Compare commits

...

220 Commits

Author SHA1 Message Date
Sebastien Bourdeauducq 2cee760404 turn rust_2024_compatibility lints into warnings 2024-11-16 13:41:49 +08:00
Sebastien Bourdeauducq 230982dc84 update dependencies 2024-11-16 12:40:11 +08:00
occheung 2bd3f63991 boolop: terminate both branches with *_end_bb 2024-11-16 12:06:20 +08:00
occheung b53266e9e6 artiq: use async RPC for attributes writeback 2024-11-12 12:04:01 +08:00
occheung 86eb22bbf3 artiq: main is always the last module 2024-11-12 12:03:38 +08:00
occheung beaa38047d artiq: suppress main module debug warning 2024-11-12 12:03:08 +08:00
occheung 705dc4ff1c artiq: lump return value into attributes writeback RPC 2024-11-12 12:02:35 +08:00
occheung 979209a526 binop: expand `not` operator as loglcal not 2024-11-08 17:12:01 +08:00
David Mak c3927d0ef6 [ast] Refactor lazy_static to LazyLock
It is available in Rust 1.80 and reduces a dependency.
2024-10-30 12:29:51 +08:00
David Mak 202a902cd0 [meta] Update dependencies 2024-10-30 12:29:51 +08:00
David Mak b6e2644391 [meta] Update cargo dependencies 2024-10-18 14:17:16 +08:00
David Mak 45cd01556b [meta] Apply cargo fmt 2024-10-18 14:16:42 +08:00
David Mak b6cd2a6993 [meta] Reorganize order of use declarations - Phase 3 2024-10-17 16:25:52 +08:00
David Mak a98f33e6d1 [meta] Reorganize order of use declarations - Phase 2
Some more rules:

- For module-level imports, prefer no prefix > super > crate.
- Use crate instead of super if super refers to the crate-level module
2024-10-17 15:57:33 +08:00
David Mak 5839badadd [standalone] Update globals.py with type-inferred global var 2024-10-07 20:44:08 +08:00
David Mak 56c845aac4 [standalone] Add support for registering globals without type decl 2024-10-07 20:44:06 +08:00
David Mak 65a12d9ab3 [core] Refactor registration of top-level variables 2024-10-07 17:05:48 +08:00
David Mak 9c6685fa8f [core] typecheck/function_check: Fix lookup of defined ids in scope 2024-10-07 16:51:37 +08:00
David Mak 2bb788e4bb [core] codegen/expr: Materialize implicit globals
Required for when globals are read without the use of a global
declaration.
2024-10-07 13:13:20 +08:00
David Mak 42a2f243b5 [core] typecheck: Disallow redeclaration of var shadowing global 2024-10-07 13:11:00 +08:00
David Mak 3ce2eddcdc [core] typecheck/type_inferencer: Infer whether variables are global 2024-10-07 13:10:46 +08:00
David Mak 51bf126a32 [core] typecheck/type_inferencer: Differentiate global symbols
Required for analyzing use of global symbols before global declaration.
2024-10-07 12:25:00 +08:00
David Mak 1a197c67f6 [core] toplevel/composer: Reduce lock scope while analyzing function 2024-10-05 15:53:20 +08:00
David Mak 581b2f7bb2 [standalone] Add demo for global variables 2024-10-04 13:24:30 +08:00
David Mak 746329ec5d [standalone] Implement symbol resolution for globals 2024-10-04 13:24:30 +08:00
David Mak e60e8e837f [core] Add support for global statements 2024-10-04 13:24:27 +08:00
David Mak 9fdbe9695d [core] Add generator to SymbolResolver::get_symbol_value
Needed in a future commit.
2024-10-04 13:20:29 +08:00
David Mak 8065e73598 [core] toplevel/composer: Add type analysis for global variables 2024-10-04 13:20:29 +08:00
David Mak 192290889b [core] Add IdentifierInfo
Keeps track of whether an identifier refers to a global or local
variable.
2024-10-04 13:20:24 +08:00
David Mak 1407553a2f [core] Implement parsing of global variables
Globals are now parsed into symbol resolver and top level definitions.
2024-10-04 13:18:29 +08:00
David Mak c7697606e1 [core] Add TopLevelDef::Variable 2024-10-04 13:09:25 +08:00
David Mak 88d0ccbf69 [standalone] Explicit panic when encountering a compilation error
Otherwise scripts will continue to execute.
2024-10-04 13:00:16 +08:00
David Mak a43b59539c [meta] Move variables declarations closer to where they are first used 2024-10-04 13:00:16 +08:00
David Mak fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00
David Mak 7f6c9a25ac [meta] Update Cargo dependencies 2024-10-04 12:52:01 +08:00
Sébastien Bourdeauducq 6c8382219f msys2: get python via numpy dependencies 2024-09-30 14:27:30 +08:00
Sebastien Bourdeauducq 9274a7b96b flake: update nixpkgs 2024-09-30 14:22:40 +08:00
Sébastien Bourdeauducq d1c0fe2900 cargo: update dependencies 2024-09-30 14:14:43 +08:00
mwojcik f2c047ba57 artiq: support async rpcs
Co-authored-by: mwojcik <mw@m-labs.hk>
Co-committed-by: mwojcik <mw@m-labs.hk>
2024-09-13 12:12:13 +08:00
David Mak 5e2e77a500 [meta] Bump inkwell to v0.5 2024-09-13 11:11:14 +08:00
David Mak f3cc4702b9 [meta] Update dependencies 2024-09-13 11:11:14 +08:00
David Mak 3e92c491f5 [standalone] Add tests creating ndarrays with tuple dims 2024-09-11 15:52:43 +08:00
lyken 7f629f1579 core: fix comment in unify_call 2024-09-11 15:46:19 +08:00
lyken 5640a793e2 core: allow np_full to take tuple shapes 2024-09-11 15:46:19 +08:00
David Mak abbaa506ad [standalone] Remove redundant recreation of TargetMachine 2024-09-09 14:27:10 +08:00
David Mak f3dc02d646 [meta] Apply cargo fmt 2024-09-09 14:24:52 +08:00
David Mak ea217eaea1 [meta] Update pre-commit config
Directly invoke cargo using nix develop to avoid using the system cargo.
2024-09-09 14:24:38 +08:00
Sébastien Bourdeauducq 5a34551905 allow the use of the LLVM shared library
Which in turns allows working around the incompatibility of the LLVM static library
with Rust link-args=-rdynamic, which produces binaries that either fail to link (OpenBSD)
or segfault on startup (Linux).

The year is 2024 and compiler toolchains are still a trash fire like this.
2024-09-09 11:17:31 +08:00
Sebastien Bourdeauducq 6098b1b853 fix previous commit 2024-09-06 11:32:08 +08:00
Sebastien Bourdeauducq 668ccb1c95 nac3core: expose inkwell and nac3parser 2024-09-06 11:06:26 +08:00
Sebastien Bourdeauducq a3c624d69d update all dependencies 2024-09-06 10:21:58 +08:00
Sébastien Bourdeauducq bd06155f34 irrt: compatibility with pre-C23 compilers 2024-09-05 18:54:55 +08:00
David Mak 9c33c4209c [core] Fix type of ndarray.element_type
Should be the element type of the NDArray itself, not the pointer to its
type.
2024-08-30 22:47:38 +08:00
Sebastien Bourdeauducq 122983f11c flake: update dependencies 2024-08-30 14:45:38 +08:00
David Mak 71c3a65a31 [core] codegen/stmt: Fix obtaining return type of sret functions 2024-08-29 19:15:30 +08:00
David Mak 8c540d1033 [core] codegen/stmt: Add more casts for boolean types 2024-08-29 16:36:32 +08:00
David Mak 0cc60a3d33 [core] codegen/expr: Fix missing cast to i1 2024-08-29 16:36:32 +08:00
David Mak a59c26aa99 [artiq] Fix RPC of ndarrays from host 2024-08-29 16:08:45 +08:00
David Mak 02d93b11d1 [meta] Update dependencies 2024-08-29 14:32:21 +08:00
lyken 59cad5bfe1
standalone: clang-format demo.c 2024-08-29 10:37:24 +08:00
lyken 4318f8de84
standalone: improve src/assignment.py 2024-08-29 10:33:58 +08:00
David Mak 15ac00708a [core] Use quoted include paths instead of angled brackets
This is preferred for user-defined headers.
2024-08-28 16:37:03 +08:00
lyken c8dfdcfdea
standalone & artiq: remove class_names from resolver 2024-08-27 23:43:40 +08:00
Sébastien Bourdeauducq 600a5c8679 Revert "standalone: reformat demo.c"
This reverts commit 308edb8237.
2024-08-27 23:06:49 +08:00
lyken 22c4d25802 core/typecheck: add missing typecheck in matmul 2024-08-27 22:59:39 +08:00
lyken 308edb8237 standalone: reformat demo.c 2024-08-27 22:55:22 +08:00
lyken 9848795dcc core/irrt: add exceptions and debug utils 2024-08-27 22:55:22 +08:00
lyken 58222feed4 core/irrt: split into headers 2024-08-27 22:55:22 +08:00
lyken 518f21d174 core/irrt: build.rs capture IR defined constants 2024-08-27 22:55:22 +08:00
lyken e8e49684bf core/irrt: build.rs capture IR defined types 2024-08-27 22:55:22 +08:00
lyken b2900b4883 core/irrt: use +std=c++20 to compile
To explicitly set the C++ variant and avoid inconsistencies.
2024-08-27 22:55:22 +08:00
lyken c6dade1394 core/irrt: reformat 2024-08-27 22:55:22 +08:00
lyken 7e3fcc0845 add .clang-format 2024-08-27 22:55:22 +08:00
lyken d3b4c60d7f core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-27 22:55:22 +08:00
abdul124 5b2b6db7ed core: improve error messages 2024-08-26 18:37:55 +08:00
abdul124 15e62f467e standalone: add tests for polymorphism 2024-08-26 18:37:55 +08:00
abdul124 2c88924ff7 core: add support for simple polymorphism 2024-08-26 18:37:55 +08:00
abdul124 a744b139ba core: allow Call and AnnAssign in init block 2024-08-26 18:37:55 +08:00
David Mak 2b2b2dbf8f [core] Fix resolution of exception names in raise short form
Previous implementation fails as `resolver.get_identifier_def` in ARTIQ
would return the exception __init__ function rather than the class.

We fix this by limiting the exception class resolution to only include
raise statements, and to force the exception name to always be treated
as a class.

Fixes #501.
2024-08-26 18:35:02 +08:00
David Mak d9f96dab33 [core] Add codegen_unreachable 2024-08-23 13:10:55 +08:00
David Mak c5ae0e7c36 [standalone] Add tests for tuple equality 2024-08-21 16:25:32 +08:00
David Mak b8dab6cf7c [standalone] Add tests for string equality 2024-08-21 16:25:32 +08:00
David Mak 4d80ba38b7 [core] codegen/expr: Implement comparison of tuples 2024-08-21 16:25:32 +08:00
David Mak 33929bda24 [core] typecheck/typedef: Add support for tuple methods 2024-08-21 16:25:32 +08:00
David Mak a8e92212c0 [core] codegen/expr: Implement string equality 2024-08-21 16:25:32 +08:00
David Mak 908271014a [core] typecheck/magic_methods: Add equality methods to string 2024-08-21 16:25:32 +08:00
David Mak c407622f5c [core] codegen/expr: Add compilation error for unsupported cmpop 2024-08-21 15:46:13 +08:00
David Mak d7952d0629 [core] codegen/expr: Fix assertions not generated for -O0 2024-08-21 15:36:54 +08:00
David Mak ca1395aed6 [core] codegen: Remove redundant return 2024-08-21 15:36:54 +08:00
David Mak 7799aa4987 [meta] Do not specify rev in dependency version 2024-08-21 15:36:54 +08:00
David Mak 76016a26ad [meta] Apply clippy suggestions 2024-08-21 13:07:57 +08:00
lyken 8532bf5206
standalone: add missing test_ndarray_ceil() run 2024-08-21 11:39:00 +08:00
lyken 2cf64d8608
apply clippy comment changes 2024-08-21 11:21:10 +08:00
lyken 706759adb2
artiq: apply cargo fmt 2024-08-21 11:21:10 +08:00
lyken b90cf2300b
core/fix: add missing lifetime in gen_for* 2024-08-21 11:05:30 +08:00
Sebastien Bourdeauducq 0fc26df29e flake: update nixpkgs 2024-08-19 23:53:15 +08:00
David Mak 0b074c2cf2 [artiq] symbol_resolver: Set private linkage for constants 2024-08-19 14:41:43 +08:00
Sébastien Bourdeauducq a0f6961e0e cargo: update dependencies 2024-08-19 13:15:03 +08:00
David Mak b1c5c2e1d4 [artiq] Fix RPC of ndarrays to host 2024-08-15 15:41:24 +08:00
David Mak 69320a6cf1 [artiq] Fix LLVM representation of strings
Should be `%str` rather than `[N x i8]`.
2024-08-14 09:30:08 +08:00
David Mak 9e0601837a core: Add compile-time feature to disable escape analysis 2024-08-14 09:29:48 +08:00
lyken 432c81a500
core: update insta after #489 2024-08-13 15:30:34 +08:00
David Mak 6beff7a268 [artiq] Implement core_log and rtio_log in terms of polymorphic_print
Implementation mostly references the original implementation in Python.
2024-08-13 15:19:03 +08:00
David Mak 6ca7aecd4a [artiq] Add core_log and rtio_log function declarations 2024-08-13 15:19:03 +08:00
David Mak 8fd7216243 [core] toplevel/composer: Add lateinit_builtins
This is required for the new core_log and rtio_log functions, which take
a generic type as its parameter. However, in ARTIQ builtins are
initialized using one unifier and then actually used by another unifier.

lateinit_builtins workaround this issue by deferring the initialization
of functions requiring type variables until the actual unifier is ready.
2024-08-13 15:19:03 +08:00
David Mak 4f5e417012 [core] codegen: Add function to get format constants for integers 2024-08-13 15:19:03 +08:00
David Mak a0614bad83 [core] codegen/expr: Make gen_string return `StructValue`
So that it is clear that the value itself is returned rather than a
pointer to the struct or its data.
2024-08-13 15:19:03 +08:00
David Mak 5539d144ed [core] Add `CodeGenContext::build_in_bounds_gep_and_load`
For safer accesses to `gep`-able values and faster fails.
2024-08-13 15:19:03 +08:00
David Mak b3891b9a0d standalone: Fix several issues post script refactoring
- Add helptext for check_demos.sh
- Add back support for using debug NAC3 for running tests
- Output error message when argument is not recognized
- Fixed last non-demo script argument being ignored
- Add back SSE2 requirement to NAC3 (required for mandelbrot)
2024-08-13 15:19:03 +08:00
David Mak 6fb8939179 [meta] Update dependencies 2024-08-13 15:19:03 +08:00
lyken 973dc5041a core/typecheck: Support tuple arg type in len() 2024-08-13 15:02:59 +08:00
David Mak d0da688aa7 standalone: Add tuple len test 2024-08-13 15:02:59 +08:00
David Mak 12c4e1cf48 core/toplevel/builtins: Add support for len() on tuples 2024-08-13 15:02:59 +08:00
David Mak 9b988647ed core/toplevel/builtins: Extract len() into builtin function 2024-08-13 15:02:59 +08:00
lyken 35a7cecc12
core/typecheck: fix np_array ndmin bug 2024-08-13 12:50:04 +08:00
lyken 7e3d87f841 core/codegen: fix bug in call_ceil function 2024-08-07 16:40:55 +08:00
David Mak ac0d83ef98 standalone: Add vararg.py 2024-08-06 11:48:42 +08:00
David Mak 3ff6db1a29 core/codegen: Add va_start and va_end intrinsics 2024-08-06 11:48:42 +08:00
David Mak d7b806afb4 core/codegen: Implement support for va_info on supported architectures 2024-08-06 11:48:40 +08:00
David Mak fac60c3974 core/codegen: Handle vararg in function generation 2024-08-06 11:46:00 +08:00
David Mak f5fb504a15 core/codegen/expr: Implement vararg handling in gen_call 2024-08-06 11:46:00 +08:00
David Mak faa3bb97ad core/typecheck/typedef: Add vararg to Unifier::stringify 2024-08-06 11:46:00 +08:00
David Mak 6a64c9d1de core/typecheck/typedef: Add is_vararg_ctx to TTuple 2024-08-06 11:45:54 +08:00
David Mak 3dc8498202 core/typecheck/typedef: Handle vararg parameters in unify_call 2024-08-06 11:43:13 +08:00
David Mak cbf79c5e9c core/typecheck/typedef: Add is_vararg to FuncArg, ConcreteFuncArg 2024-08-06 11:43:13 +08:00
David Mak b8aa17bf8c core/toplevel/composer: Add parsing for vararg parameter 2024-08-06 10:52:24 +08:00
David Mak f5b998cd9c core/codegen: Remove unnecessary mut from get_llvm*_type 2024-08-06 10:52:24 +08:00
David Mak c36f85ecb9 meta: Update dependencies 2024-08-06 10:52:24 +08:00
lyken 3a8c385e01 core/typecheck: fix missing ExprKind::Asterisk in fix_assignment_target_context 2024-08-05 19:30:48 +08:00
lyken 221de4d06a core/codegen: add missing comment 2024-08-05 19:30:48 +08:00
lyken fb9fe8edf2 core: reimplement assignment type inference and codegen
- distinguish between setitem and getitem
- allow starred assignment targets, but the assigned value would be a tuple
- allow both [...] and (...) to be target lists
2024-08-05 19:30:48 +08:00
lyken 894083c6a3 core/codegen: refactor gen_{for,comprehension} to match on iter type 2024-08-05 19:30:48 +08:00
Sébastien Bourdeauducq 669c6aca6b clean up and fix 32-bit demos 2024-08-05 19:04:25 +08:00
abdul124 63d2b49b09 core: remove np_linalg_matmul 2024-08-05 11:44:55 +08:00
abdul124 bf709889c4 standalone/demo: separate linalg functions from main workspace 2024-08-05 11:44:54 +08:00
abdul124 1c72698d02 core: add np_linalg_det and np_linalg_matrix_power functions 2024-07-31 18:02:54 +08:00
abdul124 54f883f0a5 core: implement np_dot using LLVM_IR 2024-07-31 15:53:51 +08:00
abdul124 4a6845dac6 standalone: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 00236f48bc core: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 a3e6bb2292 core/helper: add linalg section 2024-07-31 13:23:07 +08:00
abdul124 17171065b1 standalone: link linalg at runtime 2024-07-31 13:23:07 +08:00
abdul124 540b35ec84 standalone: move linalg functions to demo 2024-07-31 13:23:05 +08:00
abdul124 4bb00c52e3 core/builtin_fns: improve error reporting 2024-07-31 13:21:31 +08:00
abdul124 faf07527cb standalone: add runtime implementation for linalg functions 2024-07-31 13:21:28 +08:00
abdul124 d6a4d0a634 standalone: add linalg methods and tests 2024-07-29 16:48:06 +08:00
abdul124 2242c5af43 core: add linalg methods 2024-07-29 16:48:06 +08:00
David Mak 318a675ea6 standalone: Rename -m32 to -i386 2024-07-29 14:58:58 +08:00
David Mak 32e52ce198 standalone: Revert using uint32_t as slice length
Turns out list and str have always been size_t.
2024-07-29 14:58:29 +08:00
Sebastien Bourdeauducq 665ca8e32d cargo: update dependencies 2024-07-27 22:24:56 +08:00
Sebastien Bourdeauducq 12c12b1d80 flake: update nixpkgs 2024-07-27 22:22:20 +08:00
lyken 72972fa909 core/toplevel: add more numpy categories 2024-07-27 21:57:47 +08:00
lyken 142cd48594 core/toplevel: reorder PrimDef::details 2024-07-27 21:57:47 +08:00
lyken 8adfe781c5 core/toplevel: fix PrimDef method names 2024-07-27 21:57:47 +08:00
lyken 339b74161b core/toplevel: reorganize PrimDef 2024-07-27 21:57:47 +08:00
David Mak 8c5ba37d09 standalone: Add 32-bit execution tests to check_demo.sh 2024-07-26 13:35:40 +08:00
David Mak 05a8948ff2 core: Minor cleanup to use ListValue APIs 2024-07-26 13:35:40 +08:00
David Mak 6d171ec284 core: Add label name and hooks to gen_for functions 2024-07-26 13:35:40 +08:00
David Mak 0ba68f6657 core: Set target triple and datalayout for each module
Fixes an issue with inconsistent pointer sizes causing crashes.
2024-07-26 13:35:40 +08:00
David Mak 693b2a8863 core: Add support for 32-bit size_t on 64-bit targets 2024-07-26 13:35:40 +08:00
David Mak 5faeede0e5 Determine size_t using LLVM target machine 2024-07-26 13:35:38 +08:00
David Mak 266707df9d standalone: Add support for running 32-bit binaries 2024-07-26 13:32:38 +08:00
David Mak 3d3c258756 standalone: Remove support for --lli 2024-07-26 13:32:38 +08:00
David Mak ed1182cb24 standalone: Update format specifiers for exceptions
Use platform-agnostic identifiers instead.
2024-07-26 13:32:37 +08:00
David Mak fd025c1137 standalone: Use uint32_t for cslice length
Matching the expected type of string and list slices.
2024-07-26 13:32:21 +08:00
David Mak f139db9af9 meta: Update dependencies 2024-07-26 10:33:02 +08:00
lyken 44487b76ae standalone: interpret_demo.py remove duplicated section 2024-07-22 17:23:35 +08:00
lyken 1332f113e8 standalone: fix interpret_demo.py comments 2024-07-22 17:06:14 +08:00
Sébastien Bourdeauducq 7632d6f72a cargo: update dependencies 2024-07-21 11:00:25 +08:00
David Mak 4948395ca2 core/toplevel/type_annotation: Add handling for mismatching class def
Primitive types only contain fields in its Type and not its TopLevelDef.
This causes primitive object types to lack some fields.
2024-07-19 14:42:14 +08:00
David Mak 3db3061d99 artiq/symbol_resolver: Handle type of zero-length lists 2024-07-19 14:42:14 +08:00
David Mak 51c2175c80 core/codegen/stmt: Convert assertion values to i1 2024-07-19 14:42:14 +08:00
lyken 1a31a50b8a
standalone: fix __nac3_raise def in demo.c 2024-07-17 21:22:08 +08:00
lyken 6c10e3d056 core: cargo clippy 2024-07-12 21:18:53 +08:00
lyken 2dbc1ec659 cargo fmt 2024-07-12 21:16:38 +08:00
Sebastien Bourdeauducq c80378063a add np_argmin/argmax to interpret_demo environment 2024-07-12 13:27:52 +02:00
abdul124 513d30152b core: support raise exception short form 2024-07-12 18:58:34 +08:00
abdul124 45e9360c4d standalone: Add np_argmax and np_argmin tests 2024-07-12 18:19:56 +08:00
abdul124 2e01b77fc8 core: refactor np_max/np_min functions 2024-07-12 18:18:54 +08:00
abdul124 cea7cade51 core: add np_argmax/np_argmin functions 2024-07-12 18:18:28 +08:00
Sebastien Bourdeauducq d658d9b00e update dependencies, Python 3.12 on Linux 2024-07-09 23:56:12 +08:00
abdul124 eeb474f9e6 core: reduce code duplication in codegen/extern_fns (#453)
Used macros to reduce code duplication in `codegen/extern_fns`

Reviewed-on: #453
Co-authored-by: abdul124 <ar@m-labs.hk>
Co-committed-by: abdul124 <ar@m-labs.hk>
2024-07-09 16:31:08 +08:00
abdul124 88b72af2d1 core/llvm_intrinsic: improve macro name and comments 2024-07-09 16:30:32 +08:00
abdul124 b73f6c4d68 core: reduce code duplication in codegen/llvm_intrinsic 2024-07-09 16:30:32 +08:00
David Mak f47cdec650 standalone: Fix output format of output_range 2024-07-09 13:55:48 +08:00
David Mak d656880e44 standalone: Fix missing implementation for output_range 2024-07-09 13:53:50 +08:00
David Mak a91602915a core: Fix missing fields in range type 2024-07-09 13:53:50 +08:00
David Mak 1c56005a01 core: Reformat and modernize irrt.cpp
- Use anon namespace instead of static
- Use using declaration instead of typedef
- Align pointers to the type instead of the identifier
2024-07-09 13:53:50 +08:00
David Mak bc40a32524 core: Add report_type_error to enable more code reuse 2024-07-09 13:44:47 +08:00
David Mak c820daf5f8 core: Apply cargo format 2024-07-09 13:32:10 +08:00
David Mak 25d2de67f7 standalone: Add output_range and tests 2024-07-09 04:44:40 +08:00
David Mak 2cfb7a7e10 core: Refactor range function into constructor 2024-07-09 04:44:40 +08:00
David Mak 9238a5e86e standalone: Rename output_str to output_strln and add output_str
output_str is for outputting strings without newline, and the newly
introduced output_strln now has the old behavior of ending with a
newline.
2024-07-09 04:44:40 +08:00
lyken 76defac462 meta: use clang -x c++ instead of clang++ 2024-07-07 20:03:34 +08:00
lyken 650f354b74 core: use C++ for irrt source 2024-07-07 14:36:10 +08:00
abdul124 f062ef5f59 core/llvm_intrinsic: replace roundeven with rint 2024-07-07 14:24:18 +08:00
lyken f52086b706 core: improve binop and cmpop error messages 2024-07-05 16:27:24 +08:00
lyken 0a732691c9 core: refactor typecheck/magic_methods.rs operators & add op symbol name 2024-07-05 16:27:20 +08:00
lyken cbff356d50 core: workaround inkwell on `llvm.stackrestore` 2024-07-05 13:56:12 +08:00
lyken 24ac3820b2 core: check int32 obj_id directly in fold_numpy_function_call_shape_argument 2024-07-05 10:36:47 +08:00
David Mak ba32fab374 standalone: Add demos for list arithmetic operators 2024-07-04 16:01:15 +08:00
David Mak c4052b6342 core: Implement multi-operand __eq__ and __ne__ for lists 2024-07-04 16:01:15 +08:00
David Mak 66c205275f core: Implement list::__add__ 2024-07-04 16:01:11 +08:00
David Mak c85e412206 core: Implement list::__mul__ 2024-07-04 15:53:50 +08:00
David Mak 075536d7bd core: Add BreakContinueHooks for gen_for_callback 2024-07-04 15:32:18 +08:00
David Mak 13beeaa2bf core: Implement handling for zero-length lists 2024-07-04 15:32:18 +08:00
David Mak 2194dbddd5 core/type_annotation: Refactor List type to TObj
In preparation for operators on lists.
2024-07-04 15:32:18 +08:00
David Mak 94a1d547d6 meta: Update dependencies 2024-07-04 15:32:18 +08:00
lyken d6565feed3 core: ndarray_from_ndlist_impl cast size_of to usize 2024-07-04 12:24:52 +08:00
abdul124 83154ef8e1 core/llvm_intrinsics: remove llvm.roundeven call from call_float_roundeven 2024-07-03 14:17:47 +08:00
lyken 0744b938b8 core: fix __nac3_ndarray_calc_size crash due to incorrect typing 2024-07-03 13:03:14 +08:00
lyken 56fa2b6803 core: fix crash on iterating over non-iterables
a
2024-06-28 15:45:53 +08:00
lyken d06c13f936 core: fix crash on invalid subscripting 2024-06-27 16:58:48 +08:00
lyken 9808923258 core: improve comments in type_inferencer/mod.rs 2024-06-27 14:46:48 +08:00
lyken 5b11a1dbdd core: support tuple and int32 input for np_empty, np_ones, and more 2024-06-27 14:30:17 +08:00
lyken b21df53e0d core: fix comment typo in unify_call() 2024-06-27 14:06:39 +08:00
lyken 0ec967a468 core: improve function call errors 2024-06-27 14:06:39 +08:00
lyken ca8459dc7b standalone: prettify TopLevelComposer error reporting 2024-06-27 10:15:14 +08:00
abdul124 b0b804051a nac3artiq: allow class attribute access without init function 2024-06-25 16:06:33 +08:00
abdul124 134af79fd6 core: add support for class attributes 2024-06-25 16:06:33 +08:00
abdul124 7fe2c3496c core: add attribute field to class definition 2024-06-25 16:06:33 +08:00
103 changed files with 11791 additions and 4970 deletions

