninitialized(generator, ctx, name);
// Set data
let data = ctx
.builder
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
.unwrap();
ndarray.store_data(ctx, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.shape();
let list_len = list.load_size(ctx, None);
unsafe {
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
}
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
NDArrayType::new(generator, ctx.ctx, dtype, ndims).map_value(ndarray, None)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(ndarray.get_type().dtype, self.dtype);
assert!(self.ndims >= ndarray.get_type().ndims);
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.as_base_value()))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ndarray.get_type().map_value(ndarray_val, name)
}
/// Create a new ndarray like
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
///
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
/// with the exact number of dimensions is needed.
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
match &*ctx.unifier.get_ty_immutable(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,176 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{ndarray::ShapeEntryValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ShapeEntryType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ShapeEntryStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ShapeEntryType<'ctx> {
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!(
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ShapeEntryStructFields<'ctx> {
ShapeEntryStructFields::new(ctx, llvm_usize)
}
/// See [`ShapeEntryStructFields::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ty, llvm_usize }
}
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ShapeEntryValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ShapeEntryValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
fn from(value: ShapeEntryType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,250 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::{
codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
toplevel::numpy::unpack_ndarray_var_tys,
typecheck::typedef::Type,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ContiguousNDArrayType<'ctx> {
ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ContiguousNDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ContiguousNDArrayStructFields {
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
shape: StructField::create(
&mut counter,
"shape",
llvm_usize.ptr_type(AddressSpace::default()),
),
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
}
}
}
impl<'ctx> ContiguousNDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"ContiguousNDArray",
&[(fields.data.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ContiguousNDArrayStructFields<'ctx> {
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
Self::fields(self.item, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let field_tys =
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ContiguousNDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
Self { ty: llvm_cndarray, item, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
Self { ty: Self::llvm_type(ctx.ctx, llvm_dtype, llvm_usize), item: llvm_dtype, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, item, llvm_usize }
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.item,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ContiguousNDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,236 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use super::NDArrayType;
use crate::{
codegen::{
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayType<'ctx> {
/// Create an ndarray like
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, name);
// Validate `shape`
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
ndarray
}
/// Create an ndarray like
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
fill_value: BasicValueEnum<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_zero_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_one_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
#[allow(clippy::too_many_arguments)]
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
assert_eq!(nrows.get_type(), self.llvm_usize);
assert_eq!(ncols.get_type(), self.llvm_usize);
assert_eq!(offset.get_type(), self.llvm_usize);
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
// Create data and make the matrix like look np.eye()
unsafe {
ndarray.create_data(generator, ctx);
}
ndarray
.foreach(generator, ctx, |generator, ctx, _, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
let indices = nditer.get_indices();
let row_i = unsafe {
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
};
let col_i = unsafe {
indices.get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(1, false),
None,
)
};
let be_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
col_i,
"",
)
.unwrap();
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let offset = self.llvm_usize.const_zero();
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
}
}

View File

@ -0,0 +1,205 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{
ndarray::{NDIndexValue, RustNDIndex},
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIndexType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIndexStructFields<'ctx> {
#[value_type(i8_type())]
pub type_: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDIndexType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = NDIndexStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
}
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDIndexStructFields<'ctx> {
NDIndexStructFields::new(ctx, llvm_usize)
}
#[must_use]
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
Self::fields(self.ty.get_context(), self.llvm_usize)
}
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ndindex, llvm_usize }
}
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
#[must_use]
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> ArraySliceValue<'ctx> {
// Allocate the LLVM ndindices.
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = unsafe {
ndindices.ptr_offset_unchecked(
ctx,
generator,
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
None,
)
};
in_ndindex.write_to_ndindex(
generator,
ctx,
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
);
}
ndindices
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIndexValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIndexType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,187 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use itertools::Itertools;
use crate::codegen::{
stmt::gen_for_callback,
types::{
ndarray::{NDArrayType, NDIterType},
ProxyType,
},
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ArrayLikeValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayType<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
/// elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
/// result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing
/// ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[NDArrayValue<'ctx>],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayType::new(generator, ctx.ctx, dtype, broadcast_result.ndims)
.construct_uninitialized(generator, ctx, None);
result_ndarray.copy_shape_from_array(
generator,
ctx,
broadcast_result.shape.base_ptr(ctx, generator),
);
unsafe {
result_ndarray.create_data(generator, ctx);
}
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| {
NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *ndarray)
})
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx))
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
/// scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
/// or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following
/// behaviors:
///
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
/// converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
/// ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: BasicTypeEnum<'ctx>,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> =
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().copied().collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(value))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayType::new_broadcast(
generator,
ctx.ctx,
ret_dtype,
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
)
.broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
}

View File

@ -0,0 +1,452 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{BasicValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
};
use crate::{
codegen::{
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod array;
mod broadcast;
mod contiguous;
pub mod factory;
mod indexing;
mod map;
mod nditer;
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
/// The size of each `NDArray` element in bytes.
#[value_type(usize)]
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
/// Number of dimensions in the array.
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
/// Pointer to an array containing the shape of the `NDArray`.
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array indicating the number of bytes between each element at a dimension
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array containing the array data
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new(generator, ctx, dtype, inputs.iter().map(NDArrayType::ndims).max().unwrap())
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims: 0, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndims = extract_ndims(&ctx.unifier, ndims);
NDArrayType {
ty: Self::llvm_type(ctx.ctx, llvm_usize),
dtype: llvm_dtype,
ndims,
llvm_usize,
}
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
/// Returns the number of dimensions of this `ndarray` type.
#[must_use]
pub fn ndims(&self) -> u64 {
self.ndims
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
///
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `self.dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
fn construct_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.alloca_var(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
ndarray.store_itemsize(ctx, generator, itemsize);
ndarray.store_ndims(ctx, generator, ndims);
ndarray.create_shape(ctx, self.llvm_usize, ndims);
ndarray.create_strides(ctx, self.llvm_usize, ndims);
ndarray
}
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
/// instance.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `dtype`.
/// - `ndims`: set to the value of `self.ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndims = self.llvm_usize.const_int(self.ndims, false);
self.construct_impl(generator, ctx, ndims, name)
}
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
let dim = llvm_usize.const_int(*dim, false);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
dim,
);
}
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
assert_eq!(
dim.get_type(),
llvm_usize,
"Expected {} but got {}",
llvm_usize.print_to_string(),
dim.get_type().print_to_string()
);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
*dim,
);
}
}
ndarray
}
/// Create an unsized ndarray to contain `value`.
#[must_use]
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: &impl BasicValue<'ctx>,
name: Option<&'ctx str>,
) -> NDArrayValue<'ctx> {
let value = value.as_basic_value_enum();
assert_eq!(value.get_type(), self.dtype);
assert_eq!(self.ndims, 0);
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
ctx.builder.build_store(data, value).unwrap();
let data = ctx
.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
let ndarray = Self::new_unsized(generator, ctx.ctx, value.get_type())
.construct_uninitialized(generator, ctx, name);
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
ndarray
}
/// Converts an existing value into a [`NDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

Some files were not shown because too many files have changed in this diff Show More