dacs: macros
This commit is contained in:
parent
1906185286
commit
c04180635b
427
src/dac.rs
427
src/dac.rs
|
@ -11,306 +11,143 @@ use super::{
|
|||
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
|
||||
// each transfer in a ping-pong buffer configuration (one is being prepared while the other is being
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
// startup are undefined. The dimension are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI4 is used as a type for indicating a DMA transfer into the SPI4 TX FIFO
|
||||
struct SPI4 {
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
}
|
||||
|
||||
impl SPI4 {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI4 DMA requests are generated whenever TIM2 CH3 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH3 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
|
||||
struct SPI5 {
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
}
|
||||
|
||||
impl SPI5 {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
|
||||
/// SPI5 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI5 DMA requests are generated whenever TIM2 CH4 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents both DAC output channels.
|
||||
pub struct DacOutputs {
|
||||
dac0: Dac0Output,
|
||||
dac1: Dac1Output,
|
||||
}
|
||||
|
||||
impl DacOutputs {
|
||||
/// Construct the DAC outputs.
|
||||
pub fn new(dac0: Dac0Output, dac1: Dac1Output) -> Self {
|
||||
Self { dac0, dac1 }
|
||||
}
|
||||
|
||||
/// Borrow the next DAC output buffers to populate the DAC output codes in-place.
|
||||
///
|
||||
/// # Returns
|
||||
/// (dac0, dac1) where each value is a mutable reference to the output code array for DAC0 and
|
||||
/// DAC1 respectively.
|
||||
pub fn prepare_data(
|
||||
&mut self,
|
||||
) -> (
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
(self.dac0.prepare_buffer(), self.dac1.prepare_buffer())
|
||||
}
|
||||
|
||||
/// Enqueue the next DAC output codes for transmission.
|
||||
///
|
||||
/// # Note
|
||||
/// It is assumed that data was populated using `prepare_data()` before this function is
|
||||
/// called.
|
||||
pub fn commit_data(&mut self) {
|
||||
self.dac0.commit_buffer();
|
||||
self.dac1.commit_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC0.
|
||||
pub struct Dac0Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
SPI4,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac0Output {
|
||||
/// Construct the DAC0 output channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `stream` - The DMA stream used to write DAC codes over SPI.
|
||||
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel3,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The stream constantly writes to the TX FIFO to write new update codes.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI4::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
|
||||
unsafe { &mut DAC0_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
macro_rules! dac_output {
|
||||
($name:ident, $index:literal, $data_stream:ident,
|
||||
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {
|
||||
/// SPI is used as a type for indicating a DMA transfer into the SPI TX FIFO
|
||||
struct $spi {
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the data output stream from DAC1.
|
||||
pub struct Dac1Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
SPI5,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac1Output {
|
||||
/// Construct a new DAC1 output data stream.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface connected to DAC1.
|
||||
/// * `stream` - The DMA stream used to write DAC codes the SPI TX FIFO.
|
||||
/// * `trigger_channel` - The timer channel used to generate DMA requests for DAC updates.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel4,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO to generate DAC updates.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
|
||||
// DAC.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI5::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided to the transfer.
|
||||
unsafe { &mut DAC1_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
|
||||
transfer,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
impl $spi {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for $spi {
|
||||
/// SPI is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
/// SPI DMA requests are generated whenever TIM2 CH3 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC0.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
$spi,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl $name {
|
||||
/// Construct the DAC output channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `stream` - The DMA stream used to write DAC codes over SPI.
|
||||
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::$trigger_channel,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The stream constantly writes to the TX FIFO to write new update codes.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
$spi::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
|
||||
unsafe { &mut DAC_BUF[$index][0] },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC_BUF[$index][1]) },
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
dac_output!(Dac0Output, 0, Stream4, SPI4, Channel3, TIM2_CH3);
|
||||
dac_output!(Dac1Output, 1, Stream5, SPI5, Channel4, TIM2_CH4);
|
||||
|
|
12
src/main.rs
12
src/main.rs
|
@ -70,7 +70,7 @@ mod sampling_timer;
|
|||
mod server;
|
||||
|
||||
use adc::{Adc0Input, Adc1Input};
|
||||
use dac::{Dac0Output, Dac1Output, DacOutputs};
|
||||
use dac::{Dac0Output, Dac1Output};
|
||||
use dsp::iir;
|
||||
|
||||
#[cfg(not(feature = "semihosting"))]
|
||||
|
@ -189,7 +189,7 @@ const APP: () = {
|
|||
afe1: AFE1,
|
||||
|
||||
adcs: (Adc0Input, Adc1Input),
|
||||
dacs: DacOutputs,
|
||||
dacs: (Dac0Output, Dac1Output),
|
||||
|
||||
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
|
||||
|
||||
|
@ -441,7 +441,7 @@ const APP: () = {
|
|||
dma_streams.5,
|
||||
sampling_timer_channels.ch4,
|
||||
);
|
||||
DacOutputs::new(dac0, dac1)
|
||||
(dac0, dac1)
|
||||
};
|
||||
|
||||
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
|
||||
|
@ -749,7 +749,8 @@ const APP: () = {
|
|||
let adc0_samples = c.resources.adcs.0.transfer_complete_handler();
|
||||
let adc1_samples = c.resources.adcs.1.transfer_complete_handler();
|
||||
|
||||
let (dac0, dac1) = c.resources.dacs.prepare_data();
|
||||
let dac0 = c.resources.dacs.0.prepare_buffer();
|
||||
let dac1 = c.resources.dacs.1.prepare_buffer();
|
||||
|
||||
for (i, (adc0, adc1)) in
|
||||
adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
|
||||
|
@ -769,7 +770,8 @@ const APP: () = {
|
|||
};
|
||||
}
|
||||
|
||||
c.resources.dacs.commit_data();
|
||||
c.resources.dacs.0.commit_buffer();
|
||||
c.resources.dacs.1.commit_buffer();
|
||||
}
|
||||
|
||||
#[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]
|
||||
|
|
Loading…
Reference in New Issue