32
.clang-format Normal file
View File

@ -0,0 +1,32 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
__pycache__
/target
/nac3standalone/demo/linalg/target
nix/windows/msys2

View File

@ -8,17 +8,17 @@ repos:
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: cargo
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [fmt]
args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: cargo
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [clippy, --tests]
args: [develop, -c, cargo, clippy, --tests]

509
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1718530797,
"narHash": "sha256-pup6cYwtgvzDpvpSCFh1TEUjw2zkNpk8iolbKnyFmmU=",
"lastModified": 1731319897,
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "b60ebf54c15553b393d144357375ea956f89e9a9",
"rev": "dc460ec76cbff0e66e269457d7b728432263166c",
"type": "github"
},
"original": {

View File

@ -6,6 +6,7 @@
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -15,6 +16,22 @@
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
@ -24,7 +41,7 @@
lockFile = ./Cargo.lock;
};
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
@ -32,7 +49,9 @@
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
./check_demos.sh
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
@ -149,7 +168,7 @@
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
llvmPackages_14.clang llvmPackages_14.llvm.out # for running nac3standalone demos
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
@ -162,6 +181,11 @@
pre-commit
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -12,15 +12,10 @@ crate-type = ["cdylib"]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
tempfile = "3.13"
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -112,10 +112,15 @@ def extern(function):
register_function(function)
return function
def rpc(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""

26
nac3artiq/demo/str_abi.py Normal file
View File

@ -0,0 +1,26 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -0,0 +1,40 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
attr1: KernelInvariant[int32] = 2
attr2: int32 = 4
attr3: Kernel[int32]
@kernel
def __init__(self):
self.attr3 = 8
@nac3
class NAC3Devices:
core: KernelInvariant[Core]
attr4: KernelInvariant[int32] = 16
def __init__(self):
self.core = Core()
@kernel
def run(self):
Demo.attr1 # Supported
# Demo.attr2 # Field not accessible on Kernel
# Demo.attr3 # Only attributes can be accessed in this way
# Demo.attr1 = 2 # Attributes are immutable
self.attr4 # Attributes can be accessed within class
obj = Demo()
obj.attr1 # Attributes can be accessed by class objects
NAC3Devices.attr4 # Attributes accessible for classes without __init__
if __name__ == "__main__":
NAC3Devices().run()

File diff suppressed because it is too large Load Diff

View File

@ -2,9 +2,9 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(
unsafe_op_in_unsafe_fn,
@ -16,63 +16,65 @@
clippy::wildcard_imports
)]
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
use std::process::Command;
use std::rc::Rc;
use std::sync::Arc;
use inkwell::{
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
use std::{
collections::{HashMap, HashSet},
fs,
io::Write,
process::Command,
rc::Rc,
sync::Arc,
};
use itertools::Itertools;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::typedef::{FunSignature, FuncArg},
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PySet},
};
use nac3ld::Linker;
use tempfile::{self, TempDir};
use crate::codegen::attributes_writeback;
use crate::{
codegen::{rpc_codegen_callback, ArtiqCodeGenerator},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
symbol_resolver::SymbolResolver,
toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
use nac3ld::Linker;
use codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
};
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
mod codegen;
mod symbol_resolver;
mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)]
enum Isa {
Host,
@ -126,7 +128,7 @@ struct Nac3 {
isa: Isa,
time_fns: &'static (dyn TimeFns + Sync),
primitive: PrimitiveStore,
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
builtins: Vec<BuiltinFuncSpec>,
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
primitive_ids: PrimitivePythonId,
working_directory: TempDir,
@ -193,10 +195,8 @@ impl Nac3 {
body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
if let Some(id) = decorator_id_string(decorator) {
id == "kernel" || id == "portable" || id == "rpc"
} else {
false
}
@ -209,9 +209,8 @@ impl Nac3 {
}
StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node {
let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
if let Some(id) = decorator_id_string(decorator) {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
} else {
false
}
@ -264,7 +263,7 @@ impl Nac3 {
arg_names.len(),
));
}
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) {
Some(n) => n,
None if default_value.is_none() => {
@ -300,6 +299,64 @@ impl Nac3 {
None
}
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
vec![
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"core_log".into(),
FunSignature {
args: vec![FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
}],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"rtio_log".into(),
FunSignature {
args: vec![
FuncArg {
name: "channel".into(),
ty: primitives.str,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
},
],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
]
}
fn compile_method<T>(
&self,
obj: &PyAny,
@ -312,6 +369,7 @@ impl Nac3 {
let size_t = self.isa.get_size_type();
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
self.builtins.clone(),
Self::get_lateinit_builtins(),
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
size_t,
);
@ -388,7 +446,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -419,9 +476,25 @@ impl Nac3 {
match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id));
if decorator_list
.iter()
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
}
}
StmtKind::ClassDef { name, body, .. } => {
@ -429,19 +502,26 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if name == &"__init__".into() {
return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location
)));
}
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
}
}
}
}
_ => ()
_ => (),
}
let id = *name_to_pyid.get(&name).unwrap();
@ -480,7 +560,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -497,6 +576,10 @@ impl Nac3 {
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
let mut store = ConcreteTypeStore::new();
@ -534,13 +617,12 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context());
{
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read();
for (class_data, id) in &rpc_ids {
for (class_data, id, is_async) in &rpc_ids {
let mut def = defs[id.0].write();
match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen.clone());
*codegen_callback = Some(rpc_codegen_callback(*is_async));
}
TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap();
@ -551,7 +633,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write()
{
*codegen_callback = Some(rpc_codegen.clone());
*codegen_callback = Some(rpc_codegen_callback(*is_async));
store_fun
.call1(
py,
@ -566,6 +648,11 @@ impl Nac3 {
}
}
}
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
}
}
}
@ -586,33 +673,12 @@ impl Nac3 {
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()),
signature,
resolver,
store,
unifier_index: instance.unifier_id,
calls: Arc::new(HashMap::default()),
calls: instance.calls,
id: 0,
};
@ -625,7 +691,9 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = if self.isa == Isa::Host { 64 } else { 32 };
let size_t = context
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names
@ -634,16 +702,27 @@ impl Nac3 {
.collect();
let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| {
let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
let context = Context::create();
let module = context.create_module("main");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
@ -651,9 +730,27 @@ impl Nac3 {
&registry,
builder,
module,
attributes_writeback_task,
task,
|generator, ctx| {
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, &expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
},
)
.unwrap();
@ -662,37 +759,24 @@ impl Nac3 {
membuffer.lock().push(buffer);
});
let context = inkwell::context::Context::create();
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`.
let buffers = membuffers.lock();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
.create_module_from_ir(MemoryBuffer::create_from_memory_range(
&buffers.last().unwrap(),
"main",
))
.unwrap();
for buffer in buffers.iter().skip(1) {
for buffer in buffers.iter().rev().skip(1) {
let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
}
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(load_irrt(&context))
.map_err(|err| CompileError::new_err(err.to_string()))?;
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function();
while let Some(func) = function_iter {
@ -778,6 +862,41 @@ impl Nac3 {
}
}
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![
"-shared".to_string(),
@ -847,7 +966,7 @@ impl Nac3 {
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
};
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(isa.get_size_type()).0;
let (primitive, _) = TopLevelComposer::make_primitives(isa.get_size_type());
let builtins = vec![
(
"now_mu".into(),
@ -863,6 +982,7 @@ impl Nac3 {
name: "t".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
@ -882,6 +1002,7 @@ impl Nac3 {
name: "dt".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),

View File

@ -1,14 +1,30 @@
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
classes::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
@ -20,21 +36,8 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use crate::PrimitivePythonId;
use super::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
@ -79,7 +82,6 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -133,6 +135,8 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(),
);
global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false,
@ -163,7 +167,7 @@ impl StaticValue for PythonValue {
PrimitiveValue::Bool(val) => {
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
}
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
});
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -329,8 +333,19 @@ impl InnerResolver {
Ok(Ok((primitives.exception, true)))
} else if ty_id == self.primitive_ids.list {
// do not handle type var param and concrete check here
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let var = unifier.get_dummy_var().ty;
let list = unifier.add_ty(TypeEnum::TList { ty: var });
let list = unifier
.subst(primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: var }]))
.unwrap();
Ok(Ok((list, false)))
} else if ty_id == self.primitive_ids.ndarray {
// do not handle type var param and concrete check here
@ -340,7 +355,7 @@ impl InnerResolver {
Ok(Ok((ndarray, false)))
} else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false)))
} else if ty_id == self.primitive_ids.option {
Ok(Ok((primitives.option, false)))
} else if ty_id == self.primitive_ids.none {
@ -460,7 +475,7 @@ impl InnerResolver {
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TList { .. } => {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(
py,
@ -477,7 +492,21 @@ impl InnerResolver {
"type list should take concrete parameters in typevar range".into(),
));
}
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let list = unifier
.subst(
primitives.list,
&into_var_map([TypeVar { id: list_tvar.id, ty: ty.0 }]),
)
.unwrap();
Ok(Ok((list, true)))
} else {
return Ok(Err(format!(
"type list needs exactly 1 type parameters, found {}",
@ -530,7 +559,10 @@ impl InnerResolver {
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
Ok(Ok((
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
true,
)))
}
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
@ -627,12 +659,15 @@ impl InnerResolver {
let pyid_to_def = self.pyid_to_def.read();
let constructor_ty = pyid_to_def.get(&py_obj_id).and_then(|def_id| {
defs.iter().find_map(|def| {
if let TopLevelDef::Class { object_id, methods, constructor, .. } = &*def.read() {
if object_id == def_id
&& constructor.is_some()
&& methods.iter().any(|(s, _, _)| s == &"__init__".into())
if let Some(rear_guard) = def.try_read() {
if let TopLevelDef::Class { object_id, methods, constructor, .. } = &*rear_guard
{
return *constructor;
if object_id == def_id
&& constructor.is_some()
&& methods.iter().any(|(s, _, _)| s == &"__init__".into())
{
return *constructor;
}
}
}
None
@ -664,15 +699,38 @@ impl InnerResolver {
primitives,
)? {
Ok(s) => s,
Err(e) => return Ok(Err(e)),
Err(e) => {
// Allow access to Class Attributes of Classes without having to initialize Objects
if self.pyid_to_def.read().contains_key(&py_obj_id) {
if let Some(def_id) = self.pyid_to_def.read().get(&py_obj_id).copied() {
let def = defs[def_id.0].read();
let TopLevelDef::Class { object_id, .. } = &*def else {
// only object is supported, functions are not supported
unreachable!("function type is not supported, should not be queried")
};
let ty = TypeEnum::TObj {
obj_id: *object_id,
params: VarMap::new(),
fields: HashMap::new(),
};
(unifier.add_ty(ty), true)
} else {
return Ok(Err(e));
}
} else {
return Ok(Err(e));
}
}
};
match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these four types
(TypeEnum::TList { ty }, false) => {
(TypeEnum::TObj { obj_id, params, .. }, false) if *obj_id == PrimDef::List.id() => {
let ty = iter_type_vars(params).nth(0).unwrap().ty;
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(*ty),
&*unifier.get_ty(ty),
TypeEnum::TVar { fields: None, range, .. }
if range.is_empty()
));
@ -681,8 +739,25 @@ impl InnerResolver {
let actual_ty =
self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
match actual_ty {
Ok(t) => match unifier.unify(*ty, t) {
Ok(()) => Ok(Ok(unifier.add_ty(TypeEnum::TList { ty: *ty }))),
Ok(t) => match unifier.unify(ty, t) {
Ok(()) => {
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
&*unifier.get_ty_immutable(primitives.list)
{
assert_eq!(*obj_id, PrimDef::List.id());
iter_type_vars(params).nth(0).unwrap()
} else {
unreachable!()
};
let list = unifier
.subst(
primitives.list,
&into_var_map([TypeVar { id: list_tvar.id, ty }]),
)
.unwrap();
Ok(Ok(list))
}
Err(e) => Ok(Err(format!(
"type error ({}) for the list",
e.to_display(unifier)
@ -729,7 +804,9 @@ impl InnerResolver {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
Ok(types.map(|types| {
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
}))
}
// special handling for option type since its class member layout in python side
// is special and cannot be mapped directly to a nac3 type as below
@ -904,7 +981,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
Ok(Some(ctx.gen_string(generator, val).into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
@ -917,15 +994,21 @@ impl InnerResolver {
}
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
let elem_ty = if let TypeEnum::TList { ty } =
ctx.unifier.get_ty_immutable(expected_ty).as_ref()
{
*ty
} else {
unreachable!("must be list")
let elem_ty = match ctx.unifier.get_ty_immutable(expected_ty).as_ref() {
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
iter_type_vars(params).nth(0).unwrap().ty
}
_ => unreachable!("must be list"),
};
let ty = ctx.get_llvm_type(generator, elem_ty);
let size_t = generator.get_size_type(ctx.ctx);
let ty = if len == 0
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
{
// The default type for zero-length lists of unknown element type is size_t
size_t.into()
} else {
ctx.get_llvm_type(generator, elem_ty)
};
let arr_ty = ctx
.ctx
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
@ -1129,7 +1212,9 @@ impl InnerResolver {
Ok(Some(ndarray.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() };
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
unreachable!()
};
let tup_tys = ty.iter();
let elements: &PyTuple = obj.downcast()?;
@ -1385,6 +1470,7 @@ impl SymbolResolver for Resolver {
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();

View File

@ -1,9 +1,12 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either;
use nac3core::codegen::CodeGenContext;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline.
pub trait TimeFns {
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();

View File

@ -10,7 +10,6 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.4"
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -5,14 +5,12 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
lazy_static! {
static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
static INTERNER: LazyLock<Mutex<Interner>> =
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -2,9 +2,9 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
@ -14,9 +14,6 @@
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]

View File

@ -4,20 +4,23 @@ version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
no-escape-analysis = []
[dependencies]
itertools = "0.13"
crossbeam = "0.8"
indexmap = "2.2"
indexmap = "2.6"
parking_lot = "0.12"
rayon = "1.8"
rayon = "1.10"
nac3parser = { path = "../nac3parser" }
strum = "0.26.2"
strum_macros = "0.26.4"
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.4"
version = "0.5"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"

View File

@ -1,4 +1,3 @@
use regex::Regex;
use std::{
env,
fs::File,
@ -7,34 +6,53 @@ use std::{
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
const FILE: &str = "src/codegen/irrt/irrt.c";
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let flags: &[&str] = &[
let mut flags: Vec<&str> = vec![
"--target=wasm32",
FILE,
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
},
"-fno-exceptions",
"-fno-rtti",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
println!("cargo:rerun-if-changed={FILE}");
let out_dir = env::var("OUT_DIR").unwrap();
let out_path = Path::new(&out_dir);
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.output()
@ -48,7 +66,17 @@ fn main() {
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
@ -59,18 +87,22 @@ fn main() {
.unwrap()
.replace_all(&filtered_output, "");
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
if env::var("DEBUG_DUMP_IRRT").is_ok() {
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_path.join("irrt.bc"))
.arg(out_dir.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();

6
nac3core/irrt/irrt.cpp Normal file
View File

@ -0,0 +1,6 @@
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"

View File

@ -0,0 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
uint8_t* base;
SizeT len;
};

View File

@ -0,0 +1,25 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -0,0 +1,82 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
typedef int32_t ExceptionId;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace

View File

@ -0,0 +1,22 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -0,0 +1,75 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -0,0 +1,93 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -0,0 +1,13 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -0,0 +1,144 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
}

View File

@ -0,0 +1,28 @@
#pragma once
#include "irrt/int_types.hpp"
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
}

