core: Remove ArrayValue variants of functions
These will be lowered and optimized away later anyways, and we have ArrayLikeAccessor now.
This commit is contained in:
parent
26a01b14d5
commit
5ba8601b39
|
@ -5,6 +5,7 @@ use crate::{
|
|||
classes::{
|
||||
ArrayLikeIndexer,
|
||||
ArrayLikeValue,
|
||||
ArraySliceValue,
|
||||
ListValue,
|
||||
NDArrayValue,
|
||||
RangeValue,
|
||||
|
@ -1265,12 +1266,14 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
} else {
|
||||
return Ok(None)
|
||||
};
|
||||
let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?;
|
||||
ctx.builder.build_store(index_addr, index).unwrap();
|
||||
|
||||
Ok(Some(v.data()
|
||||
.get(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.ctx.i32_type().const_array(&[index]),
|
||||
ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None),
|
||||
None,
|
||||
)
|
||||
.into()))
|
||||
|
@ -1286,6 +1289,8 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
} else {
|
||||
return Ok(None)
|
||||
};
|
||||
let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?;
|
||||
ctx.builder.build_store(index_addr, index).unwrap();
|
||||
|
||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
||||
// elements over
|
||||
|
@ -1340,7 +1345,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
let v_data_src_ptr = v.data().ptr_offset(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.ctx.i32_type().const_array(&[index]),
|
||||
ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None),
|
||||
None
|
||||
);
|
||||
call_memcpy_generic(
|
||||
|
|
|
@ -8,7 +8,6 @@ use super::{
|
|||
ListValue,
|
||||
NDArrayValue,
|
||||
TypedArrayLikeAdapter,
|
||||
UntypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
|
@ -19,7 +18,7 @@ use inkwell::{
|
|||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{ArrayValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
@ -784,47 +783,4 @@ pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
|||
ndarray,
|
||||
indices,
|
||||
)
|
||||
}
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index_const<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: ArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let indices_size = indices.get_type().len();
|
||||
let indices_alloca = generator.gen_array_var_alloc(
|
||||
ctx,
|
||||
indices.get_type().get_element_type(),
|
||||
llvm_usize.const_int(indices_size as u64, false),
|
||||
None,
|
||||
).unwrap();
|
||||
for i in 0..indices_size {
|
||||
let v = ctx.builder.build_extract_value(indices, i, "")
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
unsafe {
|
||||
indices_alloca.set_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.ctx.i32_type().const_int(i as u64, false),
|
||||
v.into(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
call_ndarray_flatten_index_impl(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
&indices_alloca,
|
||||
)
|
||||
}
|
|
@ -1,7 +1,7 @@
|
|||
use inkwell::{
|
||||
IntPredicate,
|
||||
types::BasicType,
|
||||
values::{AggregateValueEnum, ArrayValue, BasicValueEnum, IntValue, PointerValue}
|
||||
values::{BasicValueEnum, IntValue, PointerValue}
|
||||
};
|
||||
use nac3parser::ast::StrRef;
|
||||
use crate::{
|
||||
|
@ -140,12 +140,12 @@ fn create_ndarray_dyn_shape<'ctx, 'a, G, V, LenFn, DataFn>(
|
|||
/// Creates an `NDArray` instance from a constant shape.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The shape of the `NDArray`, represented as an LLVM [`ArrayValue`].
|
||||
/// * `shape` - The shape of the `NDArray`, represented am array of [`IntValue`]s.
|
||||
fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ArrayValue<'ctx>
|
||||
shape: &[IntValue<'ctx>],
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
|
@ -156,14 +156,9 @@ fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
||||
assert!(llvm_ndarray_data_t.is_sized());
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let shape_dim = ctx.builder
|
||||
.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
for shape_dim in shape {
|
||||
let shape_dim_gez = ctx.builder
|
||||
.build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "")
|
||||
.build_int_compare(IntPredicate::SGE, *shape_dim, llvm_usize.const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
|
@ -183,21 +178,20 @@ fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
||||
|
||||
let num_dims = llvm_usize.const_int(shape.get_type().len() as u64, false);
|
||||
let num_dims = llvm_usize.const_int(shape.len() as u64, false);
|
||||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let ndarray_dim = ndarray
|
||||
.dim_sizes()
|
||||
.ptr_offset(ctx, generator, llvm_usize.const_int(i as u64, true), None);
|
||||
let shape_dim = ctx.builder.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
for (i, shape_dim) in shape.iter().enumerate() {
|
||||
let ndarray_dim = unsafe {
|
||||
ndarray
|
||||
.dim_sizes()
|
||||
.ptr_offset_unchecked(ctx, generator, llvm_usize.const_int(i as u64, true), None)
|
||||
};
|
||||
|
||||
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
|
||||
ctx.builder.build_store(ndarray_dim, *shape_dim).unwrap();
|
||||
}
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
|
@ -473,27 +467,16 @@ fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_usize_2 = llvm_usize.array_type(2);
|
||||
|
||||
let shape_addr = generator.gen_var_alloc(ctx, llvm_usize_2.into(), None)?;
|
||||
|
||||
let shape = ctx.builder.build_load(shape_addr, "")
|
||||
.map(BasicValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, nrows, 0, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, ncols, 1, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, shape)?;
|
||||
let ndarray = create_ndarray_const_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&[nrows, ncols],
|
||||
)?;
|
||||
|
||||
ndarray_fill_indexed(
|
||||
generator,
|
||||
|
|
Loading…
Reference in New Issue