pounder_test/src/bin/lockin-internal-demo.rs

184 lines
6.0 KiB
Rust
Raw Normal View History

2020-11-10 22:13:57 +08:00
#![deny(warnings)]
2019-03-18 19:56:26 +08:00
#![no_std]
#![no_main]
2019-10-22 21:43:49 +08:00
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
2019-03-18 19:56:26 +08:00
2021-01-19 00:20:33 +08:00
// A constant sinusoid to send on the DAC output.
2021-01-20 19:55:55 +08:00
const DAC_SEQUENCE: [f32; 8] =
[0.0, 0.707, 1.0, 0.707, 0.0, -0.707, -1.0, -0.707];
2021-01-29 17:11:56 +08:00
use dsp::{iir, iir_int, lockin::Lockin};
2021-01-26 19:21:44 +08:00
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
2021-01-29 18:05:46 +08:00
use stabilizer::{hardware, ADC_SAMPLE_TICKS};
2019-05-31 00:03:48 +08:00
const SCALE: f32 = ((1 << 15) - 1) as f32;
2019-03-25 17:08:27 +08:00
2021-01-29 18:01:21 +08:00
const PHASE_SCALING: f32 = 1e12;
2020-06-17 18:20:45 +08:00
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
2019-05-31 00:03:48 +08:00
const APP: () = {
2019-08-26 21:47:42 +08:00
struct Resources {
2020-11-26 18:33:08 +08:00
afes: (AFE0, AFE1),
adc1: Adc1Input,
2020-11-26 18:16:08 +08:00
dacs: (Dac0Output, Dac1Output),
2020-06-09 00:20:10 +08:00
#[init([0.; 5])]
iir_state: iir::IIRState,
#[init(iir::IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE })]
iir: iir::IIR,
2021-01-26 19:21:44 +08:00
lockin: Lockin,
2019-08-26 21:47:42 +08:00
}
2019-05-31 00:03:48 +08:00
#[init]
2019-05-31 00:03:48 +08:00
fn init(c: init::Context) -> init::LateResources {
2021-01-18 23:47:47 +08:00
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
2020-04-19 19:37:03 +08:00
2021-01-29 18:01:21 +08:00
// The desired corner frequency is always
let desired_corner_frequency = 10e3;
let gain = 1000.0;
// Calculate the IIR corner freuqency parameter as a function of the sample rate.
let corner_frequency = {
let sample_rate = 1.0 / (10e-9 * ADC_SAMPLE_TICKS as f32);
desired_corner_frequency / sample_rate
};
2021-01-26 19:21:44 +08:00
let lockin = Lockin::new(
2021-01-29 18:01:21 +08:00
&iir_int::IIRState::lowpass(corner_frequency, 0.707, gain), // TODO: expose
2021-01-26 19:21:44 +08:00
);
2021-01-18 23:47:47 +08:00
// Enable ADC/DAC events
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
2021-01-06 20:29:19 +08:00
// Start sampling ADCs.
2021-01-18 23:47:47 +08:00
stabilizer.adc_dac_timer.start();
2020-06-08 15:36:28 +08:00
2019-05-31 04:57:41 +08:00
init::LateResources {
2021-01-26 19:21:44 +08:00
lockin,
2021-01-18 23:47:47 +08:00
afes: stabilizer.afes,
adc1: stabilizer.adcs.1,
2021-01-18 23:47:47 +08:00
dacs: stabilizer.dacs,
2019-05-31 04:57:41 +08:00
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
2021-01-26 19:21:44 +08:00
///
/// TODO: Document
2021-01-29 17:11:56 +08:00
#[task(binds=DMA1_STR4, resources=[adc1, dacs, iir_state, iir, lockin], priority=2)]
2021-01-26 19:21:44 +08:00
fn process(mut c: process::Context) {
let adc_samples = c.resources.adc1.acquire_buffer();
2020-11-26 18:29:16 +08:00
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
2020-11-26 18:29:16 +08:00
];
2021-01-19 00:20:33 +08:00
// DAC0 always generates a fixed sinusoidal output.
for (i, value) in DAC_SEQUENCE.iter().enumerate() {
2021-01-29 18:01:21 +08:00
// Full-scale gives a +/- 12V amplitude waveform. Scale it down to give +/- 100mV.
let y = value * i16::MAX as f32 / 120.0;
2021-01-19 00:20:33 +08:00
// Note(unsafe): The DAC_SEQUENCE values are guaranteed to be normalized.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[0][i] = y as u16 ^ 0x8000;
2021-01-19 00:20:33 +08:00
}
let pll_phase = 0i32;
let pll_frequency = 1i32 << (32 - 3); // 1/8 of the sample rate
2021-01-26 19:21:44 +08:00
// Harmonic index of the LO: -1 to _de_modulate the fundamental
let harmonic: i32 = -1;
2021-01-26 19:21:44 +08:00
// Demodulation LO phase offset
let phase_offset: i32 = 0;
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
let mut sample_phase = phase_offset
.wrapping_add((pll_phase as i32).wrapping_mul(harmonic));
2021-01-26 19:21:44 +08:00
let mut phase = 0f32;
2021-01-26 19:21:44 +08:00
for sample in adc_samples.iter() {
// Convert to signed, MSB align the ADC sample.
let input = (*sample as i16 as i32) << 16;
// Obtain demodulated, filtered IQ sample.
let output = c.resources.lockin.update(input, sample_phase);
// Advance the sample phase.
sample_phase = sample_phase.wrapping_add(sample_frequency);
// Convert from IQ to phase.
phase = output.phase() as _;
}
2021-01-26 19:21:44 +08:00
// Filter phase through an IIR.
2021-01-29 18:05:46 +08:00
phase = c.resources.iir.update(&mut c.resources.iir_state, phase)
* PHASE_SCALING;
for value in dac_samples[1].iter_mut() {
2021-01-26 19:21:44 +08:00
*value = phase as u16 ^ 0x8000
2020-11-17 21:23:56 +08:00
}
}
2021-01-29 17:11:56 +08:00
#[idle(resources=[iir_state, iir, afes])]
fn idle(_: idle::Context) -> ! {
loop {
2021-01-29 17:11:56 +08:00
// TODO: Implement network interface.
cortex_m::asm::wfi();
2019-05-31 00:03:48 +08:00
}
}
2019-04-28 19:37:14 +08:00
2020-06-09 20:16:01 +08:00
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
2021-01-29 17:11:56 +08:00
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
2019-05-31 00:03:48 +08:00
}
#[task(binds = SPI2, priority = 3)]
2020-11-03 16:36:03 +08:00
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
2020-11-03 16:36:03 +08:00
fn spi3(_: spi3::Context) {
panic!("ADC1 input overrun");
2020-11-03 16:36:03 +08:00
}
#[task(binds = SPI4, priority = 3)]
2020-11-11 19:09:27 +08:00
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
2020-11-11 19:09:27 +08:00
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
2019-05-31 00:03:48 +08:00
extern "C" {
2020-06-17 18:20:45 +08:00
// hw interrupt handlers for RTIC to use for scheduling tasks
2019-05-31 04:57:41 +08:00
// one per priority
2019-05-31 00:03:48 +08:00
fn DCMI();
fn JPEG();
fn SDMMC();
}
};