View File

@ -1,26 +1,102 @@
use inkwell::types::BasicTypeEnum;
use inkwell::values::BasicValueEnum;
use inkwell::{FloatPredicate, IntPredicate, OptimizationLevel};
use inkwell::{
types::BasicTypeEnum,
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
FloatPredicate, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use crate::codegen::classes::{NDArrayValue, ProxyValue, UntypedArrayLikeAccessor};
use crate::codegen::numpy::ndarray_elementwise_unaryop_impl;
use crate::codegen::stmt::gen_for_callback_incrementing;
use crate::codegen::{extern_fns, irrt, llvm_intrinsics, numpy, CodeGenContext, CodeGenerator};
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::Type;
use super::{
classes::{
ArrayLikeValue, NDArrayValue, ProxyValue, RangeValue, TypedArrayLikeAccessor,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
expr::destructure_range,
extern_fns, irrt,
irrt::calculate_len_for_slice_range,
llvm_intrinsics,
macros::codegen_unreachable,
numpy,
numpy::ndarray_elementwise_unaryop_impl,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use crate::{
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys},
typecheck::typedef::{Type, TypeEnum},
};
/// Shorthand for [`unreachable!()`] when a type of argument is not supported.
///
/// The generated message will contain the function name and the name of the unsupported type.
fn unsupported_type(ctx: &CodeGenContext<'_, '_>, fn_name: &str, tys: &[Type]) -> ! {
unreachable!(
codegen_unreachable!(
ctx,
"{fn_name}() not supported for '{}'",
tys.iter().map(|ty| format!("'{}'", ctx.unifier.stringify(*ty))).join(", "),
)
}
/// Invokes the `len` builtin function.
pub fn call_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
n: (Type, BasicValueEnum<'ctx>),
) -> Result<IntValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let range_ty = ctx.primitives.range;
let (arg_ty, arg) = n;
Ok(if ctx.unifier.unioned(arg_ty, range_ty) {
let arg = RangeValue::from_ptr_val(arg.into_pointer_value(), Some("range"));
let (start, end, step) = destructure_range(ctx, arg);
calculate_len_for_slice_range(generator, ctx, start, end, step)
} else {
match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TTuple { ty, .. } => llvm_i32.const_int(ty.len() as u64, false),
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
let zero = llvm_i32.const_zero();
let len = ctx
.build_gep_and_load(
arg.into_pointer_value(),
&[zero, llvm_i32.const_int(1, false)],
None,
)
.into_int_value();
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_usize = generator.get_size_type(ctx.ctx);
let arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
let ndims = arg.dim_sizes().size(ctx, generator);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::NE, ndims, llvm_usize.const_zero(), "")
.unwrap(),
"0:TypeError",
"len() of unsized object",
[None, None, None],
ctx.current_loc,
);
let len = unsafe {
arg.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
}
_ => codegen_unreachable!(ctx),
}
})
}
/// Invokes the `int32` builtin function.
pub fn call_int32<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
@ -31,7 +107,6 @@ pub fn call_int32<'ctx, G: CodeGenerator + ?Sized>(
let llvm_usize = generator.get_size_type(ctx.ctx);
let (n_ty, n) = n;
Ok(match n {
BasicValueEnum::IntValue(n) if matches!(n.get_type().get_bit_width(), 1 | 8) => {
debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.bool));
@ -419,7 +494,7 @@ pub fn call_numpy_round<'ctx, G: CodeGenerator + ?Sized>(
BasicValueEnum::FloatValue(n) => {
debug_assert!(ctx.unifier.unioned(n_ty, ctx.primitives.float));
llvm_intrinsics::call_float_roundeven(ctx, n, None).into()
llvm_intrinsics::call_float_rint(ctx, n, None).into()
}
BasicValueEnum::PointerValue(n)
@ -602,7 +677,7 @@ pub fn call_ceil<'ctx, G: CodeGenerator + ?Sized>(
ret_elem_ty,
None,
NDArrayValue::from_ptr_val(n, llvm_usize, None),
|generator, ctx, val| call_floor(generator, ctx, (elem_ty, val), ret_elem_ty),
|generator, ctx, val| call_ceil(generator, ctx, (elem_ty, val), ret_elem_ty),
)?;
ndarray.as_base_value().into()
@ -661,90 +736,6 @@ pub fn call_min<'ctx>(
}
}
/// Invokes the `np_min` builtin function.
pub fn call_numpy_min<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_min";
let llvm_usize = generator.get_size_type(ctx.ctx);
let (a_ty, a) = a;
Ok(match a {
BasicValueEnum::IntValue(_) | BasicValueEnum::FloatValue(_) => {
debug_assert!([
ctx.primitives.bool,
ctx.primitives.int32,
ctx.primitives.uint32,
ctx.primitives.int64,
ctx.primitives.uint64,
ctx.primitives.float,
]
.iter()
.any(|ty| ctx.unifier.unioned(a_ty, *ty)));
a
}
BasicValueEnum::PointerValue(n)
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let n_sz_eqz = ctx
.builder
.build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
n_sz_eqz,
"0:ValueError",
"zero-size array to reduction operation minimum which has no identity",
[None, None, None],
ctx.current_loc,
);
}
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
unsafe {
let identity =
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
ctx.builder.build_store(accumulator_addr, identity).unwrap();
}
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_int(1, false),
(n_sz, false),
|generator, ctx, idx| {
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
let result = call_min(ctx, (elem_ty, accumulator), (elem_ty, elem));
ctx.builder.build_store(accumulator_addr, result).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
accumulator
}
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
})
}
/// Invokes the `np_minimum` builtin function.
pub fn call_numpy_minimum<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
@ -803,7 +794,7 @@ pub fn call_numpy_minimum<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -877,18 +868,20 @@ pub fn call_max<'ctx>(
}
}
/// Invokes the `np_max` builtin function.
pub fn call_numpy_max<'ctx, G: CodeGenerator + ?Sized>(
/// Invokes the `np_max`, `np_min`, `np_argmax`, `np_argmin` functions
/// * `fn_name`: Can be one of `"np_argmin"`, `"np_argmax"`, `"np_max"`, `"np_min"`
pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: (Type, BasicValueEnum<'ctx>),
fn_name: &str,
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_max";
debug_assert!(["np_argmin", "np_argmax", "np_max", "np_min"].iter().any(|f| *f == fn_name));
let llvm_int64 = ctx.ctx.i64_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let (a_ty, a) = a;
Ok(match a {
BasicValueEnum::IntValue(_) | BasicValueEnum::FloatValue(_) => {
debug_assert!([
@ -902,9 +895,12 @@ pub fn call_numpy_max<'ctx, G: CodeGenerator + ?Sized>(
.iter()
.any(|ty| ctx.unifier.unioned(a_ty, *ty)));
a
match fn_name {
"np_argmin" | "np_argmax" => llvm_int64.const_zero().into(),
"np_max" | "np_min" => a,
_ => codegen_unreachable!(ctx),
}
}
BasicValueEnum::PointerValue(n)
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{
@ -923,41 +919,82 @@ pub fn call_numpy_max<'ctx, G: CodeGenerator + ?Sized>(
generator,
n_sz_eqz,
"0:ValueError",
"zero-size array to reduction operation minimum which has no identity",
format!("zero-size array to reduction operation {fn_name}").as_str(),
[None, None, None],
ctx.current_loc,
);
}
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
let res_idx = generator.gen_var_alloc(ctx, llvm_int64.into(), None)?;
unsafe {
let identity =
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
ctx.builder.build_store(accumulator_addr, identity).unwrap();
ctx.builder.build_store(res_idx, llvm_int64.const_zero()).unwrap();
}
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_int(1, false),
None,
llvm_int64.const_int(1, false),
(n_sz, false),
|generator, ctx, idx| {
|generator, ctx, _, idx| {
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
let result = call_max(ctx, (elem_ty, accumulator), (elem_ty, elem));
let cur_idx = ctx.builder.build_load(res_idx, "").unwrap();
let result = match fn_name {
"np_argmin" | "np_min" => {
call_min(ctx, (elem_ty, accumulator), (elem_ty, elem))
}
"np_argmax" | "np_max" => {
call_max(ctx, (elem_ty, accumulator), (elem_ty, elem))
}
_ => codegen_unreachable!(ctx),
};
let updated_idx = match (accumulator, result) {
(BasicValueEnum::IntValue(m), BasicValueEnum::IntValue(n)) => ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::NE, m, n, "").unwrap(),
idx.into(),
cur_idx,
"",
)
.unwrap(),
(BasicValueEnum::FloatValue(m), BasicValueEnum::FloatValue(n)) => ctx
.builder
.build_select(
ctx.builder
.build_float_compare(FloatPredicate::ONE, m, n, "")
.unwrap(),
idx.into(),
cur_idx,
"",
)
.unwrap(),
_ => unsupported_type(ctx, fn_name, &[elem_ty, elem_ty]),
};
ctx.builder.build_store(res_idx, updated_idx).unwrap();
ctx.builder.build_store(accumulator_addr, result).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
llvm_int64.const_int(1, false),
)?;
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
accumulator
match fn_name {
"np_argmin" | "np_argmax" => ctx.builder.build_load(res_idx, "").unwrap(),
"np_max" | "np_min" => ctx.builder.build_load(accumulator_addr, "").unwrap(),
_ => codegen_unreachable!(ctx),
}
}
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
_ => unsupported_type(ctx, fn_name, &[a_ty]),
})
}
@ -1019,7 +1056,7 @@ pub fn call_numpy_maximum<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1049,9 +1086,9 @@ pub fn call_numpy_maximum<'ctx, G: CodeGenerator + ?Sized>(
/// * `(arg_ty, arg_val)`: The [`Type`] and llvm value of the input argument.
/// * `fn_name`: The name of the function, only used when throwing an error with [`unsupported_type`]
/// * `get_ret_elem_type`: A function that takes in the input scalar [`Type`], and returns the function's return scalar [`Type`].
/// Return a constant [`Type`] here if the return type does not depend on the input type.
/// Return a constant [`Type`] here if the return type does not depend on the input type.
/// * `on_scalar`: The function that acts on the scalars of the input. Returns [`Option::None`]
/// if the scalar type & value are faulty and should panic with [`unsupported_type`].
/// if the scalar type & value are faulty and should panic with [`unsupported_type`].
fn helper_call_numpy_unary_elementwise<'ctx, OnScalarFn, RetElemFn, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -1162,9 +1199,9 @@ pub fn call_abs<'ctx, G: CodeGenerator + ?Sized>(
/// * `$name:ident`: The identifier of the rust function to be generated.
/// * `$fn_name:literal`: To be passed to the `fn_name` parameter of [`helper_call_numpy_unary_elementwise`]
/// * `$get_ret_elem_type:expr`: To be passed to the `get_ret_elem_type` parameter of [`helper_call_numpy_unary_elementwise`].
/// But there is no need to make it a reference.
/// But there is no need to make it a reference.
/// * `$on_scalar:expr`: To be passed to the `on_scalar` parameter of [`helper_call_numpy_unary_elementwise`].
/// But there is no need to make it a reference.
/// But there is no need to make it a reference.
macro_rules! create_helper_call_numpy_unary_elementwise {
($name:ident, $fn_name:literal, $get_ret_elem_type:expr, $on_scalar:expr) => {
#[allow(clippy::redundant_closure_call)]
@ -1191,7 +1228,7 @@ macro_rules! create_helper_call_numpy_unary_elementwise {
/// * `$name:ident`: The identifier of the rust function to be generated.
/// * `$fn_name:literal`: To be passed to the `fn_name` parameter of [`helper_call_numpy_unary_elementwise`].
/// * `$on_scalar:expr`: The closure (see below for its type) that acts on float scalar values and returns
/// the boolean results of LLVM type `i1`. The returned `i1` value will be converted into an `i8`.
/// the boolean results of LLVM type `i1`. The returned `i1` value will be converted into an `i8`.
///
/// ```ignore
/// // Type of `$on_scalar:expr`
@ -1383,7 +1420,7 @@ create_helper_call_numpy_unary_elementwise_float_to_float!(
create_helper_call_numpy_unary_elementwise_float_to_float!(
call_numpy_rint,
"np_rint",
llvm_intrinsics::call_float_roundeven
llvm_intrinsics::call_float_rint
);
create_helper_call_numpy_unary_elementwise_float_to_float!(
@ -1459,7 +1496,7 @@ pub fn call_numpy_arctan2<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1526,7 +1563,7 @@ pub fn call_numpy_copysign<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1593,7 +1630,7 @@ pub fn call_numpy_fmax<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1660,7 +1697,7 @@ pub fn call_numpy_fmin<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1783,7 +1820,7 @@ pub fn call_numpy_hypot<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1850,7 +1887,7 @@ pub fn call_numpy_nextafter<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1874,3 +1911,501 @@ pub fn call_numpy_nextafter<'ctx, G: CodeGenerator + ?Sized>(
_ => unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]),
})
}
/// Allocates a struct with the fields specified by `out_matrices` and returns a pointer to it
fn build_output_struct<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
out_matrices: Vec<BasicValueEnum<'ctx>>,
) -> PointerValue<'ctx> {
let field_ty =
out_matrices.iter().map(BasicValueEnum::get_type).collect::<Vec<BasicTypeEnum>>();
let out_ty = ctx.ctx.struct_type(&field_ty, false);
let out_ptr = ctx.builder.build_alloca(out_ty, "").unwrap();
for (i, v) in out_matrices.into_iter().enumerate() {
unsafe {
let ptr = ctx
.builder
.build_in_bounds_gep(
out_ptr,
&[
ctx.ctx.i32_type().const_zero(),
ctx.ctx.i32_type().const_int(i as u64, false),
],
"",
)
.unwrap();
ctx.builder.build_store(ptr, v).unwrap();
}
}
out_ptr
}
/// Invokes the `np_linalg_cholesky` linalg function
pub fn call_np_linalg_cholesky<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_cholesky";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let out = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_cholesky(ctx, x1, out, None);
Ok(out)
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `np_linalg_qr` linalg function
pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_qr";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unimplemented!("{FN_NAME} operates on float type NdArrays only");
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let k = llvm_intrinsics::call_int_smin(ctx, dim0, dim1, None);
let out_q = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, k])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_r = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[k, dim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_qr(ctx, x1, out_q, out_r, None);
let out_ptr = build_output_struct(ctx, vec![out_q, out_r]);
Ok(ctx.builder.build_load(out_ptr, "QR_Factorization_result").map(Into::into).unwrap())
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `np_linalg_svd` linalg function
pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_svd";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let k = llvm_intrinsics::call_int_smin(ctx, dim0, dim1, None);
let out_u = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_s = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[k])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_vh = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim1, dim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_svd(ctx, x1, out_u, out_s, out_vh, None);
let out_ptr = build_output_struct(ctx, vec![out_u, out_s, out_vh]);
Ok(ctx.builder.build_load(out_ptr, "SVD_Factorization_result").map(Into::into).unwrap())
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `np_linalg_inv` linalg function
pub fn call_np_linalg_inv<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_inv";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let out = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_inv(ctx, x1, out, None);
Ok(out)
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `np_linalg_pinv` linalg function
pub fn call_np_linalg_pinv<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_pinv";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let out = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim1, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_pinv(ctx, x1, out, None);
Ok(out)
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `sp_linalg_lu` linalg function
pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "sp_linalg_lu";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let dim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let k = llvm_intrinsics::call_int_smin(ctx, dim0, dim1, None);
let out_l = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, k])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_u = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[k, dim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_sp_linalg_lu(ctx, x1, out_l, out_u, None);
let out_ptr = build_output_struct(ctx, vec![out_l, out_u]);
Ok(ctx.builder.build_load(out_ptr, "LU_Factorization_result").map(Into::into).unwrap())
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `np_linalg_matrix_power` linalg function
pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
x2: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_matrix_power";
let (x1_ty, x1) = x1;
let (x2_ty, x2) = x2;
let x2 = call_float(generator, ctx, (x2_ty, x2)).unwrap();
let llvm_usize = generator.get_size_type(ctx.ctx);
if let (BasicValueEnum::PointerValue(n1), BasicValueEnum::FloatValue(n2)) = (x1, x2) {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
// Changing second parameter to a `NDArray` for uniformity in function call
let n2_array = numpy::create_ndarray_const_shape(
generator,
ctx,
elem_ty,
&[llvm_usize.const_int(1, false)],
)
.unwrap();
unsafe {
n2_array.data().set_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
n2.as_basic_value_enum(),
);
};
let n2_array = n2_array.as_base_value().as_basic_value_enum();
let outdim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let outdim1 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value()
};
let out = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[outdim0, outdim1])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_np_linalg_matrix_power(ctx, x1, n2_array, out, None);
Ok(out)
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty])
}
}
/// Invokes the `np_linalg_det` linalg function
pub fn call_np_linalg_det<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "np_linalg_matrix_power";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(_) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
// Changing second parameter to a `NDArray` for uniformity in function call
let out = numpy::create_ndarray_const_shape(
generator,
ctx,
elem_ty,
&[llvm_usize.const_int(1, false)],
)
.unwrap();
extern_fns::call_np_linalg_det(ctx, x1, out.as_base_value().as_basic_value_enum(), None);
let res =
unsafe { out.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) };
Ok(res)
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `sp_linalg_schur` linalg function
pub fn call_sp_linalg_schur<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "sp_linalg_schur";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let out_t = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_z = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_sp_linalg_schur(ctx, x1, out_t, out_z, None);
let out_ptr = build_output_struct(ctx, vec![out_t, out_z]);
Ok(ctx.builder.build_load(out_ptr, "Schur_Factorization_result").map(Into::into).unwrap())
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}
/// Invokes the `sp_linalg_hessenberg` linalg function
pub fn call_sp_linalg_hessenberg<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "sp_linalg_hessenberg";
let (x1_ty, x1) = x1;
let llvm_usize = generator.get_size_type(ctx.ctx);
if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let BasicTypeEnum::FloatType(_) = n1_elem_ty else {
unsupported_type(ctx, FN_NAME, &[x1_ty]);
};
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
let dim0 = unsafe {
n1.dim_sizes()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value()
};
let out_h = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
let out_q = numpy::create_ndarray_const_shape(generator, ctx, elem_ty, &[dim0, dim0])
.unwrap()
.as_base_value()
.as_basic_value_enum();
extern_fns::call_sp_linalg_hessenberg(ctx, x1, out_h, out_q, None);
let out_ptr = build_output_struct(ctx, vec![out_h, out_q]);
Ok(ctx
.builder
.build_load(out_ptr, "Hessenberg_decomposition_result")
.map(Into::into)
.unwrap())
} else {
unsupported_type(ctx, FN_NAME, &[x1_ty])
}
}

View File

@ -1,17 +1,16 @@
use crate::codegen::{
use inkwell::{
context::Context,
types::{AnyTypeEnum, ArrayType, BasicType, BasicTypeEnum, IntType, PointerType, StructType},
values::{ArrayValue, BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate,
};
use super::{
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
llvm_intrinsics::call_int_umin,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use inkwell::context::Context;
use inkwell::types::{ArrayType, BasicType, StructType};
use inkwell::values::{ArrayValue, BasicValue, StructValue};
use inkwell::{
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
/// A LLVM type that is used to represent a non-primitive type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
@ -713,12 +712,25 @@ impl<'ctx> ListValue<'ctx> {
/// If `size` is [None], the size stored in the field of this instance is used instead.
pub fn create_data(
&self,
ctx: &CodeGenContext<'ctx, '_>,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
self.store_data(ctx, ctx.builder.build_array_alloca(elem_ty, size, "").unwrap());
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
@ -1237,11 +1249,13 @@ impl<'ctx> NDArrayType<'ctx> {
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(2)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
}
}
@ -1391,7 +1405,7 @@ impl<'ctx> NDArrayValue<'ctx> {
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
@ -1704,9 +1718,10 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, i| {
|generator, ctx, _, i| {
let (dim_idx, dim_sz) = unsafe {
(
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),

View File

@ -1,3 +1,9 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
@ -9,10 +15,6 @@ use crate::{
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}
@ -25,6 +27,7 @@ pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
@ -46,9 +49,7 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
},
TList {
ty: ConcreteType,
is_vararg_ctx: bool,
},
TObj {
obj_id: DefinitionId,
@ -105,8 +106,16 @@ impl ConcreteTypeStore {
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -161,14 +170,12 @@ impl ConcreteTypeStore {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
},
TypeEnum::TList { ty } => ConcreteTypeEnum::TList {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
@ -254,15 +261,13 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TList { ty } => {
TypeEnum::TList { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
@ -286,6 +291,7 @@ impl ConcreteTypeStore {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),

File diff suppressed because it is too large Load Diff

View File

@ -1,517 +1,102 @@
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either;
use crate::codegen::CodeGenContext;
use super::CodeGenContext;
/// Invokes the [`tan`](https://en.cppreference.com/w/c/numeric/math/tan) function.
pub fn call_tan<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "tan";
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
};
}
/// Invokes the [`asin`](https://en.cppreference.com/w/c/numeric/math/asin) function.
pub fn call_asin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "asin";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`acos`](https://en.cppreference.com/w/c/numeric/math/acos) function.
pub fn call_acos<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "acos";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atan`](https://en.cppreference.com/w/c/numeric/math/atan) function.
pub fn call_atan<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atan";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`sinh`](https://en.cppreference.com/w/c/numeric/math/sinh) function.
pub fn call_sinh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "sinh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`cosh`](https://en.cppreference.com/w/c/numeric/math/cosh) function.
pub fn call_cosh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "cosh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`tanh`](https://en.cppreference.com/w/c/numeric/math/tanh) function.
pub fn call_tanh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "tanh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`asinh`](https://en.cppreference.com/w/c/numeric/math/asinh) function.
pub fn call_asinh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "asinh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`acosh`](https://en.cppreference.com/w/c/numeric/math/acosh) function.
pub fn call_acosh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "acosh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atanh`](https://en.cppreference.com/w/c/numeric/math/atanh) function.
pub fn call_atanh<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atanh";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`expm1`](https://en.cppreference.com/w/c/numeric/math/expm1) function.
pub fn call_expm1<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "expm1";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`cbrt`](https://en.cppreference.com/w/c/numeric/math/cbrt) function.
pub fn call_cbrt<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "cbrt";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nosync", "nounwind", "readonly", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`erf`](https://en.cppreference.com/w/c/numeric/math/erf) function.
pub fn call_erf<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "erf";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`erfc`](https://en.cppreference.com/w/c/numeric/math/erfc) function.
pub fn call_erfc<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "erfc";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`j1`](https://www.gnu.org/software/libc/manual/html_node/Special-Functions.html#index-j1)
/// function.
pub fn call_j1<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "j1";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[arg.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`atan2`](https://en.cppreference.com/w/c/numeric/math/atan2) function.
pub fn call_atan2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
y: FloatValue<'ctx>,
x: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "atan2";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(y.get_type(), llvm_f64);
debug_assert_eq!(x.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[y.into(), x.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
@ -548,66 +133,61 @@ pub fn call_ldexp<'ctx>(
.unwrap()
}
/// Invokes the [`hypot`](https://en.cppreference.com/w/c/numeric/math/hypot) function.
pub fn call_hypot<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
x: FloatValue<'ctx>,
y: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "hypot";
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(x.get_type(), llvm_f64);
debug_assert_eq!(y.get_type(), llvm_f64);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[x.into(), y.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
/// Invokes the [`nextafter`](https://en.cppreference.com/w/c/numeric/math/nextafter) function.
pub fn call_nextafter<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
from: FloatValue<'ctx>,
to: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "nextafter";
let llvm_f64 = ctx.ctx.f64_type();
debug_assert_eq!(from.get_type(), llvm_f64);
debug_assert_eq!(to.get_type(), llvm_f64);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_f64.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
func
});
ctx.builder
.build_call(extern_fn, &[from.into(), to.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,16 +1,18 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
@ -57,6 +59,7 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(
@ -123,11 +126,45 @@ pub trait CodeGenerator {
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign(self, ctx, target, value)
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
}
/// Generate code for a while expression.

View File

@ -1,389 +0,0 @@
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
# define MAX(a, b) (a > b ? a : b)
# define MIN(a, b) (a > b ? b : a)
# define NULL ((void *) 0)
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
#define DEF_INT_EXP(T) T __nac3_int_exp_##T( \
T base, \
T exp \
) { \
T res = (T)1; \
/* repeated squaring method */ \
do { \
if (exp & 1) res *= base; /* for n odd */ \
exp >>= 1; \
base *= base; \
} while (exp); \
return res; \
} \
DEF_INT_EXP(int32_t)
DEF_INT_EXP(int64_t)
DEF_INT_EXP(uint32_t)
DEF_INT_EXP(uint64_t)
int32_t __nac3_slice_index_bound(int32_t i, const int32_t len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
int32_t __nac3_range_slice_len(const int32_t start, const int32_t end, const int32_t step) {
int32_t diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
int32_t __nac3_list_slice_assign_var_size(
int32_t dest_start,
int32_t dest_end,
int32_t dest_step,
uint8_t *dest_arr,
int32_t dest_arr_len,
int32_t src_start,
int32_t src_end,
int32_t src_step,
uint8_t *src_arr,
int32_t src_arr_len,
const int32_t size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const int32_t src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const int32_t dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
MAX(dest_start, dest_end) < MIN(src_start, src_end)
|| MAX(src_start, src_end) < MIN(dest_start, dest_end)
);
if (need_alloca) {
uint8_t *tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
int32_t src_ind = src_start;
int32_t dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(
const uint64_t *list_data,
uint32_t list_len,
uint32_t begin_idx,
uint32_t end_idx
) {
__builtin_assume(end_idx <= list_len);
uint32_t num_elems = 1;
for (uint32_t i = begin_idx; i < end_idx; ++i) {
uint64_t val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
uint64_t __nac3_ndarray_calc_size64(
const uint64_t *list_data,
uint64_t list_len,
uint64_t begin_idx,
uint64_t end_idx
) {
__builtin_assume(end_idx <= list_len);
uint64_t num_elems = 1;
for (uint64_t i = begin_idx; i < end_idx; ++i) {
uint64_t val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
void __nac3_ndarray_calc_nd_indices(
uint32_t index,
const uint32_t* dims,
uint32_t num_dims,
uint32_t* idxs
) {
uint32_t stride = 1;
for (uint32_t dim = 0; dim < num_dims; dim++) {
uint32_t i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
void __nac3_ndarray_calc_nd_indices64(
uint64_t index,
const uint64_t* dims,
uint64_t num_dims,
uint32_t* idxs
) {
uint64_t stride = 1;
for (uint64_t dim = 0; dim < num_dims; dim++) {
uint64_t i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (uint32_t) ((index / stride) % dims[i]);
stride *= dims[i];
}
}
uint32_t __nac3_ndarray_flatten_index(
const uint32_t* dims,
uint32_t num_dims,
const uint32_t* indices,
uint32_t num_indices
) {
uint32_t idx = 0;
uint32_t stride = 1;
for (uint32_t i = 0; i < num_dims; ++i) {
uint32_t ri = num_dims - i - 1;
if (ri < num_indices) {
idx += (stride * indices[ri]);
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
uint64_t __nac3_ndarray_flatten_index64(
const uint64_t* dims,
uint64_t num_dims,
const uint32_t* indices,
uint64_t num_indices
) {
uint64_t idx = 0;
uint64_t stride = 1;
for (uint64_t i = 0; i < num_dims; ++i) {
uint64_t ri = num_dims - i - 1;
if (ri < num_indices) {
idx += (stride * indices[ri]);
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
void __nac3_ndarray_calc_broadcast(
const uint32_t *lhs_dims,
uint32_t lhs_ndims,
const uint32_t *rhs_dims,
uint32_t rhs_ndims,
uint32_t *out_dims
) {
uint32_t max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (uint32_t i = 0; i < max_ndims; ++i) {
uint32_t *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : NULL;
uint32_t *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : NULL;
uint32_t *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == NULL) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == NULL) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
void __nac3_ndarray_calc_broadcast64(
const uint64_t *lhs_dims,
uint64_t lhs_ndims,
const uint64_t *rhs_dims,
uint64_t rhs_ndims,
uint64_t *out_dims
) {
uint64_t max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (uint64_t i = 0; i < max_ndims; ++i) {
uint64_t *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : NULL;
uint64_t *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : NULL;
uint64_t *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == NULL) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == NULL) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
void __nac3_ndarray_calc_broadcast_idx(
const uint32_t *src_dims,
uint32_t src_ndims,
const uint32_t *in_idx,
uint32_t *out_idx
) {
for (uint32_t i = 0; i < src_ndims; ++i) {
uint32_t src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
void __nac3_ndarray_calc_broadcast_idx64(
const uint64_t *src_dims,
uint64_t src_ndims,
const uint32_t *in_idx,
uint32_t *out_idx
) {
for (uint64_t i = 0; i < src_ndims; ++i) {
uint64_t src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : (uint32_t) in_idx[src_i];
}
}

View File

@ -1,28 +1,30 @@
use crate::typecheck::typedef::Type;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
#[must_use]
pub fn load_irrt(ctx: &Context) -> Module {
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -38,6 +40,25 @@ pub fn load_irrt(ctx: &Context) -> Module {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
@ -55,7 +76,7 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
@ -441,7 +462,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
@ -568,7 +589,8 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
@ -579,18 +601,16 @@ where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_i64 = ctx.ctx.i64_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi64 = llvm_i64.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pi64.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
@ -622,7 +642,7 @@ where
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -638,7 +658,7 @@ pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
@ -707,7 +727,7 @@ where
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
@ -746,7 +766,7 @@ where
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
@ -775,7 +795,7 @@ pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
@ -800,9 +820,10 @@ pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, idx| {
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
@ -894,7 +915,7 @@ pub fn call_ndarray_calc_broadcast_index<
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {

View File

@ -1,12 +1,14 @@
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
@ -35,6 +37,40 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
@ -62,145 +98,30 @@ pub fn call_stacksave<'ctx>(
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
/*
SEE https://github.com/TheDan64/inkwell/issues/496
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.abs";
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into(), is_int_min_poison.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.smax`](https://llvm.org/docs/LangRef.html#llvm-smax-intrinsic) intrinsic.
pub fn call_int_smax<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.smax";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.smin`](https://llvm.org/docs/LangRef.html#llvm-smin-intrinsic) intrinsic.
pub fn call_int_smin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.smin";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.umax`](https://llvm.org/docs/LangRef.html#llvm-umax-intrinsic) intrinsic.
pub fn call_int_umax<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.umax";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.umin`](https://llvm.org/docs/LangRef.html#llvm-umin-intrinsic) intrinsic.
pub fn call_int_umin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
a: IntValue<'ctx>,
b: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.umin";
debug_assert_eq!(a.get_type().get_bit_width(), b.get_type().get_bit_width());
let llvm_int_t = a.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[a.into(), b.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
@ -264,7 +185,7 @@ pub fn call_memcpy_generic<'ctx>(
dest
} else {
ctx.builder
.build_bitcast(dest, llvm_p0i8, "")
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -272,7 +193,7 @@ pub fn call_memcpy_generic<'ctx>(
src
} else {
ctx.builder
.build_bitcast(src, llvm_p0i8, "")
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -280,28 +201,123 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Invokes the [`llvm.sqrt`](https://llvm.org/docs/LangRef.html#llvm-sqrt-intrinsic) intrinsic.
pub fn call_float_sqrt<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.sqrt";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
@ -327,393 +343,3 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.sin`](https://llvm.org/docs/LangRef.html#llvm-sin-intrinsic) intrinsic.
pub fn call_float_sin<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.sin";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.cos`](https://llvm.org/docs/LangRef.html#llvm-cos-intrinsic) intrinsic.
pub fn call_float_cos<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.cos";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.pow`](https://llvm.org/docs/LangRef.html#llvm-pow-intrinsic) intrinsic.
pub fn call_float_pow<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.pow";
debug_assert_eq!(val.get_type(), power.get_type());
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.exp`](https://llvm.org/docs/LangRef.html#llvm-exp-intrinsic) intrinsic.
pub fn call_float_exp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.exp";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.exp2`](https://llvm.org/docs/LangRef.html#llvm-exp2-intrinsic) intrinsic.
pub fn call_float_exp2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.exp2";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log`](https://llvm.org/docs/LangRef.html#llvm-log-intrinsic) intrinsic.
pub fn call_float_log<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log10`](https://llvm.org/docs/LangRef.html#llvm-log10-intrinsic) intrinsic.
pub fn call_float_log10<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log10";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.log2`](https://llvm.org/docs/LangRef.html#llvm-log2-intrinsic) intrinsic.
pub fn call_float_log2<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.log2";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.fabs`](https://llvm.org/docs/LangRef.html#llvm-fabs-intrinsic) intrinsic.
pub fn call_float_fabs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.fabs";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.minnum`](https://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic) intrinsic.
pub fn call_float_minnum<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val1: FloatValue<'ctx>,
val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.minnum";
debug_assert_eq!(val1.get_type(), val2.get_type());
let llvm_float_t = val1.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val1.into(), val2.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.maxnum`](https://llvm.org/docs/LangRef.html#llvm-maxnum-intrinsic) intrinsic.
pub fn call_float_maxnum<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val1: FloatValue<'ctx>,
val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.maxnum";
debug_assert_eq!(val1.get_type(), val2.get_type());
let llvm_float_t = val1.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val1.into(), val2.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.copysign`](https://llvm.org/docs/LangRef.html#llvm-copysign-intrinsic) intrinsic.
pub fn call_float_copysign<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
mag: FloatValue<'ctx>,
sgn: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.copysign";
debug_assert_eq!(mag.get_type(), sgn.get_type());
let llvm_float_t = mag.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[mag.into(), sgn.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.floor`](https://llvm.org/docs/LangRef.html#llvm-floor-intrinsic) intrinsic.
pub fn call_float_floor<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.floor";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.ceil`](https://llvm.org/docs/LangRef.html#llvm-ceil-intrinsic) intrinsic.
pub fn call_float_ceil<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.ceil";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.round`](https://llvm.org/docs/LangRef.html#llvm-round-intrinsic) intrinsic.
pub fn call_float_round<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.round";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.roundeven`](https://llvm.org/docs/LangRef.html#llvm-roundeven-intrinsic) intrinsic.
pub fn call_float_roundeven<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.roundeven";
let llvm_float_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_float_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the [`llvm.expect`](https://llvm.org/docs/LangRef.html#llvm-expect-intrinsic) intrinsic.
pub fn call_expect<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
expected_val: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.expect";
debug_assert_eq!(val.get_type().get_bit_width(), expected_val.get_type().get_bit_width());
let llvm_int_t = val.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_int_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), expected_val.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,12 +1,12 @@
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
thread,
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -24,14 +24,21 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use nac3parser::ast::{Location, Stmt, StrRef};
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use std::thread;
use classes::{ListType, NDArrayType, ProxyType, RangeType};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
pub mod builtin_fns;
pub mod classes;
@ -47,8 +54,21 @@ pub mod stmt;
#[cfg(test)]
mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)]
pub struct StaticValueStore {
@ -68,6 +88,16 @@ pub struct CodeGenLLVMOptions {
pub target: CodeGenTargetMachineOptions,
}
impl CodeGenLLVMOptions {
/// Creates a [`TargetMachine`] using the target options specified by this struct.
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self) -> Option<TargetMachine> {
self.target.create_target_machine(self.opt_level)
}
}
/// Additional options for code generation for the target machine.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CodeGenTargetMachineOptions {
@ -338,6 +368,10 @@ impl WorkerRegistry {
let mut builder = context.create_builder();
let mut module = context.create_module(generator.get_name());
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
inkwell::module::FlagBehavior::Warning,
@ -361,6 +395,10 @@ impl WorkerRegistry {
errors.insert(e);
// create a new empty module just to continue codegen and collect errors
module = context.create_module(&format!("{}_recover", generator.get_name()));
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
}
}
*self.task_count.lock() -= 1;
@ -426,7 +464,7 @@ pub struct CodeGenTask {
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &mut G,
generator: &G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -456,6 +494,20 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
.into()
}
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let element_type = get_llvm_type(
ctx,
module,
generator,
unifier,
top_level,
type_cache,
*params.iter().next().unwrap().1,
);
ListType::new(generator, ctx, element_type).as_base_type().into()
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
@ -506,8 +558,10 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
};
return ty;
}
TTuple { ty } => {
TTuple { ty, is_vararg_ctx } => {
// a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty
.iter()
.map(|ty| {
@ -516,12 +570,6 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
.collect_vec();
ctx.struct_type(&fields, false).into()
}
TList { ty } => {
let element_type =
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty);
ListType::new(generator, ctx, element_type).as_base_type().into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),
};
@ -543,7 +591,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &mut G,
generator: &G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -552,11 +600,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
return if unifier.unioned(ty, primitives.bool) {
if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
};
}
}
/// Whether `sret` is needed for a return value with type `ty`.
@ -581,6 +629,40 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
need_sret_impl(ty, true)
}
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl<
'ctx,
@ -692,6 +774,7 @@ pub fn gen_func_impl<
name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -714,7 +797,10 @@ pub fn gen_func_impl<
let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args
.iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type(
context,
&module,
@ -733,9 +819,12 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, false),
Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()),
_ => context.void_type().fn_type(&params, vararg_arg.is_some()),
};
let symbol = &task.symbol_name;
@ -763,9 +852,10 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
for (n, arg) in args.iter().enumerate() {
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
context,
@ -798,6 +888,8 @@ pub fn gen_func_impl<
var_assignment.insert(arg.name, (alloca, None, 0));
}
// TODO: Save vararg parameters as list
let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else {
@ -1020,3 +1112,9 @@ fn gen_in_range_check<'ctx>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
}
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,34 +1,37 @@
use crate::{
codegen::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::ast::FileName;
use nac3parser::{
ast::{fold::Fold, StrRef},
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use super::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
@ -64,6 +67,7 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -94,7 +98,7 @@ fn test_primitives() {
"};
let statements = parse_program(source, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
@ -109,8 +113,18 @@ fn test_primitives() {
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
args: vec![
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
],
ret: primitives.int32,
vars: VarMap::new(),
@ -128,7 +142,8 @@ fn test_primitives() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -189,6 +204,8 @@ fn test_primitives() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
@ -246,14 +263,19 @@ fn test_simple_call() {
"};
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32,
vars: VarMap::new(),
};
@ -300,7 +322,8 @@ fn test_simple_call() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -368,6 +391,8 @@ fn test_simple_call() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {

View File

@ -2,9 +2,9 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(
dead_code,
@ -19,6 +19,10 @@
clippy::wildcard_imports
)]
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
pub use inkwell;
pub use nac3parser;
pub mod codegen;
pub mod symbol_resolver;
pub mod toplevel;

View File

@ -1,7 +1,15 @@
use std::fmt::Debug;
use std::rc::Rc;
use std::sync::Arc;
use std::{collections::HashMap, collections::HashSet, fmt::Display};
use std::{
collections::{HashMap, HashSet},
fmt::{Debug, Display},
rc::Rc,
sync::Arc,
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
@ -11,10 +19,6 @@ use crate::{
typedef::{Type, TypeEnum, Unifier, VarMap},
},
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue {
@ -78,14 +82,14 @@ impl SymbolValue {
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
return Err(format!(
"Expected {:?}, but got Tuple",
expected_ty.get_type_name()
));
};
assert_eq!(ty.len(), t.len());
assert!(*is_vararg_ctx || ty.len() == t.len());
let elems = t
.iter()
@ -155,7 +159,7 @@ impl SymbolValue {
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys })
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
}
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
}
@ -365,6 +369,7 @@ pub trait SymbolResolver {
&self,
str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;
@ -382,13 +387,12 @@ pub trait SymbolResolver {
}
thread_local! {
static IDENTIFIER_ID: [StrRef; 12] = [
static IDENTIFIER_ID: [StrRef; 11] = [
"int32".into(),
"int64".into(),
"float".into(),
"bool".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"str".into(),
"Exception".into(),
@ -413,13 +417,12 @@ pub fn parse_type_annotation<T>(
let float_id = ids[2];
let bool_id = ids[3];
let virtual_id = ids[4];
let list_id = ids[5];
let tuple_id = ids[6];
let str_id = ids[7];
let exn_id = ids[8];
let uint32_id = ids[9];
let uint64_id = ids[10];
let literal_id = ids[11];
let tuple_id = ids[5];
let str_id = ids[6];
let exn_id = ids[7];
let uint32_id = ids[8];
let uint64_id = ids[9];
let literal_id = ids[10];
let name_handling = |id: &StrRef, loc: Location, unifier: &mut Unifier| {
if *id == int32_id {
@ -476,9 +479,6 @@ pub fn parse_type_annotation<T>(
if *id == virtual_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
@ -487,7 +487,7 @@ pub fn parse_type_annotation<T>(
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
} else {
Err(HashSet::from(["Expected multiple elements for tuple".into()]))
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +1,20 @@
use std::convert::TryInto;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, Mapping, TypeVarId, VarMap};
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
use super::*;
use nac3parser::ast::{Constant, ExprKind, Location};
use super::{numpy::unpack_ndarray_var_tys, *};
use crate::{
symbol_resolver::SymbolValue,
typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap},
};
/// All primitive types and functions in nac3core.
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
pub enum PrimDef {
// Classes
Int32,
Int64,
Float,
@ -23,17 +26,25 @@ pub enum PrimDef {
UInt32,
UInt64,
Option,
OptionIsSome,
OptionIsNone,
OptionUnwrap,
List,
NDArray,
NDArrayCopy,
NDArrayFill,
FunInt32,
FunInt64,
FunUInt32,
FunUInt64,
FunFloat,
// Option methods
FunOptionIsSome,
FunOptionIsNone,
FunOptionUnwrap,
// Option-related functions
FunSome,
// NDArray methods
FunNDArrayCopy,
FunNDArrayFill,
// Range methods
FunRangeInit,
// NumPy factory functions
FunNpNDArray,
FunNpEmpty,
FunNpZeros,
@ -42,26 +53,17 @@ pub enum PrimDef {
FunNpArray,
FunNpEye,
FunNpIdentity,
FunRound,
FunRound64,
// Miscellaneous NumPy & SciPy functions
FunNpRound,
FunRange,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunNpFloor,
FunCeil,
FunCeil64,
FunNpCeil,
FunLen,
FunMin,
FunNpMin,
FunNpMinimum,
FunMax,
FunNpArgmin,
FunNpMax,
FunNpMaximum,
FunAbs,
FunNpArgmax,
FunNpIsNan,
FunNpIsInf,
FunNpSin,
@ -99,13 +101,46 @@ pub enum PrimDef {
FunNpLdExp,
FunNpHypot,
FunNpNextAfter,
FunSome,
FunNpTranspose,
FunNpReshape,
// Linalg functions
FunNpDot,
FunNpLinalgCholesky,
FunNpLinalgQr,
FunNpLinalgSvd,
FunNpLinalgInv,
FunNpLinalgPinv,
FunNpLinalgMatrixPower,
FunNpLinalgDet,
FunSpLinalgLu,
FunSpLinalgSchur,
FunSpLinalgHessenberg,
// Miscellaneous Python & NAC3 functions
FunInt32,
FunInt64,
FunUInt32,
FunUInt64,
FunFloat,
FunRound,
FunRound64,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunCeil,
FunCeil64,
FunLen,
FunMin,
FunMax,
FunAbs,
}
/// Associated details of a [`PrimDef`]
pub enum PrimDefDetails {
PrimFunction { name: &'static str, simple_name: &'static str },
PrimClass { name: &'static str },
PrimClass { name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type },
}
impl PrimDef {
@ -147,15 +182,17 @@ impl PrimDef {
#[must_use]
pub fn name(&self) -> &'static str {
match self.details() {
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name } => name,
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name, .. } => {
name
}
}
}
/// Get the associated details of this [`PrimDef`]
#[must_use]
pub fn details(self) -> PrimDefDetails {
fn class(name: &'static str) -> PrimDefDetails {
PrimDefDetails::PrimClass { name }
fn class(name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type) -> PrimDefDetails {
PrimDefDetails::PrimClass { name, get_ty_fn }
}
fn fun(name: &'static str, simple_name: Option<&'static str>) -> PrimDefDetails {
@ -163,28 +200,37 @@ impl PrimDef {
}
match self {
PrimDef::Int32 => class("int32"),
PrimDef::Int64 => class("int64"),
PrimDef::Float => class("float"),
PrimDef::Bool => class("bool"),
PrimDef::None => class("none"),
PrimDef::Range => class("range"),
PrimDef::Str => class("str"),
PrimDef::Exception => class("Exception"),
PrimDef::UInt32 => class("uint32"),
PrimDef::UInt64 => class("uint64"),
PrimDef::Option => class("Option"),
PrimDef::OptionIsSome => fun("Option.is_some", Some("is_some")),
PrimDef::OptionIsNone => fun("Option.is_none", Some("is_none")),
PrimDef::OptionUnwrap => fun("Option.unwrap", Some("unwrap")),
PrimDef::NDArray => class("ndarray"),
PrimDef::NDArrayCopy => fun("ndarray.copy", Some("copy")),
PrimDef::NDArrayFill => fun("ndarray.fill", Some("fill")),
PrimDef::FunInt32 => fun("int32", None),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None),
PrimDef::FunUInt64 => fun("uint64", None),
PrimDef::FunFloat => fun("float", None),
// Classes
PrimDef::Int32 => class("int32", |primitives| primitives.int32),
PrimDef::Int64 => class("int64", |primitives| primitives.int64),
PrimDef::Float => class("float", |primitives| primitives.float),
PrimDef::Bool => class("bool", |primitives| primitives.bool),
PrimDef::None => class("none", |primitives| primitives.none),
PrimDef::Range => class("range", |primitives| primitives.range),
PrimDef::Str => class("str", |primitives| primitives.str),
PrimDef::Exception => class("Exception", |primitives| primitives.exception),
PrimDef::UInt32 => class("uint32", |primitives| primitives.uint32),
PrimDef::UInt64 => class("uint64", |primitives| primitives.uint64),
PrimDef::Option => class("Option", |primitives| primitives.option),
PrimDef::List => class("list", |primitives| primitives.list),
PrimDef::NDArray => class("ndarray", |primitives| primitives.ndarray),
// Option methods
PrimDef::FunOptionIsSome => fun("Option.is_some", Some("is_some")),
PrimDef::FunOptionIsNone => fun("Option.is_none", Some("is_none")),
PrimDef::FunOptionUnwrap => fun("Option.unwrap", Some("unwrap")),
// Option-related functions
PrimDef::FunSome => fun("Some", None),
// NDArray methods
PrimDef::FunNDArrayCopy => fun("ndarray.copy", Some("copy")),
PrimDef::FunNDArrayFill => fun("ndarray.fill", Some("fill")),
// Range methods
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
// NumPy factory functions
PrimDef::FunNpNDArray => fun("np_ndarray", None),
PrimDef::FunNpEmpty => fun("np_empty", None),
PrimDef::FunNpZeros => fun("np_zeros", None),
@ -193,26 +239,17 @@ impl PrimDef {
PrimDef::FunNpArray => fun("np_array", None),
PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None),
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunRange => fun("range", None),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunNpFloor => fun("np_floor", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunNpCeil => fun("np_ceil", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunNpMin => fun("np_min", None),
PrimDef::FunNpMinimum => fun("np_minimum", None),
PrimDef::FunMax => fun("max", None),
PrimDef::FunNpArgmin => fun("np_argmin", None),
PrimDef::FunNpMax => fun("np_max", None),
PrimDef::FunNpMaximum => fun("np_maximum", None),
PrimDef::FunAbs => fun("abs", None),
PrimDef::FunNpArgmax => fun("np_argmax", None),
PrimDef::FunNpIsNan => fun("np_isnan", None),
PrimDef::FunNpIsInf => fun("np_isinf", None),
PrimDef::FunNpSin => fun("np_sin", None),
@ -250,7 +287,40 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunSome => fun("Some", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Linalg functions
PrimDef::FunNpDot => fun("np_dot", None),
PrimDef::FunNpLinalgCholesky => fun("np_linalg_cholesky", None),
PrimDef::FunNpLinalgQr => fun("np_linalg_qr", None),
PrimDef::FunNpLinalgSvd => fun("np_linalg_svd", None),
PrimDef::FunNpLinalgInv => fun("np_linalg_inv", None),
PrimDef::FunNpLinalgPinv => fun("np_linalg_pinv", None),
PrimDef::FunNpLinalgMatrixPower => fun("np_linalg_matrix_power", None),
PrimDef::FunNpLinalgDet => fun("np_linalg_det", None),
PrimDef::FunSpLinalgLu => fun("sp_linalg_lu", None),
PrimDef::FunSpLinalgSchur => fun("sp_linalg_schur", None),
PrimDef::FunSpLinalgHessenberg => fun("sp_linalg_hessenberg", None),
// Miscellaneous Python & NAC3 functions
PrimDef::FunInt32 => fun("int32", None),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None),
PrimDef::FunUInt64 => fun("uint64", None),
PrimDef::FunFloat => fun("float", None),
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunMax => fun("max", None),
PrimDef::FunAbs => fun("abs", None),
}
}
}
@ -319,6 +389,9 @@ impl TopLevelDef {
r
}
),
TopLevelDef::Variable { name, ty, .. } => {
format!("Variable {{ name: {name:?}, ty: {:?} }}", unifier.stringify(*ty),)
}
}
}
}
@ -354,7 +427,13 @@ impl TopLevelComposer {
});
let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(),
fields: HashMap::new(),
fields: [
("start".into(), (int32, true)),
("stop".into(), (int32, true)),
("step".into(), (int32, true)),
]
.into_iter()
.collect(),
params: VarMap::new(),
});
let str = unifier.add_ty(TypeEnum::TObj {
@ -395,9 +474,9 @@ impl TopLevelComposer {
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
fields: vec![
(PrimDef::OptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
(PrimDef::FunOptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::FunOptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::FunOptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
]
.into_iter()
.collect::<HashMap<_, _>>(),
@ -410,6 +489,13 @@ impl TopLevelComposer {
_ => unreachable!(),
};
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: Mapping::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t_ty, Some("ndarray_ndims".into()), None);
@ -424,6 +510,7 @@ impl TopLevelComposer {
name: "value".into(),
ty: ndarray_dtype_tvar.ty,
default_value: None,
is_vararg: false,
}],
ret: none,
vars: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
@ -431,8 +518,8 @@ impl TopLevelComposer {
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: Mapping::from([
(PrimDef::NDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
(PrimDef::NDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
(PrimDef::FunNDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
(PrimDef::FunNDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
]),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
});
@ -451,6 +538,7 @@ impl TopLevelComposer {
str,
exception,
option,
list,
ndarray,
size_t,
};
@ -474,6 +562,7 @@ impl TopLevelComposer {
object_id: obj_id,
type_vars: Vec::default(),
fields: Vec::default(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
constructor,
@ -504,6 +593,18 @@ impl TopLevelComposer {
}
}
#[must_use]
pub fn make_top_level_variable_def(
name: String,
simple_name: StrRef,
ty: Type,
ty_decl: Option<Expr>,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
loc: Option<Location>,
) -> TopLevelDef {
TopLevelDef::Variable { name, simple_name, ty, ty_decl, resolver, loc }
}
#[must_use]
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
class_name.push('.');
@ -649,7 +750,16 @@ impl TopLevelComposer {
)
}
pub fn get_all_assigned_field(stmts: &[Stmt<()>]) -> Result<HashSet<StrRef>, HashSet<String>> {
/// This function returns the fields that have been initialized in the `__init__` function of a class
/// The function takes as input:
/// * `class_id`: The `object_id` of the class whose function is being evaluated (check `TopLevelDef::Class`)
/// * `definition_ast_list`: A list of ast definitions and statements defined in `TopLevelComposer`
/// * `stmts`: The body of function being parsed. Each statment is analyzed to check varaible initialization statements
pub fn get_all_assigned_field(
class_id: usize,
definition_ast_list: &Vec<DefAst>,
stmts: &[Stmt<()>],
) -> Result<HashSet<StrRef>, HashSet<String>> {
let mut result = HashSet::new();
for s in stmts {
match &s.node {
@ -685,30 +795,138 @@ impl TopLevelComposer {
// TODO: do not check for For and While?
ast::StmtKind::For { body, orelse, .. }
| ast::StmtKind::While { body, orelse, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(orelse.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?);
}
ast::StmtKind::If { body, orelse, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
}
ast::StmtKind::Try { body, orelse, finalbody, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
result.extend(Self::get_all_assigned_field(finalbody.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
finalbody.as_slice(),
)?);
}
ast::StmtKind::With { body, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
}
// Variables Initialized in function calls
ast::StmtKind::Expr { value, .. } => {
let ExprKind::Call { func, .. } = &value.node else {
continue;
};
let ExprKind::Attribute { value, attr, .. } = &func.node else {
continue;
};
let ExprKind::Name { id, .. } = &value.node else {
continue;
};
// Need to consider the two cases:
// Case 1) Call to class function i.e. id = `self`
// Case 2) Call to class ancestor function i.e. id = ancestor_name
// We leave checking whether function in case 2 belonged to class ancestor or not to type checker
//
// According to current handling of `self`, function definition are fixed and do not change regardless
// of which object is passed as `self` i.e. virtual polymorphism is not supported
// Therefore, we change class id for case 2 to reflect behavior of our compiler
let class_name = if *id == "self".into() {
let ast::StmtKind::ClassDef { name, .. } =
&definition_ast_list[class_id].1.as_ref().unwrap().node
else {
unreachable!()
};
name
} else {
id
};
let parent_method = definition_ast_list.iter().find_map(|def| {
let (
class_def,
Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. },
..
}),
) = &def
else {
return None;
};
let TopLevelDef::Class { object_id: class_id, .. } = &*class_def.read()
else {
unreachable!()
};
if name == class_name {
body.iter().find_map(|m| {
let ast::StmtKind::FunctionDef { name, body, .. } = &m.node else {
return None;
};
if *name == *attr {
return Some((body.clone(), class_id.0));
}
None
})
} else {
None
}
});
// If method body is none then method does not exist
if let Some((method_body, class_id)) = parent_method {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
method_body.as_slice(),
)?);
} else {
return Err(HashSet::from([format!(
"{}.{} not found in class {class_name} at {}",
*id, *attr, value.location
)]));
}
}
ast::StmtKind::Pass { .. }
| ast::StmtKind::Assert { .. }
| ast::StmtKind::Expr { .. } => {}
| ast::StmtKind::AnnAssign { .. } => {}
_ => {
unimplemented!()
@ -887,7 +1105,9 @@ pub fn arraylike_flatten_element_type(unifier: &mut Unifier, ty: Type) -> Type {
unpack_ndarray_var_tys(unifier, ty).0
}
TypeEnum::TList { ty } => arraylike_flatten_element_type(unifier, *ty),
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
arraylike_flatten_element_type(unifier, iter_type_vars(params).next().unwrap().ty)
}
_ => ty,
}
}
@ -908,7 +1128,9 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
u64::try_from(values[0].clone()).unwrap()
}
TypeEnum::TList { ty } => arraylike_get_ndims(unifier, *ty) + 1,
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
arraylike_get_ndims(unifier, iter_type_vars(params).next().unwrap().ty) + 1
}
_ => 0,
}
}

View File

@ -6,36 +6,36 @@ use std::{
sync::Arc,
};
use super::codegen::CodeGenContext;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{
FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier, VarMap,
};
use crate::{
codegen::CodeGenerator,
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::CodeLocation,
typedef::{CallId, TypeVarId},
},
};
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use nac3parser::ast::{self, Location, Stmt, StrRef};
use parking_lot::RwLock;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize);
use nac3parser::ast::{self, Expr, Location, Stmt, StrRef};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{
CallId, FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, TypeVarId, Unifier,
VarMap,
},
},
};
use composer::*;
use type_annotation::*;
pub mod builtins;
pub mod composer;
pub mod helper;
pub mod numpy;
pub mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)]
mod test;
pub mod type_annotation;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize);
type GenCallCallback = dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>,
@ -103,6 +103,10 @@ pub enum TopLevelDef {
///
/// Name and type is mutable.
fields: Vec<(StrRef, Type, bool)>,
/// Class Attributes.
///
/// Name, type, value.
attributes: Vec<(StrRef, Type, ast::Constant)>,
/// Class methods, pointing to the corresponding function definition.
methods: Vec<(StrRef, Type, DefinitionId)>,
/// Ancestor classes, including itself.
@ -126,14 +130,14 @@ pub enum TopLevelDef {
/// Function instance to symbol mapping
///
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// order, including type variables associated with the class.
/// * Value: Function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
///
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
///
/// Rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, FunInstance>,
@ -144,6 +148,25 @@ pub enum TopLevelDef {
/// Definition location.
loc: Option<Location>,
},
Variable {
/// Qualified name of the global variable, should be unique globally.
name: String,
/// Simple name, the same as in method/function definition.
simple_name: StrRef,
/// Type of the global variable.
ty: Type,
/// The declared type of the global variable, or [`None`] if no type annotation is provided.
ty_decl: Option<Expr>,
/// Symbol resolver of the module defined the class.
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Definition location.
loc: Option<Location>,
},
}
pub struct TopLevelContext {

View File

@ -1,18 +1,17 @@
use crate::{
toplevel::helper::PrimDef,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use itertools::Itertools;
use super::helper::PrimDef;
use crate::typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
};
/// Creates a `ndarray` [`Type`] with the given type arguments.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// specialized.
pub fn make_ndarray_ty(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
@ -25,9 +24,9 @@ pub fn make_ndarray_ty(
/// Substitutes type variables in `ndarray`.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// specialized.
pub fn subst_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,

View File

@ -5,7 +5,7 @@ expression: res_vec
[
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(239)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar228]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar228\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(241)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(246)]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar227, typevar228]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar227\", \"typevar228\"]\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(247)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(255)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
]

View File

@ -1,20 +1,23 @@
use std::{collections::HashMap, sync::Arc};
use indoc::indoc;
use parking_lot::Mutex;
use test_case::test_case;
use nac3parser::{
ast::{fold::Fold, FileName},
parser::parse_program,
};
use super::{helper::PrimDef, DefinitionId, *};
use crate::{
codegen::CodeGenContext,
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::DefinitionId,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, Unifier},
typedef::{into_var_map, Type, Unifier},
},
};
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::{ast::fold::Fold, parser::parse_program};
use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
use super::*;
struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>,
@ -61,6 +64,7 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -116,7 +120,8 @@ impl SymbolResolver for Resolver {
"register"
)]
fn test_simple_register(source: Vec<&str>) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
for s in source {
let ast = parse_program(s, FileName::default()).unwrap();
@ -136,7 +141,8 @@ fn test_simple_register(source: Vec<&str>) {
"register"
)]
fn test_simple_register_without_constructor(source: &str) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let ast = parse_program(source, FileName::default()).unwrap();
let ast = ast[0].clone();
composer.register_top_level(ast, None, "", true).unwrap();
@ -170,7 +176,8 @@ fn test_simple_register_without_constructor(source: &str) {
"function compose"
)]
fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = Arc::new(ResolverInternal {
id_to_def: Mutex::default(),
@ -518,7 +525,8 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
)]
fn test_analyze(source: &[&str], res: &[&str]) {
let print = false;
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar(
vec![
@ -695,7 +703,8 @@ fn test_analyze(source: &[&str], res: &[&str]) {
)]
fn test_inference(source: Vec<&str>, res: &[&str]) {
let print = true;
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar(
vec![
@ -775,8 +784,15 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier,
print: bool,
) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::default(),
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])),
id_to_type: tvars
.into_iter()
.map(|(name, range)| {
@ -790,7 +806,7 @@ fn make_internal_resolver_with_tvar(
})
.collect::<HashMap<_, _>>()
.into(),
class_names: Mutex::default(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])),
}
.into();
if print {

View File

@ -1,9 +1,13 @@
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::VarMap;
use strum::IntoEnumIterator;
use nac3parser::ast::Constant;
use super::{
helper::{PrimDef, PrimDefDetails},
*,
};
use crate::{symbol_resolver::SymbolValue, typecheck::typedef::VarMap};
#[derive(Clone, Debug)]
pub enum TypeAnnotation {
Primitive(Type),
@ -18,7 +22,6 @@ pub enum TypeAnnotation {
TypeVar(Type),
/// A `Literal` allowing a subset of literals.
Literal(Vec<Constant>),
List(Box<TypeAnnotation>),
Tuple(Vec<TypeAnnotation>),
}
@ -51,7 +54,6 @@ impl TypeAnnotation {
format!("Literal({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
List(ty) => format!("list[{}]", ty.stringify(unifier)),
Tuple(types) => {
format!(
"tuple[{}]",
@ -65,9 +67,9 @@ impl TypeAnnotation {
/// Parses an AST expression `expr` into a [`TypeAnnotation`].
///
/// * `locked` - A [`HashMap`] containing the IDs of known definitions, mapped to a [`Vec`] of all
/// generic variables associated with the definition.
/// generic variables associated with the definition.
/// * `type_var` - The type variable associated with the type argument currently being parsed. Pass
/// [`None`] when this function is invoked externally.
/// [`None`] when this function is invoked externally.
pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
resolver: &(dyn SymbolResolver + Send + Sync),
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
@ -145,9 +147,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
slice: &ast::Expr<T>,
unifier: &mut Unifier,
mut locked: HashMap<DefinitionId, Vec<Type>, S>| {
if ["virtual".into(), "Generic".into(), "list".into(), "tuple".into(), "Option".into()]
.contains(id)
{
if ["virtual".into(), "Generic".into(), "tuple".into(), "Option".into()].contains(id) {
return Err(HashSet::from([format!(
"keywords cannot be class name (at {})",
expr.location
@ -236,23 +236,6 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
Ok(TypeAnnotation::Virtual(def.into()))
}
// list
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into())
} =>
{
let def_ann = parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
slice.as_ref(),
locked,
)?;
Ok(TypeAnnotation::List(def_ann.into()))
}
// option
ast::ExprKind::Subscript { value, slice, .. }
if {
@ -378,6 +361,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ann: &TypeAnnotation,
subst_list: &mut Option<Vec<Type>>,
) -> Result<Type, HashSet<String>> {
@ -400,99 +384,141 @@ pub fn get_type_from_type_annotation_kinds(
let param_ty = params
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
})
.collect::<Result<Vec<_>, _>>()?;
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
}
let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
// Primitive TopLevelDefs do not contain all fields that are present in their Type
// counterparts, so directly perform subst on the Type instead.
TypeEnum::TVar { id, range, name, loc, is_const_generic: true, .. } => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
unreachable!()
};
_ => unreachable!("must be generic type var"),
let base_ty = get_ty_fn(primitives);
let params =
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
params.clone()
} else {
unreachable!()
};
unifier
.subst(
get_ty_fn(primitives),
&params
.iter()
.zip(param_ty)
.map(|(obj_tv, param)| (*obj_tv.0, param))
.collect(),
)
.unwrap_or(base_ty)
} else {
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
}
TypeEnum::TVar {
id, range, name, loc, is_const_generic: true, ..
} => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp =
unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
_ => unreachable!("must be generic type var"),
}
}
result
};
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
}
}
result
ty
};
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
}
}
Ok(ty)
}
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
@ -510,28 +536,26 @@ pub fn get_type_from_type_annotation_kinds(
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
ty.as_ref(),
subst_list,
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
}
TypeAnnotation::List(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
ty.as_ref(),
subst_list,
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
}
TypeAnnotation::Tuple(tys) => {
let tys = tys
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false }))
}
}
}
@ -564,7 +588,7 @@ pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<Ty
let mut result: Vec<TypeAnnotation> = Vec::new();
match ann {
TypeAnnotation::TypeVar(..) => result.push(ann.clone()),
TypeAnnotation::Virtual(ann) | TypeAnnotation::List(ann) => {
TypeAnnotation::Virtual(ann) => {
result.extend(get_type_var_contained_in_type_annotation(ann.as_ref()));
}
TypeAnnotation::CustomClass { params, .. } => {
@ -605,8 +629,7 @@ pub fn check_overload_type_annotation_compatible(
a == b
}
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b))
| (TypeAnnotation::List(a), TypeAnnotation::List(b)) => {
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b)) => {
check_overload_type_annotation_compatible(a.as_ref(), b.as_ref(), unifier)
}

View File

@ -1,13 +1,19 @@
use crate::typecheck::typedef::TypeEnum;
use std::{
collections::{HashMap, HashSet},
iter::once,
};
use super::type_inferencer::Inferencer;
use super::typedef::Type;
use nac3parser::ast::{
self, Constant, Expr, ExprKind,
Operator::{LShift, RShift},
Stmt, StmtKind, StrRef,
};
use std::{collections::HashSet, iter::once};
use super::{
type_inferencer::{DeclarationSource, IdentifierInfo, Inferencer},
typedef::{Type, TypeEnum},
};
use crate::toplevel::helper::PrimDef;
impl<'a> Inferencer<'a> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
@ -21,26 +27,45 @@ impl<'a> Inferencer<'a> {
fn check_pattern(
&mut self,
pattern: &Expr<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<(), HashSet<String>> {
match &pattern.node {
ExprKind::Name { id, .. } if id == &"none".into() => {
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
}
ExprKind::Name { id, .. } => {
if !defined_identifiers.contains(id) {
defined_identifiers.insert(*id);
// If `id` refers to a declared symbol, reject this assignment if it is used in the
// context of an (implicit) global variable
if let Some(id_info) = defined_identifiers.get(id) {
if matches!(
id_info.source,
DeclarationSource::Global { is_explicit: Some(false) }
) {
return Err(HashSet::from([format!(
"cannot access local variable '{id}' before it is declared (at {})",
pattern.location
)]));
}
}
if !defined_identifiers.contains_key(id) {
defined_identifiers.insert(*id, IdentifierInfo::default());
}
self.should_have_value(pattern)?;
Ok(())
}
ExprKind::Tuple { elts, .. } => {
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
for elt in elts {
self.check_pattern(elt, defined_identifiers)?;
self.should_have_value(elt)?;
}
Ok(())
}
ExprKind::Starred { value, .. } => {
self.check_pattern(value, defined_identifiers)?;
self.should_have_value(value)?;
Ok(())
}
ExprKind::Subscript { value, slice, .. } => {
self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?;
@ -64,11 +89,12 @@ impl<'a> Inferencer<'a> {
fn check_expr(
&mut self,
expr: &Expr<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<(), HashSet<String>> {
// there are some cases where the custom field is None
if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. })
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id())
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{
return Err(HashSet::from([format!(
@ -84,7 +110,7 @@ impl<'a> Inferencer<'a> {
return Ok(());
}
self.should_have_value(expr)?;
if !defined_identifiers.contains(id) {
if !defined_identifiers.contains_key(id) {
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
@ -92,7 +118,22 @@ impl<'a> Inferencer<'a> {
*id,
) {
Ok(_) => {
self.defined_identifiers.insert(*id);
let is_global = self.is_id_global(*id);
defined_identifiers.insert(
*id,
IdentifierInfo {
source: match is_global {
Some(true) => {
DeclarationSource::Global { is_explicit: Some(false) }
}
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
@ -165,9 +206,7 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone();
for arg in &args.args {
// TODO: should we check the types here?
if !defined_identifiers.contains(&arg.node.arg) {
defined_identifiers.insert(arg.node.arg);
}
defined_identifiers.entry(arg.node.arg).or_default();
}
self.check_expr(body, &mut defined_identifiers)?;
}
@ -206,19 +245,23 @@ impl<'a> Inferencer<'a> {
/// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
/// is freed when the function returns.
fn check_return_value_ty(&mut self, ret_ty: Type) -> bool {
match &*self.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { .. } => [
self.primitives.int32,
self.primitives.int64,
self.primitives.uint32,
self.primitives.uint64,
self.primitives.float,
self.primitives.bool,
]
.iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
if cfg!(feature = "no-escape-analysis") {
true
} else {
match &*self.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { .. } => [
self.primitives.int32,
self.primitives.int64,
self.primitives.uint32,
self.primitives.uint64,
self.primitives.float,
self.primitives.bool,
]
.iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
}
}
}
@ -226,7 +269,7 @@ impl<'a> Inferencer<'a> {
fn check_stmt(
&mut self,
stmt: &Stmt<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<bool, HashSet<String>> {
match &stmt.node {
StmtKind::For { target, iter, body, orelse, .. } => {
@ -252,9 +295,11 @@ impl<'a> Inferencer<'a> {
let body_returned = self.check_block(body, &mut body_identifiers)?;
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
for ident in &body_identifiers {
if !defined_identifiers.contains(ident) && orelse_identifiers.contains(ident) {
defined_identifiers.insert(*ident);
for ident in body_identifiers.keys() {
if !defined_identifiers.contains_key(ident)
&& orelse_identifiers.contains_key(ident)
{
defined_identifiers.insert(*ident, IdentifierInfo::default());
}
}
Ok(body_returned && orelse_returned)
@ -285,7 +330,7 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone();
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
if let Some(name) = name {
defined_identifiers.insert(*name);
defined_identifiers.insert(*name, IdentifierInfo::default());
}
self.check_block(body, &mut defined_identifiers)?;
}
@ -349,6 +394,44 @@ impl<'a> Inferencer<'a> {
}
Ok(true)
}
StmtKind::Global { names, .. } => {
for id in names {
if let Some(id_info) = defined_identifiers.get(id) {
if id_info.source == DeclarationSource::Local {
return Err(HashSet::from([format!(
"name '{id}' is referenced prior to global declaration at {}",
stmt.location,
)]));
}
continue;
}
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
self.primitives,
*id,
) {
Ok(_) => {
defined_identifiers.insert(
*id,
IdentifierInfo {
source: DeclarationSource::Global { is_explicit: Some(true) },
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, stmt.location
)]))
}
}
}
Ok(false)
}
// break, raise, etc.
_ => Ok(false),
}
@ -357,7 +440,7 @@ impl<'a> Inferencer<'a> {
pub fn check_block(
&mut self,
block: &[Stmt<Option<Type>>],
defined_identifiers: &mut HashSet<StrRef>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<bool, HashSet<String>> {
let mut ret = false;
for stmt in block {

View File

@ -1,79 +1,154 @@
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
use crate::typecheck::{
use std::{cmp::max, collections::HashMap, rc::Rc};
use itertools::{iproduct, Itertools};
use strum::IntoEnumIterator;
use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
};
use itertools::Itertools;
use nac3parser::ast::StrRef;
use nac3parser::ast::{Cmpop, Operator, Unaryop};
use std::cmp::max;
use std::collections::HashMap;
use std::rc::Rc;
use strum::IntoEnumIterator;
use crate::{
symbol_resolver::SymbolValue,
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
};
#[must_use]
pub fn binop_name(op: Operator) -> &'static str {
match op {
Operator::Add => "__add__",
Operator::Sub => "__sub__",
Operator::Div => "__truediv__",
Operator::Mod => "__mod__",
Operator::Mult => "__mul__",
Operator::Pow => "__pow__",
Operator::BitOr => "__or__",
Operator::BitXor => "__xor__",
Operator::BitAnd => "__and__",
Operator::LShift => "__lshift__",
Operator::RShift => "__rshift__",
Operator::FloorDiv => "__floordiv__",
Operator::MatMult => "__matmul__",
/// The variant of a binary operator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinopVariant {
/// The normal variant.
/// For addition, it would be `+`.
Normal,
/// The "Augmented Assigning Operator" variant.
/// For addition, it would be `+=`.
AugAssign,
}
/// A binary operator with its variant.
#[derive(Debug, Clone, Copy)]
pub struct Binop {
/// The base [`Operator`] of this binary operator.
pub base: Operator,
/// The variant of this binary operator.
pub variant: BinopVariant,
}
impl Binop {
/// Make a [`Binop`] of the normal variant from an [`Operator`].
#[must_use]
pub fn normal(base: Operator) -> Self {
Binop { base, variant: BinopVariant::Normal }
}
/// Make a [`Binop`] of the aug assign variant from an [`Operator`].
#[must_use]
pub fn aug_assign(base: Operator) -> Self {
Binop { base, variant: BinopVariant::AugAssign }
}
}
#[must_use]
pub fn binop_assign_name(op: Operator) -> &'static str {
match op {
Operator::Add => "__iadd__",
Operator::Sub => "__isub__",
Operator::Div => "__itruediv__",
Operator::Mod => "__imod__",
Operator::Mult => "__imul__",
Operator::Pow => "__ipow__",
Operator::BitOr => "__ior__",
Operator::BitXor => "__ixor__",
Operator::BitAnd => "__iand__",
Operator::LShift => "__ilshift__",
Operator::RShift => "__irshift__",
Operator::FloorDiv => "__ifloordiv__",
Operator::MatMult => "__imatmul__",
}
/// Details about an operator (unary, binary, etc...) in Python
#[derive(Debug, Clone, Copy)]
pub struct OpInfo {
/// The method name of the binary operator.
/// For addition, this would be `__add__`, and `__iadd__` if
/// it is the augmented assigning variant.
pub method_name: &'static str,
/// The symbol of the binary operator.
/// For addition, this would be `+`, and `+=` if
/// it is the augmented assigning variant.
pub symbol: &'static str,
}
#[must_use]
pub fn unaryop_name(op: Unaryop) -> &'static str {
match op {
Unaryop::UAdd => "__pos__",
Unaryop::USub => "__neg__",
Unaryop::Not => "__not__",
Unaryop::Invert => "__inv__",
}
/// Helper macro to conveniently build an [`OpInfo`].
///
/// Example usage: `make_info("add", "+")` generates `OpInfo { name: "__add__", symbol: "+" }`
macro_rules! make_op_info {
($name:expr, $symbol:expr) => {
OpInfo { method_name: concat!("__", $name, "__"), symbol: $symbol }
};
}
#[must_use]
pub fn comparison_name(op: Cmpop) -> Option<&'static str> {
pub trait HasOpInfo {
fn op_info(&self) -> OpInfo;
}
fn try_get_cmpop_info(op: Cmpop) -> Option<OpInfo> {
match op {
Cmpop::Lt => Some("__lt__"),
Cmpop::LtE => Some("__le__"),
Cmpop::Gt => Some("__gt__"),
Cmpop::GtE => Some("__ge__"),
Cmpop::Eq => Some("__eq__"),
Cmpop::NotEq => Some("__ne__"),
Cmpop::Lt => Some(make_op_info!("lt", "<")),
Cmpop::LtE => Some(make_op_info!("le", "<=")),
Cmpop::Gt => Some(make_op_info!("gt", ">")),
Cmpop::GtE => Some(make_op_info!("ge", ">=")),
Cmpop::Eq => Some(make_op_info!("eq", "==")),
Cmpop::NotEq => Some(make_op_info!("ne", "!=")),
_ => None,
}
}
impl OpInfo {
#[must_use]
pub fn supports_cmpop(op: Cmpop) -> bool {
try_get_cmpop_info(op).is_some()
}
}
impl HasOpInfo for Cmpop {
fn op_info(&self) -> OpInfo {
try_get_cmpop_info(*self).expect("{self:?} is not supported")
}
}
impl HasOpInfo for Binop {
fn op_info(&self) -> OpInfo {
// Helper macro to generate both the normal variant [`OpInfo`] and the
// augmented assigning variant [`OpInfo`] for a binary operator conveniently.
macro_rules! info {
($name:literal, $symbol:literal) => {
(
make_op_info!($name, $symbol),
make_op_info!(concat!("i", $name), concat!($symbol, "=")),
)
};
}
let (normal_variant, aug_assign_variant) = match self.base {
Operator::Add => info!("add", "+"),
Operator::Sub => info!("sub", "-"),
Operator::Div => info!("truediv", "/"),
Operator::Mod => info!("mod", "%"),
Operator::Mult => info!("mul", "*"),
Operator::Pow => info!("pow", "**"),
Operator::BitOr => info!("or", "|"),
Operator::BitXor => info!("xor", "^"),
Operator::BitAnd => info!("and", "&"),
Operator::LShift => info!("lshift", "<<"),
Operator::RShift => info!("rshift", ">>"),
Operator::FloorDiv => info!("floordiv", "//"),
Operator::MatMult => info!("matmul", "@"),
};
match self.variant {
BinopVariant::Normal => normal_variant,
BinopVariant::AugAssign => aug_assign_variant,
}
}
}
impl HasOpInfo for Unaryop {
fn op_info(&self) -> OpInfo {
match self {
Unaryop::UAdd => make_op_info!("pos", "+"),
Unaryop::USub => make_op_info!("neg", "-"),
Unaryop::Not => make_op_info!("not", "not"), // i.e., `not False`, so the symbol is just `not`.
Unaryop::Invert => make_op_info!("inv", "~"),
}
}
}
pub(super) fn with_fields<F>(unifier: &mut Unifier, ty: Type, f: F)
where
F: FnOnce(&mut Unifier, &mut HashMap<StrRef, (Type, bool)>),
@ -115,23 +190,9 @@ pub fn impl_binop(
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for op in ops {
fields.insert(binop_name(*op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
vars: function_vars.clone(),
args: vec![FuncArg {
ty: other_ty,
default_value: None,
name: "other".into(),
}],
})),
false,
)
});
fields.insert(binop_assign_name(*op).into(), {
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
let op = Binop { base: *base_op, variant };
fields.insert(op.op_info().method_name.into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -140,6 +201,7 @@ pub fn impl_binop(
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -155,7 +217,7 @@ pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Option<Type>, ops:
for op in ops {
fields.insert(
unaryop_name(*op).into(),
op.op_info().method_name.into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -195,7 +257,7 @@ pub fn impl_cmpop(
for op in ops {
fields.insert(
comparison_name(*op).unwrap().into(),
op.op_info().method_name.into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -204,6 +266,7 @@ pub fn impl_cmpop(
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -429,12 +492,29 @@ pub fn typeof_binop(
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let op = Binop { base: op, variant: BinopVariant::Normal };
let is_left_list = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_right_list = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(match op {
Ok(Some(match op.base {
Operator::Add | Operator::Sub | Operator::Mult | Operator::Mod | Operator::FloorDiv => {
if is_left_ndarray || is_right_ndarray {
if is_left_list || is_right_list {
if ![Operator::Add, Operator::Mult].contains(&op.base) {
return Err(format!(
"Binary operator {} not supported for list",
op.op_info().symbol
));
}
if is_left_list {
lhs
} else {
rhs
}
} else if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
lhs
@ -444,6 +524,23 @@ pub fn typeof_binop(
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
}
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
@ -604,6 +701,8 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
bool: bool_t,
uint32: uint32_t,
uint64: uint64_t,
str: str_t,
list: list_t,
ndarray: ndarray_t,
..
} = *store;
@ -648,6 +747,14 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
impl_sign(unifier, store, bool_t, Some(int32_t));
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t], None);
/* str ========= */
impl_cmpop(unifier, store, str_t, &[str_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* list ======== */
impl_binop(unifier, store, list_t, &[list_t], Some(list_t), &[Operator::Add]);
impl_binop(unifier, store, list_t, &[int32_t, int64_t], Some(list_t), &[Operator::Mult]);
impl_cmpop(unifier, store, list_t, &[list_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* ndarray ===== */
let ndarray_usized_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t, Some("ndarray_ndims".into()), None);

View File

@ -1,24 +1,45 @@
use std::collections::HashMap;
use std::fmt::Display;
use std::{collections::HashMap, fmt::Display};
use crate::typecheck::typedef::TypeEnum;
use itertools::Itertools;
use super::typedef::{RecordKey, Type, Unifier};
use nac3parser::ast::{Location, StrRef};
use nac3parser::ast::{Cmpop, Location, StrRef};
use super::{
magic_methods::{Binop, HasOpInfo},
typedef::{RecordKey, Type, TypeEnum, Unifier},
};
#[derive(Debug, Clone)]
pub enum TypeErrorKind {
TooManyArguments {
expected: usize,
got: usize,
GotMultipleValues {
name: StrRef,
},
TooManyArguments {
expected_min_count: usize,
expected_max_count: usize,
got_count: usize,
},
MissingArgs {
missing_arg_names: Vec<StrRef>,
},
MissingArgs(String),
UnknownArgName(StrRef),
IncorrectArgType {
name: StrRef,
expected: Type,
got: Type,
},
UnsupportedBinaryOpTypes {
operator: Binop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
UnsupportedComparsionOpTypes {
operator: Cmpop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
FieldUnificationError {
field: RecordKey,
types: (Type, Type),
@ -34,6 +55,7 @@ pub enum TypeErrorKind {
},
RequiresTypeAnn,
PolymorphicFunctionPointer,
NoSuchAttribute(RecordKey, Type),
}
#[derive(Debug, Clone)]
@ -77,19 +99,49 @@ impl<'a> Display for DisplayTypeError<'a> {
use TypeErrorKind::*;
let mut notes = Some(HashMap::new());
match &self.err.kind {
TooManyArguments { expected, got } => {
write!(f, "Too many arguments. Expected {expected} but got {got}")
GotMultipleValues { name } => {
write!(f, "For multiple values for parameter {name}")
}
MissingArgs(args) => {
TooManyArguments { expected_min_count, expected_max_count, got_count } => {
debug_assert!(expected_min_count <= expected_max_count);
if expected_min_count == expected_max_count {
let expected_count = expected_min_count; // or expected_max_count
write!(f, "Too many arguments. Expected {expected_count} but got {got_count}")
} else {
write!(f, "Too many arguments. Expected {expected_min_count} to {expected_max_count} arguments but got {got_count}")
}
}
MissingArgs { missing_arg_names } => {
let args = missing_arg_names.iter().join(", ");
write!(f, "Missing arguments: {args}")
}
UnsupportedBinaryOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "Unsupported operand type(s) for {op_symbol}: '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnsupportedComparsionOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "'{op_symbol}' not supported between instances of '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnknownArgName(name) => {
write!(f, "Unknown argument name: {name}")
}
IncorrectArgType { name, expected, got } => {
let expected = self.unifier.stringify_with_notes(*expected, &mut notes);
let got = self.unifier.stringify_with_notes(*got, &mut notes);
write!(f, "Incorrect argument type for {name}. Expected {expected}, but got {got}")
write!(f, "Incorrect argument type for parameter {name}. Expected {expected}, but got {got}")
}
FieldUnificationError { field, types, loc } => {
let lhs = self.unifier.stringify_with_notes(types.0, &mut notes);
@ -130,9 +182,10 @@ impl<'a> Display for DisplayTypeError<'a> {
}
result
}
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 })
if ty1.len() != ty2.len() =>
{
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) if !is_vararg1 && !is_vararg2 && ty1.len() != ty2.len() => {
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
write!(f, "Tuple length mismatch: got {t1} and {t2}")
@ -156,6 +209,10 @@ impl<'a> Display for DisplayTypeError<'a> {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` field/method does not exist")
}
NoSuchAttribute(name, t) => {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` is not a class attribute")
}
TupleIndexOutOfBounds { index, len } => {
write!(
f,

File diff suppressed because it is too large Load Diff

View File

@ -1,18 +1,20 @@
use super::super::{magic_methods::with_fields, typedef::*};
use super::*;
use crate::{
codegen::CodeGenContext,
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
};
use std::iter::zip;
use indexmap::IndexMap;
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::parser::parse_program;
use parking_lot::RwLock;
use std::iter::zip;
use test_case::test_case;
use nac3parser::{ast::FileName, parser::parse_program};
use super::*;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
typecheck::{magic_methods::with_fields, typedef::*},
};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
id_to_def: HashMap<StrRef, DefinitionId>,
@ -41,6 +43,7 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -83,7 +86,12 @@ impl TestEnvironment {
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
ret: int32,
vars: VarMap::new(),
}));
@ -139,6 +147,12 @@ impl TestEnvironment {
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(uint64, Some("ndarray_ndims".into()), None);
@ -159,6 +173,7 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
@ -217,7 +232,12 @@ impl TestEnvironment {
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
ret: int32,
vars: VarMap::new(),
}));
@ -273,15 +293,35 @@ impl TestEnvironment {
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: VarMap::new(),
});
identifier_mapping.insert("None".into(), none);
for (i, name) in ["int32", "int64", "float", "bool", "none", "range", "str", "Exception"]
.iter()
.enumerate()
for (i, name) in [
"int32",
"int64",
"float",
"bool",
"none",
"range",
"str",
"Exception",
"uint32",
"uint64",
"Option",
"list",
"ndarray",
]
.iter()
.enumerate()
{
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
@ -289,6 +329,7 @@ impl TestEnvironment {
object_id: DefinitionId(i),
type_vars: Vec::default(),
fields: Vec::default(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
resolver: None,
@ -298,7 +339,7 @@ impl TestEnvironment {
.into(),
);
}
let defs = 7;
let defs = 12;
let primitives = PrimitiveStore {
int32,
@ -312,6 +353,7 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
@ -331,6 +373,7 @@ impl TestEnvironment {
object_id: DefinitionId(defs + 1),
type_vars: vec![tvar.ty],
fields: [("a".into(), tvar.ty, true)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
resolver: None,
@ -365,6 +408,7 @@ impl TestEnvironment {
object_id: DefinitionId(defs + 2),
type_vars: Vec::default(),
fields: [("a".into(), int32, true), ("b".into(), fun, true)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
resolver: None,
@ -393,6 +437,7 @@ impl TestEnvironment {
object_id: DefinitionId(defs + 3),
type_vars: Vec::default(),
fields: [("a".into(), bool, true), ("b".into(), fun, false)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
resolver: None,
@ -420,6 +465,11 @@ impl TestEnvironment {
"range".into(),
"str".into(),
"exception".into(),
"uint32".into(),
"uint64".into(),
"option".into(),
"list".into(),
"ndarray".into(),
"Foo".into(),
"Bar".into(),
"Bar2".into(),
@ -470,7 +520,7 @@ impl TestEnvironment {
primitives: &mut self.primitives,
virtual_checks: &mut self.virtual_checks,
calls: &mut self.calls,
defined_identifiers: HashSet::default(),
defined_identifiers: HashMap::default(),
in_handler: false,
}
}
@ -546,8 +596,9 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
println!("source:\n{source}");
let mut env = TestEnvironment::new();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
defined_identifiers.insert("virtual".into());
let mut defined_identifiers: HashMap<_, _> =
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();
@ -692,8 +743,9 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
println!("source:\n{source}");
let mut env = TestEnvironment::basic_test_env();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
defined_identifiers.insert("virtual".into());
let mut defined_identifiers: HashMap<_, _> =
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();

View File

@ -1,20 +1,28 @@
use std::{
borrow::Cow,
cell::RefCell,
collections::{HashMap, HashSet},
fmt::{self, Display},
iter::{repeat, zip},
rc::Rc,
sync::{Arc, Mutex},
};
use indexmap::IndexMap;
use itertools::Itertools;
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt::{self, Display};
use std::iter::zip;
use std::rc::Rc;
use std::sync::{Arc, Mutex};
use std::{borrow::Cow, collections::HashSet};
use itertools::{repeat_n, Itertools};
use nac3parser::ast::{Location, StrRef};
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
use super::type_error::{TypeError, TypeErrorKind};
use super::unification_table::{UnificationKey, UnificationTable};
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef};
use crate::typecheck::type_inferencer::PrimitiveStore;
use super::{
magic_methods::{Binop, HasOpInfo, OpInfo},
type_error::{TypeError, TypeErrorKind},
type_inferencer::PrimitiveStore,
unification_table::{UnificationKey, UnificationTable},
};
use crate::{
symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, DefinitionId, TopLevelContext, TopLevelDef},
};
#[cfg(test)]
mod test;
@ -73,6 +81,28 @@ pub fn iter_type_vars(var_map: &VarMap) -> impl Iterator<Item = TypeVar> + '_ {
var_map.iter().map(|(&id, &ty)| TypeVar { id, ty })
}
#[derive(Debug, Clone)]
pub enum OperatorInfo {
/// The call was written as an unary operation, e.g., `~a` or `not a`.
IsUnaryOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Unaryop,
},
/// The call was written as a binary operation, e.g., `a + b` or `a += b`.
IsBinaryOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Binop,
},
/// The call was written as a binary comparison operation, e.g., `a < b`.
IsComparisonOp {
/// The [`Type`] of the `self` object
self_type: Type,
operator: Cmpop,
},
}
#[derive(Clone)]
pub struct Call {
pub posargs: Vec<Type>,
@ -80,6 +110,9 @@ pub struct Call {
pub ret: Type,
pub fun: RefCell<Option<Type>>,
pub loc: Option<Location>,
/// Details about the associated Python user operator expression of this call, if any.
pub operator_info: Option<OperatorInfo>,
}
#[derive(Debug, Clone)]
@ -87,6 +120,14 @@ pub struct FuncArg {
pub name: StrRef,
pub ty: Type,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
impl FuncArg {
#[must_use]
pub fn is_required(&self) -> bool {
self.default_value.is_none()
}
}
#[derive(Debug, Clone)]
@ -198,12 +239,12 @@ pub enum TypeEnum {
TTuple {
/// The types of elements present in this tuple.
ty: Vec<Type>,
},
/// A list type.
TList {
/// The type of elements present in this list.
ty: Type,
/// Whether this tuple is used in a vararg context.
///
/// If `true`, `ty` must only contain one type, and the tuple is assumed to contain any
/// number of `ty`-typed values.
is_vararg_ctx: bool,
},
/// An object type.
@ -239,7 +280,6 @@ impl TypeEnum {
TypeEnum::TVar { .. } => "TVar",
TypeEnum::TLiteral { .. } => "TConstant",
TypeEnum::TTuple { .. } => "TTuple",
TypeEnum::TList { .. } => "TList",
TypeEnum::TObj { .. } => "TObj",
TypeEnum::TVirtual { .. } => "TVirtual",
TypeEnum::TCall { .. } => "TCall",
@ -475,13 +515,31 @@ impl Unifier {
)
}
}
TypeEnum::TList { ty } => self
.get_instantiations(*ty)
.map(|ty| ty.iter().map(|&ty| self.add_ty(TypeEnum::TList { ty })).collect_vec()),
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let tv = iter_type_vars(params).nth(0).unwrap();
let tv_id = if let TypeEnum::TVar { id, .. } =
self.unification_table.probe_value(tv.ty).as_ref()
{
*id
} else {
tv.id
};
self.get_instantiations(tv.ty).map(|ty_insts| {
ty_insts
.iter()
.map(|&ty_inst| {
self.subst(ty, &into_var_map([TypeVar { id: tv_id, ty: ty_inst }]))
.unwrap_or(ty)
})
.collect()
})
}
TypeEnum::TVirtual { ty } => self.get_instantiations(*ty).map(|ty| {
ty.iter().map(|&ty| self.add_ty(TypeEnum::TVirtual { ty })).collect_vec()
}),
TypeEnum::TTuple { ty } => {
TypeEnum::TTuple { ty, is_vararg_ctx } => {
let tuples = ty
.iter()
.map(|ty| self.get_instantiations(*ty).unwrap_or_else(|| vec![*ty]))
@ -491,7 +549,12 @@ impl Unifier {
None
} else {
Some(
tuples.into_iter().map(|ty| self.add_ty(TypeEnum::TTuple { ty })).collect(),
tuples
.into_iter()
.map(|ty| {
self.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: *is_vararg_ctx })
})
.collect(),
)
}
}
@ -534,10 +597,8 @@ impl Unifier {
TVar { .. } => allowed_typevars.iter().any(|b| self.unification_table.unioned(a, *b)),
TCall { .. } => false,
TList { ty }
| TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
TTuple { ty } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
TTuple { ty, .. } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
TObj { params: vars, .. } => {
vars.values().all(|ty| self.is_concrete(*ty, allowed_typevars))
}
@ -562,69 +623,243 @@ impl Unifier {
call: &Call,
b: Type,
signature: &FunSignature,
required: &[StrRef],
) -> Result<(), TypeError> {
/*
NOTE: scenarios to consider:
```python
def func1(x: int32, y: int32, z: int32 = 5): pass
# Normal scenarios
func1(23, 45) # OK, z has default
func1(23, 45, 67) # OK, z's default is overwritten
func1(x = 23, y = 45) # OK, user is using kwargs to set positional args
func1(y = 45, x = 23) # OK, kwargs order doesn't matter
# Error scenarios
func1() # ERROR: Missing arguments: x, y
func1(23) # ERROR: Missing arguments: y
func1(z = 23) # ERROR: Missing arguments: x, y
func1(x = 23) # ERROR: Missing arguments: y
func1(23, 45, x = 5) # ERROR: Got multiple values for x
func1(23, 45, x = 5, y = 6) # ERROR: Got multiple values for x (y too but Python does not report it)
func1(23, 45, 67, z = 89) # ERROR: Got multiple values for z
func1(23, 45, 67, 89) # ERROR: Function only takes from 2 to 3 positional arguments but 4 were given.
func1(23, 45, 67, w = 3) # ERROR: Got an unexpected keyword argument 'w'
# Error scenarios that do not need to be handled here.
func1(23, 45, z = 67, z = 89) # ERROR: Keyword argument repeated: z, the parser panics on this.
```
*/
struct ParamInfo<'a> {
/// Has this parameter been supplied with an argument already?
has_been_supplied: bool,
/// The corresponding [`FuncArg`] instance of this parameter (for fast table lookups)
param: &'a FuncArg,
}
let snapshot = self.unification_table.get_snapshot();
if self.snapshot.is_none() {
self.snapshot = Some(snapshot);
}
let Call { posargs, kwargs, ret, fun, loc } = call;
let instantiated = self.instantiate_fun(b, signature);
let r = self.get_ty(instantiated);
let r = r.as_ref();
let TypeEnum::TFunc(signature) = r else { unreachable!() };
// we check to make sure that all required arguments (those without default
// arguments) are provided, and do not provide the same argument twice.
let mut required = required.to_vec();
let mut all_names: Vec<_> = signature.args.iter().map(|v| (v.name, v.ty)).rev().collect();
for (i, t) in posargs.iter().enumerate() {
if signature.args.len() <= i {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::TooManyArguments {
expected: signature.args.len(),
got: posargs.len() + kwargs.len(),
},
*loc,
));
// Get details about the function signature/parameters.
let num_params = signature.args.len();
let is_vararg = signature.args.iter().any(|arg| arg.is_vararg);
// Force the type vars in `b` and `signature' to be up-to-date.
let b = self.instantiate_fun(b, signature);
let TypeEnum::TFunc(signature) = &*self.get_ty(b) else { unreachable!() };
// Get details about the input arguments
let Call { posargs, kwargs, ret, fun, loc, operator_info } = call;
let num_args = posargs.len() + kwargs.len();
// Now we check the arguments against the parameters,
// and depending on what `call_info` is, we might change how `unify_call()` behaves
// to improve user error messages when type checking fails.
match operator_info {
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
// The call is written in the form of (say) `a + b`.
// Technically, it is `a.__add__(b)`, and they have the following constraints:
assert_eq!(posargs.len(), 1);
assert_eq!(kwargs.len(), 0);
assert_eq!(num_params, 1);
let other_type = posargs[0]; // the second operand
let expected_other_type = signature.args[0].ty;
let ok = self.unify_impl(expected_other_type, other_type, false).is_ok();
if !ok {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnsupportedBinaryOpTypes {
operator: *operator,
lhs_type: *self_type,
rhs_type: other_type,
expected_rhs_type: expected_other_type,
},
*loc,
));
}
}
required.pop();
let (name, expected) = all_names.pop().unwrap();
self.unify_impl(expected, *t, false).map_err(|_| {
self.restore_snapshot();
TypeError::new(TypeErrorKind::IncorrectArgType { name, expected, got: *t }, *loc)
})?;
}
for (k, t) in kwargs {
if let Some(i) = required.iter().position(|v| v == k) {
required.remove(i);
Some(OperatorInfo::IsComparisonOp { self_type, operator })
if OpInfo::supports_cmpop(*operator) // Otherwise that comparison operator is not supported.
=>
{
// The call is written in the form of (say) `a <= b`.
// Technically, it is `a.__le__(b)`, and they have the following constraints:
assert_eq!(posargs.len(), 1);
assert_eq!(kwargs.len(), 0);
assert_eq!(num_params, 1);
let other_type = posargs[0]; // the second operand
let expected_other_type = signature.args[0].ty;
let ok = self.unify_impl(expected_other_type, other_type, false).is_ok();
if !ok {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnsupportedComparsionOpTypes {
operator: *operator,
lhs_type: *self_type,
rhs_type: other_type,
expected_rhs_type: expected_other_type,
},
*loc,
));
}
}
let i = all_names.iter().position(|v| &v.0 == k).ok_or_else(|| {
self.restore_snapshot();
TypeError::new(TypeErrorKind::UnknownArgName(*k), *loc)
})?;
let (name, expected) = all_names.remove(i);
self.unify_impl(expected, *t, false).map_err(|_| {
self.restore_snapshot();
TypeError::new(TypeErrorKind::IncorrectArgType { name, expected, got: *t }, *loc)
})?;
}
if !required.is_empty() {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::MissingArgs(required.iter().join(", ")),
*loc,
));
}
self.unify_impl(*ret, signature.ret, false).map_err(|mut err| {
self.restore_snapshot();
if err.loc.is_none() {
err.loc = *loc;
_ => {
// Handle [`CallInfo::IsNormalFunctionCall`] and other uninteresting variants
// of [`CallInfo`] (e.g, `CallInfo::IsUnaryOp` and unsupported comparison operators)
// Helper lambdas
let mut type_check_arg = |param_name, expected_arg_ty, arg_ty| {
let ok = self.unify_impl(expected_arg_ty, arg_ty, false).is_ok();
if ok {
Ok(())
} else {
// Typecheck failed, throw an error.
self.restore_snapshot();
Err(TypeError::new(
TypeErrorKind::IncorrectArgType {
name: param_name,
expected: expected_arg_ty,
got: arg_ty,
},
*loc,
))
}
};
// Check for "too many arguments"
if !is_vararg && num_params < posargs.len() {
let expected_min_count =
signature.args.iter().filter(|param| param.is_required()).count();
let expected_max_count = num_params;
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::TooManyArguments {
expected_min_count,
expected_max_count,
got_count: num_args,
},
*loc,
));
}
// NOTE: order of `param_info_by_name` is leveraged, so use an IndexMap
let mut param_info_by_name: IndexMap<StrRef, ParamInfo> = signature
.args
.iter()
.map(|arg| (arg.name, ParamInfo { has_been_supplied: false, param: arg }))
.collect();
// Now consume all positional arguments and typecheck them.
for (&arg_ty, param) in zip(posargs, signature.args.iter()) {
// We will also use this opportunity to mark the corresponding `param_info` as having been supplied.
let param_info = param_info_by_name.get_mut(&param.name).unwrap();
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param.name, param.ty, arg_ty)?;
}
if is_vararg {
debug_assert!(!signature.args.is_empty());
let vararg_args = posargs.iter().skip(signature.args.len());
let vararg_param = signature.args.last().unwrap();
for (&arg_ty, param) in zip(vararg_args, repeat(vararg_param)) {
// `param_info` for this argument would've already been marked as supplied
// during non-vararg posarg typecheck
type_check_arg(param.name, param.ty, arg_ty)?;
}
}
// Now consume all keyword arguments and typecheck them.
for (&param_name, &arg_ty) in kwargs {
// We will also use this opportunity to check if this keyword argument is "legal".
let Some(param_info) = param_info_by_name.get_mut(&param_name) else {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::UnknownArgName(param_name),
*loc,
));
};
if param_info.has_been_supplied {
// NOTE: Duplicate keyword argument (i.e., `hello(1, 2, 3, arg = 4, arg = 5)`)
// is IMPOSSIBLE as the parser would have already failed.
// We only have to care about "got multiple values for XYZ"
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::GotMultipleValues { name: param_name },
*loc,
));
}
param_info.has_been_supplied = true;
// Typecheck
type_check_arg(param_name, param_info.param.ty, arg_ty)?;
}
// After checking posargs and kwargs, check if there are any
// unsupplied required parameters, and throw an error if they exist.
let missing_arg_names = param_info_by_name
.values()
.filter(|param_info| {
param_info.param.is_required() && !param_info.has_been_supplied
})
.map(|param_info| param_info.param.name)
.collect_vec();
if !missing_arg_names.is_empty() {
self.restore_snapshot();
return Err(TypeError::new(
TypeErrorKind::MissingArgs { missing_arg_names },
*loc,
));
}
// Finally, check the Call's return type
self.unify_impl(*ret, signature.ret, false).map_err(|mut err| {
self.restore_snapshot();
if err.loc.is_none() {
err.loc = *loc;
}
err
})?;
}
err
})?;
*fun.borrow_mut() = Some(instantiated);
}
*fun.borrow_mut() = Some(b);
self.discard_snapshot(snapshot);
Ok(())
@ -755,7 +990,10 @@ impl Unifier {
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(TVar { fields: Some(fields), range, is_const_generic: false, .. }, TTuple { ty }) => {
(
TVar { fields: Some(fields), range, is_const_generic: false, .. },
TTuple { ty, .. },
) => {
let len = i32::try_from(ty.len()).unwrap();
for (k, v) in fields {
match *k {
@ -776,31 +1014,25 @@ impl Unifier {
self.unify_impl(v.ty, ty[ind as usize], false)
.map_err(|e| e.at(v.loc))?;
}
RecordKey::Str(_) => {
return Err(TypeError::new(TypeErrorKind::NoSuchField(*k, b), v.loc))
}
}
}
let x = self.check_var_compatibility(b, range)?.unwrap_or(b);
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(TVar { fields: Some(fields), range, is_const_generic: false, .. }, TList { ty }) => {
for (k, v) in fields {
match *k {
RecordKey::Int(_) => {
self.unify_impl(v.ty, *ty, false).map_err(|e| e.at(v.loc))?;
}
RecordKey::Str(_) => {
return Err(TypeError::new(TypeErrorKind::NoSuchField(*k, b), v.loc))
}
}
}
let x = self.check_var_compatibility(b, range)?.unwrap_or(b);
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
RecordKey::Str(s) => {
let tuple_fns = [
Cmpop::Eq.op_info().method_name,
Cmpop::NotEq.op_info().method_name,
];
if !tuple_fns.into_iter().any(|op| s.to_string() == op) {
return Err(TypeError::new(
TypeErrorKind::NoSuchField(*k, b),
v.loc,
));
}
}
}
}
let x = self.check_var_compatibility(b, range)?.unwrap_or(b);
self.unify_impl(x, b, false)?;
self.set_a_to_b(a, x);
}
(
TVar { id: id1, range: ty1, is_const_generic: true, .. },
TVar { id: id2, range: ty2, .. },
@ -868,24 +1100,50 @@ impl Unifier {
self.set_a_to_b(a, b);
}
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) => {
if ty1.len() != ty2.len() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
}
for (x, y) in ty1.iter().zip(ty2.iter()) {
if self.unify_impl(*x, *y, false).is_err() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
(
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) => {
// Rules for Tuples:
// - ty1: is_vararg && ty2: is_vararg -> ty1[0] == ty2[0]
// - ty1: is_vararg && ty2: !is_vararg -> type error (not enough info to infer the correct number of arguments)
// - ty1: !is_vararg && ty2: is_vararg -> ty1[..] == ty2[0]
// - ty1: !is_vararg && ty2: !is_vararg -> ty1.len() == ty2.len() && ty1[i] == ty2[i]
debug_assert!(!is_vararg1 || ty1.len() == 1);
debug_assert!(!is_vararg2 || ty2.len() == 1);
match (*is_vararg1, *is_vararg2) {
(true, true) => {
if self.unify_impl(ty1[0], ty2[0], false).is_err() {
return Self::incompatible_types(a, b);
}
}
(true, false) => return Self::incompatible_types(a, b),
(false, true) => {
for y in ty2 {
if self.unify_impl(ty1[0], *y, false).is_err() {
return Self::incompatible_types(a, b);
}
}
}
(false, false) => {
if ty1.len() != ty2.len() {
return Self::incompatible_types(a, b);
}
for (x, y) in ty1.iter().zip(ty2.iter()) {
if self.unify_impl(*x, *y, false).is_err() {
return Self::incompatible_types(a, b);
}
}
}
}
self.set_a_to_b(a, b);
}
(TList { ty: ty1 }, TList { ty: ty2 }) => {
if self.unify_impl(*ty1, *ty2, false).is_err() {
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
}
self.set_a_to_b(a, b);
}
(TVar { fields: Some(map), range, .. }, TObj { fields, .. }) => {
(TVar { fields: Some(map), range, .. }, TObj { obj_id, fields, params }) => {
for (k, field) in map {
match *k {
RecordKey::Str(s) => {
@ -904,10 +1162,18 @@ impl Unifier {
self.unify_impl(field.ty, ty, false).map_err(|v| v.at(field.loc))?;
}
RecordKey::Int(_) => {
return Err(TypeError::new(
TypeErrorKind::NoSuchField(*k, b),
field.loc,
))
// Allow expressions such as list[0]
if *obj_id == PrimDef::List.id() {
let ty = iter_type_vars(params).nth(0).unwrap().ty;
self.unify_impl(field.ty, ty, false)
.map_err(|e| e.at(field.loc))?;
} else {
return Err(TypeError::new(
TypeErrorKind::NoSuchField(*k, b),
field.loc,
));
}
}
}
}
@ -990,17 +1256,10 @@ impl Unifier {
self.unification_table.set_value(b, Rc::new(TCall(calls)));
}
(TCall(calls), TFunc(signature)) => {
let required: Vec<StrRef> = signature
.args
.iter()
.filter(|v| v.default_value.is_none())
.map(|v| v.name)
.rev()
.collect();
// we unify every calls to the function signature.
for c in calls {
let call = self.calls[c.0].clone();
self.unify_call(&call, b, signature, &required)?;
self.unify_call(&call, b, signature)?;
}
self.set_a_to_b(a, b);
}
@ -1124,13 +1383,22 @@ impl Unifier {
TypeEnum::TLiteral { values, .. } => {
format!("const({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
TypeEnum::TTuple { ty } => {
let mut fields =
ty.iter().map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
format!("tuple[{}]", fields.join(", "))
}
TypeEnum::TList { ty } => {
format!("list[{}]", self.internal_stringify(*ty, obj_to_name, var_to_name, notes))
TypeEnum::TTuple { ty, is_vararg_ctx } => {
if *is_vararg_ctx {
debug_assert_eq!(ty.len(), 1);
let field = self.internal_stringify(
*ty.iter().next().unwrap(),
obj_to_name,
var_to_name,
notes,
);
format!("tuple[*{field}]")
} else {
let mut fields = ty
.iter()
.map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
format!("tuple[{}]", fields.join(", "))
}
}
TypeEnum::TVirtual { ty } => {
format!(
@ -1155,17 +1423,21 @@ impl Unifier {
.args
.iter()
.map(|arg| {
let vararg_prefix = if arg.is_vararg { "*" } else { "" };
if let Some(dv) = &arg.default_value {
format!(
"{}:{}={}",
"{}:{}{}={}",
arg.name,
vararg_prefix,
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes),
dv
)
} else {
format!(
"{}:{}",
"{}:{}{}",
arg.name,
vararg_prefix,
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes)
)
}
@ -1251,7 +1523,7 @@ impl Unifier {
match &*ty {
TypeEnum::TRigidVar { .. } | TypeEnum::TLiteral { .. } => None,
TypeEnum::TVar { id, .. } => mapping.get(id).copied(),
TypeEnum::TTuple { ty } => {
TypeEnum::TTuple { ty, is_vararg_ctx } => {
let mut new_ty = Cow::from(ty);
for (i, t) in ty.iter().enumerate() {
if let Some(t1) = self.subst_impl(*t, mapping, cache) {
@ -1259,14 +1531,14 @@ impl Unifier {
}
}
if matches!(new_ty, Cow::Owned(_)) {
Some(self.add_ty(TypeEnum::TTuple { ty: new_ty.into_owned() }))
Some(self.add_ty(TypeEnum::TTuple {
ty: new_ty.into_owned(),
is_vararg_ctx: *is_vararg_ctx,
}))
} else {
None
}
}
TypeEnum::TList { ty } => {
self.subst_impl(*ty, mapping, cache).map(|t| self.add_ty(TypeEnum::TList { ty: t }))
}
TypeEnum::TVirtual { ty } => self
.subst_impl(*ty, mapping, cache)
.map(|t| self.add_ty(TypeEnum::TVirtual { ty: t })),
@ -1277,6 +1549,7 @@ impl Unifier {
// This is also used to prevent infinite substitution...
let need_subst = params.values().any(|v| {
let ty = self.unification_table.probe_value(*v);
// TODO(Derppening): #444
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
mapping.contains_key(id)
} else {
@ -1421,20 +1694,55 @@ impl Unifier {
}
}
(TVar { range, .. }, _) => self.check_var_compatibility(b, range).or(Err(())),
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) if ty1.len() == ty2.len() => {
let ty: Vec<_> = zip(ty1.iter(), ty2.iter())
.map(|(a, b)| self.get_intersection(*a, *b))
.try_collect()?;
if ty.iter().any(Option::is_some) {
Ok(Some(self.add_ty(TTuple {
ty: zip(ty, ty1.iter()).map(|(a, b)| a.unwrap_or(*b)).collect(),
})))
(
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) => {
if *is_vararg1 && *is_vararg2 {
let isect_ty = self.get_intersection(ty1[0], ty2[0])?;
Ok(isect_ty.map(|ty| self.add_ty(TTuple { ty: vec![ty], is_vararg_ctx: true })))
} else {
Ok(None)
let zip_iter: Box<dyn Iterator<Item = (&Type, &Type)>> =
match (*is_vararg1, *is_vararg2) {
(true, _) => Box::new(repeat_n(&ty1[0], ty2.len()).zip(ty2.iter())),
(_, false) => Box::new(ty1.iter().zip(repeat_n(&ty2[0], ty1.len()))),
_ => {
if ty1.len() != ty2.len() {
return Err(());
}
Box::new(ty1.iter().zip(ty2.iter()))
}
};
let ty: Vec<_> =
zip_iter.map(|(a, b)| self.get_intersection(*a, *b)).try_collect()?;
Ok(if ty.iter().any(Option::is_some) {
Some(self.add_ty(TTuple {
ty: zip(ty, ty1.iter()).map(|(a, b)| a.unwrap_or(*b)).collect(),
is_vararg_ctx: false,
}))
} else {
None
})
}
}
(TList { ty: ty1 }, TList { ty: ty2 }) => {
Ok(self.get_intersection(*ty1, *ty2)?.map(|ty| self.add_ty(TList { ty })))
// TODO(Derppening): #444
(
TObj { obj_id: id1, fields, params: params1 },
TObj { obj_id: id2, params: params2, .. },
) if *id1 == PrimDef::List.id() && *id2 == PrimDef::List.id() => {
let tv_id = iter_type_vars(params1).nth(0).unwrap().id;
let ty1 = iter_type_vars(params1).nth(0).unwrap().ty;
let ty2 = iter_type_vars(params2).nth(0).unwrap().ty;
Ok(self.get_intersection(ty1, ty2)?.map(|ty| {
self.add_ty(TObj {
obj_id: *id1,
fields: fields.clone(),
params: into_var_map([TypeVar { id: tv_id, ty }]),
})
}))
}
(TVirtual { ty: ty1 }, TVirtual { ty: ty2 }) => {
Ok(self.get_intersection(*ty1, *ty2)?.map(|ty| self.add_ty(TVirtual { ty })))

View File

@ -1,10 +1,12 @@
use super::super::magic_methods::with_fields;
use super::*;
use std::collections::HashMap;
use indoc::indoc;
use itertools::Itertools;
use std::collections::HashMap;
use test_case::test_case;
use super::*;
use crate::typecheck::magic_methods::with_fields;
impl Unifier {
/// Check whether two types are equal.
fn eq(&mut self, a: Type, b: Type) -> bool {
@ -28,14 +30,14 @@ impl Unifier {
TypeEnum::TVar { fields: Some(map1), .. },
TypeEnum::TVar { fields: Some(map2), .. },
) => self.map_eq2(map1, map2),
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: false },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: false },
) => {
ty1.len() == ty2.len()
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2))
}
(TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 })
| (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => {
self.eq(*ty1, *ty2)
}
(TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => self.eq(*ty1, *ty2),
(
TypeEnum::TObj { obj_id: id1, params: params1, .. },
TypeEnum::TObj { obj_id: id2, params: params2, .. },
@ -119,6 +121,15 @@ impl TestEnvironment {
params: into_var_map([tvar]),
}),
);
let tvar = unifier.get_dummy_var();
type_mapping.insert(
"list".into(),
unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([tvar]),
}),
);
TestEnvironment { unifier, type_mapping }
}
@ -133,6 +144,36 @@ impl TestEnvironment {
// for testing only, so we can just panic when the input is malformed
let end = typ.find(|c| ['[', ',', ']', '='].contains(&c)).unwrap_or(typ.len());
match &typ[..end] {
"list" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
let mut ty = Vec::new();
while &s[0..1] != "]" {
let result = self.internal_parse(&s[1..], mapping);
ty.push(result.0);
s = result.1;
}
assert_eq!(ty.len(), 1);
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*self.unifier.get_ty_immutable(self.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
(
self.unifier
.subst(
self.type_mapping["list"],
&into_var_map([TypeVar { id: list_elem_tvar.id, ty: ty[0] }]),
)
.unwrap(),
&s[1..],
)
}
"tuple" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
@ -142,13 +183,7 @@ impl TestEnvironment {
ty.push(result.0);
s = result.1;
}
(self.unifier.add_ty(TypeEnum::TTuple { ty }), &s[1..])
}
"list" => {
assert_eq!(&typ[end..=end], "[");
let (ty, s) = self.internal_parse(&typ[end + 1..], mapping);
assert_eq!(&s[0..1], "]");
(self.unifier.add_ty(TypeEnum::TList { ty }), &s[1..])
(self.unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }), &s[1..])
}
"Record" => {
let mut s = &typ[end..];
@ -274,7 +309,7 @@ fn test_unify(
("v1", "tuple[int]"),
("v2", "list[int]"),
],
(("v1", "v2"), "Incompatible types: list[0] and tuple[0]")
(("v1", "v2"), "Incompatible types: 11[0] and tuple[0]")
; "type mismatch"
)]
#[test_case(2,
@ -298,7 +333,7 @@ fn test_unify(
("v1", "Record[a=float,b=int]"),
("v2", "Foo[v3]"),
],
(("v1", "v2"), "`3[typevar4]::b` field/method does not exist")
(("v1", "v2"), "`3[typevar5]::b` field/method does not exist")
; "record obj merge"
)]
/// Test cases for invalid unifications.
@ -388,6 +423,14 @@ fn test_typevar_range() {
let int_list = env.parse("list[int]", &HashMap::new());
let float_list = env.parse("list[float]", &HashMap::new());
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
// unification between v and int
// where v in (int, bool)
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
@ -398,7 +441,7 @@ fn test_typevar_range() {
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
assert_eq!(
env.unify(int_list, v),
Err("Expected any one of these types: 0, 2, but got list[0]".to_string())
Err("Expected any one of these types: 0, 2, but got 11[0]".to_string())
);
// unification between v and float
@ -410,7 +453,11 @@ fn test_typevar_range() {
);
let v1 = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v1_list = env.unifier.add_ty(TypeEnum::TList { ty: v1 });
let v1_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: v1 }]),
});
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
// unification between v and int
// where v in (int, list[v1]), v1 in (int, bool)
@ -424,9 +471,10 @@ fn test_typevar_range() {
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
// unification between v and list[float]
// where v in (int, list[v1]), v1 in (int, bool)
println!("float_list: {}, v: {}", env.unifier.stringify(float_list), env.unifier.stringify(v));
assert_eq!(
env.unify(float_list, v),
Err("Expected any one of these types: 0, list[typevar5], but got list[1]\n\nNotes:\n typevar5 ∈ {0, 2}".to_string())
Err("Expected any one of these types: 0, 11[typevar6], but got 11[1]\n\nNotes:\n typevar6 ∈ {0, 2}".to_string())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
@ -441,34 +489,66 @@ fn test_typevar_range() {
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let b_list = env.unifier.get_fresh_var_with_range(&[b_list], None, None).ty;
env.unifier.unify(a_list, b_list).unwrap();
let float_list = env.unifier.add_ty(TypeEnum::TList { ty: float });
let float_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: float }]),
});
env.unifier.unify(a_list, float_list).unwrap();
// previous unifications should not affect a and b
env.unifier.unify(a, int).unwrap();
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
env.unifier.unify(a_list, b_list).unwrap();
let int_list = env.unifier.add_ty(TypeEnum::TList { ty: int });
let int_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: int }]),
});
assert_eq!(
env.unify(a_list, int_list),
Err("Incompatible types: list[typevar22] and list[0]\
\n\nNotes:\n typevar22 {1}"
Err("Incompatible types: 11[typevar23] and 11[0]\
\n\nNotes:\n typevar23 {1}"
.into())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_dummy_var().ty;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
env.unifier.unify(a_list, b_list).unwrap();
assert_eq!(
env.unify(b, boolean),
@ -482,16 +562,25 @@ fn test_rigid_var() {
let a = env.unifier.get_fresh_rigid_var(None, None).ty;
let b = env.unifier.get_fresh_rigid_var(None, None).ty;
let x = env.unifier.get_dummy_var().ty;
let list_a = env.unifier.add_ty(TypeEnum::TList { ty: a });
let list_x = env.unifier.add_ty(TypeEnum::TList { ty: x });
let list_elem_tvar = env.unifier.get_fresh_var(Some("list_elem".into()), None);
let list_a = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let list_x = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: x }]),
});
let int = env.parse("int", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar3 and typevar2".to_string()));
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar4 and typevar3".to_string()));
env.unifier.unify(list_a, list_x).unwrap();
assert_eq!(
env.unify(list_x, list_int),
Err("Incompatible types: list[typevar2] and list[0]".to_string())
Err("Incompatible types: 11[typevar3] and 11[0]".to_string())
);
env.unifier.replace_rigid_var(a, int);
@ -506,14 +595,25 @@ fn test_instantiation() {
let float = env.parse("float", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
let obj_map: HashMap<_, _> = [(0usize, "int"), (1, "float"), (2, "bool")].into();
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
let obj_map: HashMap<_, _> = [(0usize, "int"), (1, "float"), (2, "bool"), (11, "list")].into();
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let list_v = env.unifier.add_ty(TypeEnum::TList { ty: v });
let list_v = env
.unifier
.subst(env.type_mapping["list"], &into_var_map([TypeVar { id: list_elem_tvar.id, ty: v }]))
.unwrap();
let v1 = env.unifier.get_fresh_var_with_range(&[list_v, int], None, None).ty;
let v2 = env.unifier.get_fresh_var_with_range(&[list_int, float], None, None).ty;
let t = env.unifier.get_dummy_var().ty;
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2] });
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2], is_vararg_ctx: false });
let v3 = env.unifier.get_fresh_var_with_range(&[tuple, t], None, None).ty;
// t = TypeVar('t')
// v = TypeVar('v', int, bool)
@ -536,7 +636,7 @@ fn test_instantiation() {
tuple[int, list[bool], list[int]]
tuple[int, list[int], float]
tuple[int, list[int], list[int]]
v5"
v6"
}
.split('\n')
.collect_vec();

View File

@ -238,7 +238,7 @@ impl<'a> EH_Frame<'a> {
/// From the [specification](https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html):
///
/// > Each CFI record contains a Common Information Entry (CIE) record followed by 1 or more Frame
/// Description Entry (FDE) records.
/// > Description Entry (FDE) records.
pub struct CFI_Record<'a> {
// It refers to the augmentation data that corresponds to 'R' in the augmentation string
fde_pointer_encoding: u8,

View File

@ -2,9 +2,9 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(
clippy::cast_possible_truncation,
@ -21,13 +21,12 @@
clippy::wildcard_imports
)]
use std::{collections::HashMap, mem, ptr, slice, str};
use byteorder::{ByteOrder, LittleEndian};
use dwarf::*;
use elf::*;
use std::collections::HashMap;
use std::{mem, ptr, slice, str};
extern crate byteorder;
use byteorder::{ByteOrder, LittleEndian};
mod dwarf;
mod elf;

View File

@ -8,15 +8,15 @@ license = "MIT"
edition = "2021"
[build-dependencies]
lalrpop = "0.20"
lalrpop = "0.22"
[dependencies]
nac3ast = { path = "../nac3ast" }
lalrpop-util = "0.20"
lalrpop-util = "0.22"
log = "0.4"
unic-emoji-char = "0.9"
unic-ucd-ident = "0.9"
unicode_names2 = "1.2"
unicode_names2 = "1.3"
phf = { version = "0.11", features = ["macros"] }
ahash = "0.8"

View File

@ -1,8 +1,10 @@
use crate::ast::Ident;
use crate::ast::Location;
use crate::error::*;
use crate::token::Tok;
use crate::{
ast::{Ident, Location},
error::*,
token::Tok,
};
use lalrpop_util::ParseError;
use nac3ast::*;
pub fn make_config_comment(

View File

@ -1,13 +1,12 @@
//! Define internal parse error types
//! The goal is to provide a matching and a safe error API, maksing errors from LALR
use lalrpop_util::ParseError as LalrpopError;
use crate::ast::Location;
use crate::token::Tok;
use std::error::Error;
use std::fmt;
use lalrpop_util::ParseError as LalrpopError;
use crate::{ast::Location, token::Tok};
/// Represents an error during lexical scanning.
#[derive(Debug, PartialEq)]
pub struct LexicalError {

View File

@ -1,12 +1,11 @@
use std::iter;
use std::mem;
use std::str;
use crate::ast::{Constant, ConversionFlag, Expr, ExprKind, Location};
use crate::error::{FStringError, FStringErrorType, ParseError};
use crate::parser::parse_expression;
use std::{iter, mem, str};
use self::FStringErrorType::*;
use crate::{
ast::{Constant, ConversionFlag, Expr, ExprKind, Location},
error::{FStringError, FStringErrorType, ParseError},
parser::parse_expression,
};
struct FStringParser<'a> {
chars: iter::Peekable<str::Chars<'a>>,

View File

@ -1,8 +1,11 @@
use ahash::RandomState;
use std::collections::HashSet;
use crate::ast;
use crate::error::{LexicalError, LexicalErrorType};
use ahash::RandomState;
use crate::{
ast,
error::{LexicalError, LexicalErrorType},
};
pub struct ArgumentList {
pub args: Vec<ast::Expr>,

View File

@ -1,17 +1,17 @@
//! This module takes care of lexing python source text.
//!
//! This means source code is translated into separate tokens.
use std::{char, cmp::Ordering, num::IntErrorKind, str::FromStr};
pub use super::token::Tok;
use crate::ast::{FileName, Location};
use crate::error::{LexicalError, LexicalErrorType};
use std::char;
use std::cmp::Ordering;
use std::num::IntErrorKind;
use std::str::FromStr;
use unic_emoji_char::is_emoji_presentation;
use unic_ucd_ident::{is_xid_continue, is_xid_start};
pub use super::token::Tok;
use crate::{
ast::{FileName, Location},
error::{LexicalError, LexicalErrorType},
};
#[derive(Clone, Copy, PartialEq, Debug, Default)]
struct IndentationLevel {
tabs: usize,

View File

@ -19,9 +19,9 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(
clippy::enum_glob_use,
@ -49,11 +49,11 @@ lalrpop_mod!(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
unused,
clippy::all,
clippy::pedantic
)]
#[warn(rust_2024_compatibility)]
python
);
pub mod config_comment_helper;

View File

@ -5,14 +5,16 @@
//! parse a whole program, a single statement, or a single
//! expression.
use nac3ast::Location;
use std::iter;
use crate::ast::{self, FileName};
use crate::error::ParseError;
use crate::lexer;
use nac3ast::Location;
pub use crate::mode::Mode;
use crate::python;
use crate::{
ast::{self, FileName},
error::ParseError,
lexer, python,
};
/*
* Parse python code.

View File

@ -1,8 +1,9 @@
//! Different token definitions.
//! Loosely based on token.h from CPython source:
use crate::ast;
use std::fmt::{self, Write};
use crate::ast;
/// Python source code can be tokenized in a sequence of these tokens.
#[derive(Clone, Debug, PartialEq)]
pub enum Tok {

View File

@ -4,16 +4,13 @@ version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
no-escape-analysis = ["nac3core/no-escape-analysis"]
[dependencies]
parking_lot = "0.12"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
[dependencies.clap]
version = "4.5"
features = ["derive"]
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]

View File

@ -3,23 +3,66 @@
set -e
if [ -z "$1" ]; then
echo "Requires at least one argument"
exit 1
echo "No argument supplied"
exit 1
fi
declare -a nac3args
while [ $# -gt 1 ]; do
case "$1" in
--help)
echo "Usage: check_demo.sh [--debug] [-i686] -- [NAC3ARGS...] demo"
exit
;;
--debug)
debug=1
;;
-i686)
i686=1
;;
--)
shift
break
;;
*)
echo "Unrecognized argument \"$1\""
exit 1
;;
esac
shift
done
while [ $# -gt 1 ]; do
nac3args+=("$1")
shift
done
demo="$1"
echo -n "Checking $demo... "
./interpret_demo.py "$demo" > interpreted.log
./run_demo.sh --out run.log "${nac3args[@]}" "$demo"
./run_demo.sh --lli --out run_lli.log "${nac3args[@]}" "$demo"
diff -Nau interpreted.log run.log
diff -Nau interpreted.log run_lli.log
echo "ok"
rm -f interpreted.log run.log run_lli.log
echo "### Checking $demo..."
echo ">>>>>> Running $demo with the Python interpreter"
./interpret_demo.py "$demo" > interpreted.log
if [ -n "$i686" ]; then
echo "...... Trying NAC3's 32-bit code generator output"
if [ -n "$debug" ]; then
./run_demo.sh --debug -i686 --out run_32.log -- "${nac3args[@]}" "$demo"
else
./run_demo.sh -i686 --out run_32.log -- "${nac3args[@]}" "$demo"
fi
diff -Nau interpreted.log run_32.log
fi
echo "...... Trying NAC3's 64-bit code generator output"
if [ -n "$debug" ]; then
./run_demo.sh --debug --out run_64.log -- "${nac3args[@]}" "$demo"
else
./run_demo.sh --out run_64.log -- "${nac3args[@]}" "$demo"
fi
diff -Nau interpreted.log run_64.log
echo "...... OK"
rm -f interpreted.log \
run_32.log run_64.log

View File

@ -2,6 +2,11 @@
set -e
if [ "$1" == "--help" ]; then
echo "Usage: check_demos.sh [CHECKARGS...] [--] [NAC3ARGS...]"
exit
fi
count=0
for demo in src/*.py; do
./check_demo.sh "$@" "$demo"

View File

@ -6,14 +6,12 @@
#include <stdlib.h>
#include <string.h>
#define usize size_t
double dbl_nan(void) {
return NAN;
return NAN;
}
double dbl_inf(void) {
return INFINITY;
return INFINITY;
}
void output_bool(bool x) {
@ -21,19 +19,19 @@ void output_bool(bool x) {
}
void output_int32(int32_t x) {
printf("%"PRId32"\n", x);
printf("%" PRId32 "\n", x);
}
void output_int64(int64_t x) {
printf("%"PRId64"\n", x);
printf("%" PRId64 "\n", x);
}
void output_uint32(uint32_t x) {
printf("%"PRIu32"\n", x);
printf("%" PRIu32 "\n", x);
}
void output_uint64(uint64_t x) {
printf("%"PRIu64"\n", x);
printf("%" PRIu64 "\n", x);
}
void output_float64(double x) {
@ -44,8 +42,17 @@ void output_float64(double x) {
}
}
void output_range(int32_t range[3]) {
printf("range(");
printf("%d, %d", range[0], range[1]);
if (range[2] != 1) {
printf(", %d", range[2]);
}
puts(")");
}
void output_asciiart(int32_t x) {
static const char *chars = " .,-:;i+hHM$*#@ ";
static const char* chars = " .,-:;i+hHM$*#@ ";
if (x < 0) {
putchar('\n');
} else {
@ -54,15 +61,15 @@ void output_asciiart(int32_t x) {
}
struct cslice {
void *data;
usize len;
void* data;
size_t len;
};
void output_int32_list(struct cslice *slice) {
const int32_t *data = (int32_t *) slice->data;
void output_int32_list(struct cslice* slice) {
const int32_t* data = (int32_t*)slice->data;
putchar('[');
for (usize i = 0; i < slice->len; ++i) {
for (size_t i = 0; i < slice->len; ++i) {
if (i == slice->len - 1) {
printf("%d", data[i]);
} else {
@ -73,19 +80,23 @@ void output_int32_list(struct cslice *slice) {
putchar('\n');
}
void output_str(struct cslice *slice) {
const char *data = (const char *) slice->data;
void output_str(struct cslice* slice) {
const char* data = (const char*)slice->data;
for (usize i = 0; i < slice->len; ++i) {
for (size_t i = 0; i < slice->len; ++i) {
putchar(data[i]);
}
}
void output_strln(struct cslice* slice) {
output_str(slice);
putchar('\n');
}
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice *slice) {
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice* slice) {
int i;
void *ptr = (void *) &i;
return (uintptr_t) ptr;
void* ptr = (void*)&i;
return (uintptr_t)ptr;
}
uint32_t __nac3_personality(uint32_t state, uint32_t exception_object, uint32_t context) {
@ -94,8 +105,26 @@ uint32_t __nac3_personality(uint32_t state, uint32_t exception_object, uint32_t
__builtin_unreachable();
}
uint32_t __nac3_raise(uint32_t state, uint32_t exception_object, uint32_t context) {
printf("__nac3_raise(state: %u, exception_object: %u, context: %u)\n", state, exception_object, context);
// See `struct Exception<'a>` in
// https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs
struct Exception {
uint32_t id;
struct cslice file;
uint32_t line;
uint32_t column;
struct cslice function;
struct cslice message;
int64_t param[3];
};
uint32_t __nac3_raise(struct Exception* e) {
printf("__nac3_raise called. Exception details:\n");
printf(" ID: %" PRIu32 "\n", e->id);
printf(" Location: %*s:%" PRIu32 ":%" PRIu32 "\n", (int)e->file.len, (const char*)e->file.data, e->line,
e->column);
printf(" Function: %*s\n", (int)e->function.len, (const char*)e->function.data);
printf(" Message: \"%*s\"\n", (int)e->message.len, (const char*)e->message.data);
printf(" Params: {0}=%" PRId64 ", {1}=%" PRId64 ", {2}=%" PRId64 "\n", e->param[0], e->param[1], e->param[2]);
exit(101);
__builtin_unreachable();
}

View File

@ -6,6 +6,7 @@ import importlib.machinery
import math
import numpy as np
import numpy.typing as npt
import scipy as sp
import pathlib
from numpy import int32, int64, uint32, uint64
@ -107,6 +108,9 @@ def patch(module):
def output_float(x):
print("%f" % x)
def output_strln(x):
print(x, end='')
def dbg_stack_address(_):
return 0
@ -120,6 +124,8 @@ def patch(module):
return output_asciiart
elif name == "output_float64":
return output_float
elif name == "output_str":
return output_strln
elif name in {
"output_bool",
"output_int32",
@ -127,7 +133,8 @@ def patch(module):
"output_int32_list",
"output_uint32",
"output_uint64",
"output_str",
"output_strln",
"output_range",
}:
return print
elif name == "dbg_stack_address":
@ -161,7 +168,7 @@ def patch(module):
module.ceil64 = _ceil
module.np_ceil = np.ceil
# NumPy ndarray functions
# NumPy NDArray factory functions
module.ndarray = NDArray
module.np_ndarray = np.ndarray
module.np_empty = np.empty
@ -177,8 +184,10 @@ def patch(module):
module.np_isinf = np.isinf
module.np_min = np.min
module.np_minimum = np.minimum
module.np_argmin = np.argmin
module.np_max = np.max
module.np_maximum = np.maximum
module.np_argmax = np.argmax
module.np_sin = np.sin
module.np_cos = np.cos
module.np_exp = np.exp
@ -209,8 +218,10 @@ def patch(module):
module.np_ldexp = np.ldexp
module.np_hypot = np.hypot
module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math Functions
# SciPy Math functions
module.sp_spec_erf = special.erf
module.sp_spec_erfc = special.erfc
module.sp_spec_gamma = special.gamma
@ -218,14 +229,19 @@ def patch(module):
module.sp_spec_j0 = special.j0
module.sp_spec_j1 = special.j1
# NumPy NDArray Functions
module.np_ndarray = np.ndarray
module.np_empty = np.empty
module.np_zeros = np.zeros
module.np_ones = np.ones
module.np_full = np.full
module.np_eye = np.eye
module.np_identity = np.identity
# Linalg functions
module.np_dot = np.dot
module.np_linalg_cholesky = np.linalg.cholesky
module.np_linalg_qr = np.linalg.qr
module.np_linalg_svd = np.linalg.svd
module.np_linalg_inv = np.linalg.inv
module.np_linalg_pinv = np.linalg.pinv
module.np_linalg_matrix_power = np.linalg.matrix_power
module.np_linalg_det = np.linalg.det
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
module.sp_linalg_schur = sp.linalg.schur
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
def file_import(filename, prefix="file_import_"):
filename = pathlib.Path(filename)

114
nac3standalone/demo/linalg/Cargo.lock generated Normal file
View File

@ -0,0 +1,114 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
"num-traits",
]
[[package]]
name = "autocfg"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
[[package]]
name = "cslice"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0f8cb7306107e4b10e64994de6d3274bd08996a7c1322a27b86482392f96be0a"
[[package]]
name = "libm"
version = "0.2.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ec2a862134d2a7d32d7983ddcdd1c4923530833c9f2ea1a44fc5fa473989058"
[[package]]
name = "linalg"
version = "0.1.0"
dependencies = [
"cslice",
"nalgebra",
]
[[package]]
name = "nalgebra"
version = "0.32.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b5c17de023a86f59ed79891b2e5d5a94c705dbe904a5b5c9c952ea6221b03e4"
dependencies = [
"approx",
"num-complex",
"num-rational",
"num-traits",
"simba",
"typenum",
]
[[package]]
name = "num-complex"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
dependencies = [
"num-traits",
]
[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f83d14da390562dca69fc84082e73e548e1ad308d24accdedd2720017cb37824"
dependencies = [
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
dependencies = [
"autocfg",
"libm",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
"approx",
"num-complex",
"num-traits",
"paste",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

View File

@ -0,0 +1,13 @@
[package]
name = "linalg"
version = "0.1.0"
edition = "2021"
[lib]
crate-type = ["staticlib"]
[dependencies]
nalgebra = {version = "0.32.6", default-features = false, features = ["libm", "alloc"]}
cslice = "0.3.0"
[workspace]

View File

@ -0,0 +1,406 @@
// Uses `nalgebra` crate to invoke `np_linalg` and `sp_linalg` functions
// When converting between `nalgebra::Matrix` and `NDArray` following considerations are necessary
//
// * Both `nalgebra::Matrix` and `NDArray` require their content to be stored in row-major order
// * `NDArray` data pointer can be directly read and converted to `nalgebra::Matrix` (row and column number must be known)
// * `nalgebra::Matrix::as_slice` returns the content of matrix in column-major order and initial data needs to be transposed before storing it in `NDArray` data pointer
use core::slice;
use nalgebra::DMatrix;
fn report_error(
error_name: &str,
fn_name: &str,
file_name: &str,
line_num: u32,
col_num: u32,
err_msg: &str,
) -> ! {
panic!(
"Exception {} from {} in {}:{}:{}, message: {}",
error_name, fn_name, file_name, line_num, col_num, err_msg
);
}
pub struct InputMatrix {
pub ndims: usize,
pub dims: *const usize,
pub data: *mut f64,
}
impl InputMatrix {
fn get_dims(&mut self) -> Vec<usize> {
let dims = unsafe { slice::from_raw_parts(self.dims, self.ndims) };
dims.to_vec()
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_cholesky(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix1.cholesky();
match result {
Some(res) => {
out_slice.copy_from_slice(res.unpack().transpose().as_slice());
}
None => {
report_error(
"LinAlgError",
"np_linalg_cholesky",
file!(),
line!(),
column!(),
"Matrix is not positive definite",
);
}
};
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_qr(
mat1: *mut InputMatrix,
out_q: *mut InputMatrix,
out_r: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
let out_r = out_r.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outq_dim = (*out_q).get_dims();
let outr_dim = (*out_r).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]) };
let out_r_slice = unsafe { slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]) };
// Refer to https://github.com/dimforge/nalgebra/issues/735
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let res = matrix1.qr();
let (q, r) = res.unpack();
// Uses different algo need to match numpy
out_q_slice.copy_from_slice(q.transpose().as_slice());
out_r_slice.copy_from_slice(r.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_svd(
mat1: *mut InputMatrix,
outu: *mut InputMatrix,
outs: *mut InputMatrix,
outvh: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let outu = outu.as_mut().unwrap();
let outs = outs.as_mut().unwrap();
let outvh = outvh.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_svd", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outu_dim = (*outu).get_dims();
let outs_dim = (*outs).get_dims();
let outvh_dim = (*outvh).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]) };
let out_s_slice = unsafe { slice::from_raw_parts_mut(outs.data, outs_dim[0]) };
let out_vh_slice =
unsafe { slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix.svd(true, true);
out_u_slice.copy_from_slice(result.u.unwrap().transpose().as_slice());
out_s_slice.copy_from_slice(result.singular_values.as_slice());
out_vh_slice.copy_from_slice(result.v_t.unwrap().transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_inv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
let inv = matrix.try_inverse().unwrap();
out_slice.copy_from_slice(inv.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_pinv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_pinv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let svd = matrix.svd(true, true);
let inv = svd.pseudo_inverse(1e-15);
match inv {
Ok(m) => {
out_slice.copy_from_slice(m.transpose().as_slice());
}
Err(err_msg) => {
report_error("LinAlgError", "np_linalg_pinv", file!(), line!(), column!(), err_msg);
}
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_matrix_power(
mat1: *mut InputMatrix,
mat2: *mut InputMatrix,
out: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let mat2 = mat2.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D", mat1.ndims);
report_error("ValueError", "np_linalg_matrix_power", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let power = unsafe { slice::from_raw_parts_mut(mat2.data, 1) };
let power = power[0];
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let abs_pow = power.abs();
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let mut result = matrix1.pow(abs_pow as u32);
if power < 0.0 {
if !result.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
result = result.try_inverse().unwrap();
}
out_slice.copy_from_slice(result.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_det(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_det", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, 1) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_square() {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
out_slice[0] = matrix.determinant();
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_lu(
mat1: *mut InputMatrix,
out_l: *mut InputMatrix,
out_u: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_l = out_l.as_mut().unwrap();
let out_u = out_u.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_lu", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outl_dim = (*out_l).get_dims();
let outu_dim = (*out_u).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_l_slice = unsafe { slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (_, l, u) = matrix.lu().unpack();
out_l_slice.copy_from_slice(l.transpose().as_slice());
out_u_slice.copy_from_slice(u.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_schur(
mat1: *mut InputMatrix,
out_t: *mut InputMatrix,
out_z: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_t = out_t.as_mut().unwrap();
let out_z = out_z.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let out_t_dim = (*out_t).get_dims();
let out_z_dim = (*out_z).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_t_slice = unsafe { slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]) };
let out_z_slice = unsafe { slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (z, t) = matrix.schur().unpack();
out_t_slice.copy_from_slice(t.transpose().as_slice());
out_z_slice.copy_from_slice(z.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_hessenberg(
mat1: *mut InputMatrix,
out_h: *mut InputMatrix,
out_q: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_h = out_h.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {} != {}", dim1[0], dim1[1]);
report_error("LinAlgError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let out_h_dim = (*out_h).get_dims();
let out_q_dim = (*out_q).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_h_slice = unsafe { slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (q, h) = matrix.hessenberg().unpack();
out_h_slice.copy_from_slice(h.transpose().as_slice());
out_q_slice.copy_from_slice(q.transpose().as_slice());
}

View File

@ -2,6 +2,9 @@
set -e
: "${DEMO_LINALG_STUB:=linalg/target/release/liblinalg.a}"
: "${DEMO_LINALG_STUB32:=linalg/target/i686-unknown-linux-gnu/release/liblinalg.a}"
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
@ -11,25 +14,26 @@ declare -a nac3args
while [ $# -ge 1 ]; do
case "$1" in
--help)
echo "Usage: run_demo.sh [--help] [--out OUTFILE] [--lli] [--debug] -- [NAC3ARGS...]"
echo "Usage: run_demo.sh [--help] [--out OUTFILE] [--debug] [-i686] -- [NAC3ARGS...] demo"
exit
;;
--out)
shift
outfile="$1"
;;
--lli)
use_lli=1
;;
--debug)
debug=1
;;
-i686)
i686=1
;;
--)
shift
break
;;
*)
break
echo "Unrecognized argument \"$1\""
exit 1
;;
esac
shift
@ -50,29 +54,19 @@ else
fi
rm -f ./*.o ./*.bc demo
if [ -z "$use_lli" ]; then
if [ -z "$i686" ]; then
$nac3standalone "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -o demo.o demo.c
clang -lm -o demo module.o demo.o
if [ -z "$outfile" ]; then
./demo
else
./demo > "$outfile"
fi
clang -o demo module.o demo.o $DEMO_LINALG_STUB -lm -Wl,--no-warn-search-mismatch
else
$nac3standalone --emit-llvm "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -emit-llvm -o demo.bc demo.c
shopt -s nullglob
llvm-link -o nac3out.bc module*.bc main.bc
shopt -u nullglob
if [ -z "$outfile" ]; then
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc
else
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc > "$outfile"
fi
$nac3standalone --triple i686-unknown-linux-gnu --target-features +sse2 "${nac3args[@]}"
clang -m32 -c -std=gnu11 -Wall -Wextra -O3 -msse2 -o demo.o demo.c
clang -m32 -o demo module.o demo.o $DEMO_LINALG_STUB32 -lm -Wl,--no-warn-search-mismatch
fi
if [ -z "$outfile" ]; then
./demo
else
./demo > "$outfile"
fi

View File

@ -0,0 +1,76 @@
@extern
def output_int32(x: int32):
...
@extern
def output_bool(x: bool):
...
def example1():
x, *ys, z = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(len(ys))
output_int32(ys[0])
output_int32(ys[1])
output_int32(ys[2])
output_int32(z)
def example2():
x, y, *zs = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(y)
output_int32(len(zs))
output_int32(zs[0])
output_int32(zs[1])
output_int32(zs[2])
def example3():
*xs, y, z = (1, 2, 3, 4, 5)
output_int32(len(xs))
output_int32(xs[0])
output_int32(xs[1])
output_int32(xs[2])
output_int32(y)
output_int32(z)
def example4():
*xs, y, z = (4, 5)
output_int32(len(xs))
output_int32(y)
output_int32(z)
def example5():
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
output_int32(i)
output_int32(x[0])
output_int32(x[1])
class A:
value: int32
def __init__(self):
self.value = 1000
def example6():
ws = [88, 7, 8]
a = A()
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
output_int32(x)
output_int32(y)
output_bool(ys[0])
output_int32(ys[1])
output_int32(a.value)
output_int32(ws[0])
output_int32(ws[1])
output_int32(ws[2])
def run() -> int32:
example1()
example2()
example3()
example4()
example5()
example6()
return 0

View File

@ -7,7 +7,7 @@ def output_int64(x: int64):
...
@extern
def output_str(x: str):
def output_strln(x: str):
...
@ -33,7 +33,7 @@ class A:
class Initless:
def foo(self):
output_str("hello")
output_strln("hello")
def run() -> int32:
a = A(10)

View File

@ -22,6 +22,10 @@ def output_uint64(x: uint64):
def output_float64(x: float):
...
@extern
def output_range(x: range):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -34,6 +38,10 @@ def output_asciiart(x: int32):
def output_str(x: str):
...
@extern
def output_strln(x: str):
...
def test_output_bool():
output_bool(True)
output_bool(False)
@ -59,6 +67,15 @@ def test_output_float64():
output_float64(16.25)
output_float64(-16.25)
def test_output_range():
r = range(1, 100, 5)
output_int32(r.start)
output_int32(r.stop)
output_int32(r.step)
output_range(range(10))
output_range(range(1, 10))
output_range(range(1, 10, 2))
def test_output_asciiart():
for i in range(17):
output_asciiart(i)
@ -68,7 +85,8 @@ def test_output_int32_list():
output_int32_list([0, 1, 3, 5, 10])
def test_output_str_family():
output_str("hello world")
output_str("hello")
output_strln(" world")
def run() -> int32:
test_output_bool()
@ -77,6 +95,7 @@ def run() -> int32:
test_output_uint32()
test_output_uint64()
test_output_float64()
test_output_range()
test_output_asciiart()
test_output_int32_list()
test_output_str_family()

View File

@ -0,0 +1,31 @@
@extern
def output_int32(x: int32):
...
@extern
def output_int64(x: int64):
...
X: int32 = 0
Y = int64(1)
def f():
global X, Y
X = 1
Y = int64(2)
def run() -> int32:
global X, Y
output_int32(X)
output_int64(Y)
f()
output_int32(X)
output_int64(Y)
X = 0
Y = int64(0)
output_int32(X)
output_int64(Y)
return 0

View File

@ -10,23 +10,58 @@ class A:
def __init__(self, a: int32):
self.a = a
def f1(self):
self.f2()
def f2(self):
def output_all_fields(self):
output_int32(self.a)
def set_a(self, a: int32):
self.a = a
class B(A):
b: int32
def __init__(self, b: int32):
self.a = b + 1
A.__init__(self, b + 1)
self.set_b(b)
def output_parent_fields(self):
A.output_all_fields(self)
def output_all_fields(self):
A.output_all_fields(self)
output_int32(self.b)
def set_b(self, b: int32):
self.b = b
class C(B):
c: int32
def __init__(self, c: int32):
B.__init__(self, c + 1)
self.c = c
def output_parent_fields(self):
B.output_all_fields(self)
def output_all_fields(self):
B.output_all_fields(self)
output_int32(self.c)
def set_c(self, c: int32):
self.c = c
def run() -> int32:
aaa = A(5)
bbb = B(2)
aaa.f1()
bbb.f1()
ccc = C(10)
ccc.output_all_fields()
ccc.set_a(1)
ccc.set_b(2)
ccc.set_c(3)
ccc.output_all_fields()
bbb = B(10)
bbb.set_a(9)
bbb.set_b(8)
bbb.output_all_fields()
ccc.output_all_fields()
return 0

View File

@ -1,3 +1,7 @@
@extern
def output_bool(x: bool):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -30,6 +34,32 @@ def run() -> int32:
get_list_slice()
list_slice_assignment()
output_int32_list([1, 2, 3] + [4, 5, 6])
output_int32_list([1, 2, 3] * 3)
output_bool([] == [])
output_bool([0] == [])
output_bool([0] == [0])
output_bool([0, 1] == [0])
output_bool([0, 1] == [0, 1])
output_bool([] != [])
output_bool([0] != [])
output_bool([0] != [0])
output_bool([0] != [0, 1])
output_bool([0, 1] != [0, 1])
output_bool([] == [] == [])
output_bool([0] == [0] == [0])
output_bool([0, 1] == [0] == [0, 1])
output_bool([0, 1] == [0, 1] == [0])
output_bool([0] == [0, 1] == [0, 1])
output_bool([0, 1] == [0, 1] == [0, 1])
output_bool([] != [] != [])
output_bool([0] != [0] != [0])
output_bool([0, 1] != [0] != [0, 1])
output_bool([0, 1] != [0, 1] != [0])
output_bool([0] != [0, 1] != [0, 1])
output_bool([0, 1] != [0, 1] != [0, 1])
return 0
def get_list_slice():

View File

@ -23,11 +23,12 @@ def run() -> int32:
output_int32(x)
output_str(" * ")
output_float64(n / x)
output_str("\n")
except: # Assume this is intended to catch x == 0
break
else:
# loop fell through without finding a factor
output_int32(n)
output_str(" is a prime number")
output_str(" is a prime number\n")
return 0

View File

@ -37,7 +37,7 @@ def test_round64():
output_int64(round64(x))
def test_np_round():
for x in [-1.5, -0.5, 0.5, 1.5, dbl_inf(), -dbl_inf(), dbl_nan()]:
for x in [-1.5, -0.5, 0.5, 1.5, dbl_inf(), -dbl_inf(), dbl_nan(), 0.0, -0.0, 1.6, 1.4, -1.4, -1.6]:
output_float64(np_round(x))
def test_np_isnan():

View File

@ -71,28 +71,65 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
pass
def consume_ndarray_2(n: ndarray[float, Literal[2]]):
pass
def test_ndarray_ctor():
n: ndarray[float, Literal[1]] = np_ndarray([1])
consume_ndarray_1(n)
def test_ndarray_empty():
n: ndarray[float, 1] = np_empty([1])
consume_ndarray_1(n)
n1: ndarray[float, 1] = np_empty([1])
consume_ndarray_1(n1)
n2: ndarray[float, 1] = np_empty(10)
consume_ndarray_1(n2)
n3: ndarray[float, 1] = np_empty((2,))
consume_ndarray_1(n3)
n4: ndarray[float, 2] = np_empty((4, 4))
consume_ndarray_2(n4)
dim4 = (5, 2)
n5: ndarray[float, 2] = np_empty(dim4)
consume_ndarray_2(n5)
def test_ndarray_zeros():
n: ndarray[float, 1] = np_zeros([1])
output_ndarray_float_1(n)
n1: ndarray[float, 1] = np_zeros([1])
output_ndarray_float_1(n1)
k = 3 + int32(n1[0]) # to test variable shape inputs
n2: ndarray[float, 1] = np_zeros(k * k)
output_ndarray_float_1(n2)
n3: ndarray[float, 1] = np_zeros((k * 2,))
output_ndarray_float_1(n3)
dim4 = (3, 2 * k)
n4: ndarray[float, 2] = np_zeros(dim4)
output_ndarray_float_2(n4)
def test_ndarray_ones():
n: ndarray[float, 1] = np_ones([1])
output_ndarray_float_1(n)
dim = (1,)
n_tup: ndarray[float, 1] = np_ones(dim)
output_ndarray_float_1(n_tup)
def test_ndarray_full():
n_float: ndarray[float, 1] = np_full([1], 2.0)
output_ndarray_float_1(n_float)
n_i32: ndarray[int32, 1] = np_full([1], 2)
output_ndarray_int32_1(n_i32)
dim = (1,)
n_float_tup: ndarray[float, 1] = np_full(dim, 2.0)
output_ndarray_float_1(n_float_tup)
n_i32_tup: ndarray[int32, 1] = np_full(dim, 2)
output_ndarray_int32_1(n_i32_tup)
def test_ndarray_eye():
n: ndarray[float, 2] = np_eye(2)
output_ndarray_float_2(n)
@ -840,6 +877,13 @@ def test_ndarray_minimum_broadcast_rhs_scalar():
output_ndarray_float_2(min_x_zeros)
output_ndarray_float_2(min_x_ones)
def test_ndarray_argmin():
x = np_array([[1., 2.], [3., 4.]])
y = np_argmin(x)
output_ndarray_float_2(x)
output_int64(y)
def test_ndarray_max():
x = np_identity(2)
y = np_max(x)
@ -883,6 +927,13 @@ def test_ndarray_maximum_broadcast_rhs_scalar():
output_ndarray_float_2(max_x_zeros)
output_ndarray_float_2(max_x_ones)
def test_ndarray_argmax():
x = np_array([[1., 2.], [3., 4.]])
y = np_argmax(x)
output_ndarray_float_2(x)
output_int64(y)
def test_ndarray_abs():
x = np_identity(2)
y = abs(x)
@ -1388,6 +1439,142 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_dot():
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
z1 = np_dot(x1, y1)
x2: ndarray[int32, 1] = np_array([5, 1, 4, 2])
y2: ndarray[int32, 1] = np_array([5, 1, 6, 6])
z2 = np_dot(x2, y2)
x3: ndarray[bool, 1] = np_array([True, True, True, True])
y3: ndarray[bool, 1] = np_array([True, True, True, True])
z3 = np_dot(x3, y3)
z4 = np_dot(2, 3)
z5 = np_dot(2., 3.)
z6 = np_dot(True, False)
output_float64(z1)
output_int32(z2)
output_bool(z3)
output_int32(z4)
output_float64(z5)
output_bool(z6)
def test_ndarray_cholesky():
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
y = np_linalg_cholesky(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_qr():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y, z = np_linalg_qr(x)
output_ndarray_float_2(x)
# QR Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = y @ z
output_ndarray_float_2(a)
def test_ndarray_linalg_inv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_inv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_pinv():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
y = np_linalg_pinv(x)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_matrix_power():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_matrix_power(x, -9)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_det():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
y = np_linalg_det(x)
output_ndarray_float_2(x)
output_float64(y)
def test_ndarray_schur():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
t, z = sp_linalg_schur(x)
output_ndarray_float_2(x)
# Schur Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = (z @ t) @ np_linalg_inv(z)
output_ndarray_float_2(a)
def test_ndarray_hessenberg():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 5.0, 8.5]])
h, q = sp_linalg_hessenberg(x)
output_ndarray_float_2(x)
# Hessenberg Factorization is not unique and gives different results in scipy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = (q @ h) @ np_linalg_inv(q)
output_ndarray_float_2(a)
def test_ndarray_lu():
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
l, u = sp_linalg_lu(x)
output_ndarray_float_2(x)
output_ndarray_float_2(l)
output_ndarray_float_2(u)
def test_ndarray_svd():
w: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
x, y, z = np_linalg_svd(w)
output_ndarray_float_2(w)
# SVD Factorization is not unique and gives different results in numpy and nalgebra
# Reverting the decomposition to compare the initial arrays
a = x @ z
output_ndarray_float_2(a)
output_ndarray_float_1(y)
def run() -> int32:
test_ndarray_ctor()
test_ndarray_empty()
@ -1492,16 +1679,19 @@ def run() -> int32:
test_ndarray_round()
test_ndarray_floor()
test_ndarray_ceil()
test_ndarray_min()
test_ndarray_minimum()
test_ndarray_minimum_broadcast()
test_ndarray_minimum_broadcast_lhs_scalar()
test_ndarray_minimum_broadcast_rhs_scalar()
test_ndarray_argmin()
test_ndarray_max()
test_ndarray_maximum()
test_ndarray_maximum_broadcast()
test_ndarray_maximum_broadcast_lhs_scalar()
test_ndarray_maximum_broadcast_rhs_scalar()
test_ndarray_argmax()
test_ndarray_abs()
test_ndarray_isnan()
test_ndarray_isinf()
@ -1564,5 +1754,18 @@ def run() -> int32:
test_ndarray_nextafter_broadcast()
test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_dot()
test_ndarray_cholesky()
test_ndarray_qr()
test_ndarray_svd()
test_ndarray_linalg_inv()
test_ndarray_pinv()
test_ndarray_matrix_power()
test_ndarray_det()
test_ndarray_lu()
test_ndarray_schur()
test_ndarray_hessenberg()
return 0

View File

@ -0,0 +1,30 @@
@extern
def output_bool(x: bool):
...
def str_eq():
output_bool("" == "")
output_bool("a" == "")
output_bool("a" == "b")
output_bool("b" == "a")
output_bool("a" == "a")
output_bool("test string" == "test string")
output_bool("test string1" == "test string2")
def str_ne():
output_bool("" != "")
output_bool("a" != "")
output_bool("a" != "b")
output_bool("b" != "a")
output_bool("a" != "a")
output_bool("test string" != "test string")
output_bool("test string1" != "test string2")
def run() -> int32:
str_eq()
str_ne()
return 0

View File

@ -1,3 +1,7 @@
@extern
def output_bool(b: bool):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -13,6 +17,41 @@ class A:
self.a = a
self.b = b
def test_tuple_eq():
# 0-len
output_bool(() == ())
# 1-len
output_bool((1,) == ())
output_bool(() == (1,))
output_bool((1,) == (1,))
output_bool((1,) == (2,))
# # 2-len
output_bool((1, 2) == ())
output_bool(() == (1, 2))
output_bool((1,) == (1, 2))
output_bool((1, 2) == (1,))
output_bool((2, 2) == (1, 2))
output_bool((1, 2) == (2, 2))
def test_tuple_ne():
# 0-len
output_bool(() != ())
# 1-len
output_bool((1,) != ())
output_bool(() != (1,))
output_bool((1,) != (1,))
output_bool((1,) != (2,))
# 2-len
output_bool((1, 2) != ())
output_bool(() != (1, 2))
output_bool((1,) != (1, 2))
output_bool((1, 2) != (1,))
output_bool((2, 2) != (1, 2))
output_bool((1, 2) != (2, 2))
def run() -> int32:
data = [0, 1, 2, 3]
@ -25,5 +64,15 @@ def run() -> int32:
output_int32(tl[0][0])
output_int32(tl[0][1])
output_int32(tl[1])
output_int32(len(()))
output_int32(len((1,)))
output_int32(len((1, 2)))
output_int32(len((1, 2, 3)))
output_int32(len((1, 2, 3, 4)))
output_int32(len((1, 2, 3, 4, 5)))
test_tuple_eq()
test_tuple_ne()
return 0

View File

@ -0,0 +1,11 @@
def f(*args: int32):
pass
def run() -> int32:
f()
f(1)
f(1, 2)
f(1, 2, 3)
return 0

View File

@ -1,5 +1,14 @@
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::CodeGenContext,
codegen::{CodeGenContext, CodeGenerator},
inkwell::{module::Linkage, values::BasicValue},
nac3parser::ast::{self, StrRef},
symbol_resolver::{SymbolResolver, SymbolValue, ValueEnum},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
@ -7,15 +16,10 @@ use nac3core::{
typedef::{Type, Unifier},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use std::collections::HashSet;
use std::{collections::HashMap, sync::Arc};
pub struct ResolverInternal {
pub id_to_type: Mutex<HashMap<StrRef, Type>>,
pub id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub module_globals: Mutex<HashMap<StrRef, SymbolValue>>,
pub str_store: Mutex<HashMap<String, i32>>,
}
@ -46,20 +50,51 @@ impl SymbolResolver for Resolver {
fn get_symbol_type(
&self,
_: &mut Unifier,
unifier: &mut Unifier,
_: &[Arc<RwLock<TopLevelDef>>],
_: &PrimitiveStore,
primitives: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
self.0.id_to_type.lock().get(&str).copied().ok_or(format!("cannot get type of {str}"))
self.0
.id_to_type
.lock()
.get(&str)
.copied()
.or_else(|| {
self.0
.module_globals
.lock()
.get(&str)
.cloned()
.map(|v| v.get_type(primitives, unifier))
})
.ok_or(format!("cannot get type of {str}"))
}
fn get_symbol_value<'ctx>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
self.0.module_globals.lock().get(&str).cloned().map(|v| {
ctx.module
.get_global(&str.to_string())
.unwrap_or_else(|| {
let ty = v.get_type(&ctx.primitives, &mut ctx.unifier);
let init_val = ctx.gen_symbol_val(generator, &v, ty);
let llvm_ty = init_val.get_type();
let global = ctx.module.add_global(llvm_ty, None, &str.to_string());
global.set_linkage(Linkage::LinkOnceAny);
global.set_initializer(&init_val);
global
})
.as_basic_value_enum()
.into()
})
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> {

View File

@ -2,27 +2,36 @@
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(rust_2024_compatibility)]
#![warn(clippy::pedantic)]
#![allow(clippy::too_many_lines, clippy::wildcard_imports)]
use clap::Parser;
use inkwell::{
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
OptimizationLevel,
use std::{
collections::{HashMap, HashSet},
fs,
num::NonZeroUsize,
path::Path,
sync::Arc,
};
use clap::Parser;
use parking_lot::{Mutex, RwLock};
use std::collections::HashSet;
use std::num::NonZeroUsize;
use std::{collections::HashMap, fs, path::Path, sync::Arc};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
memory_buffer::MemoryBuffer, module::Linkage, passes::PassBuilderOptions,
support::is_multithreaded, targets::*, OptimizationLevel,
},
nac3parser::{
ast::{Constant, Expr, ExprKind, StmtKind, StrRef},
parser,
},
symbol_resolver::SymbolResolver,
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
@ -35,13 +44,10 @@ use nac3core::{
typedef::{FunSignature, Type, Unifier, VarMap},
},
};
use nac3parser::{
ast::{Constant, Expr, ExprKind, StmtKind, StrRef},
parser,
};
use basic_symbol_resolver::*;
mod basic_symbol_resolver;
use basic_symbol_resolver::*;
/// Command-line argument parser definition.
#[derive(Parser)]
@ -113,7 +119,9 @@ fn handle_typevar_definition(
x,
HashMap::new(),
)?;
get_type_from_type_annotation_kinds(def_list, unifier, &ty, &mut None)
get_type_from_type_annotation_kinds(
def_list, unifier, primitives, &ty, &mut None,
)
})
.collect::<Result<Vec<_>, _>>()?;
let loc = func.location;
@ -152,7 +160,7 @@ fn handle_typevar_definition(
HashMap::new(),
)?;
let constraint =
get_type_from_type_annotation_kinds(def_list, unifier, &ty, &mut None)?;
get_type_from_type_annotation_kinds(def_list, unifier, primitives, &ty, &mut None)?;
let loc = func.location;
Ok(unifier.get_fresh_const_generic_var(constraint, Some(generic_name), Some(loc)).ty)
@ -167,46 +175,49 @@ fn handle_typevar_definition(
fn handle_assignment_pattern(
targets: &[Expr],
value: &Expr,
resolver: &(dyn SymbolResolver + Send + Sync),
resolver: Arc<dyn SymbolResolver + Send + Sync>,
internal_resolver: &ResolverInternal,
def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
composer: &mut TopLevelComposer,
) -> Result<(), String> {
if targets.len() == 1 {
match &targets[0].node {
let target = &targets[0];
match &target.node {
ExprKind::Name { id, .. } => {
let def_list = composer.extract_def_list();
let unifier = &mut composer.unifier;
let primitives = &composer.primitives_ty;
if let Ok(var) =
handle_typevar_definition(value, resolver, def_list, unifier, primitives)
handle_typevar_definition(value, &*resolver, &def_list, unifier, primitives)
{
internal_resolver.add_id_type(*id, var);
Ok(())
} else if let Ok(val) = parse_parameter_default_value(value, resolver) {
} else if let Ok(val) = parse_parameter_default_value(value, &*resolver) {
internal_resolver.add_module_global(*id, val);
let (name, def_id, _) = composer
.register_top_level_var(
*id,
None,
Some(resolver.clone()),
"__main__",
target.location,
)
.unwrap();
internal_resolver.add_id_def(name, def_id);
Ok(())
} else {
Err(format!("fails to evaluate this expression `{:?}` as a constant or generic parameter at {}",
targets[0].node,
targets[0].location,
target.node,
target.location,
))
}
}
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
handle_assignment_pattern(
elts,
value,
resolver,
internal_resolver,
def_list,
unifier,
primitives,
)?;
handle_assignment_pattern(elts, value, resolver, internal_resolver, composer)?;
Ok(())
}
_ => Err(format!(
"assignment to {:?} is not supported at {}",
targets[0], targets[0].location
)),
_ => Err(format!("assignment to {target:?} is not supported at {}", target.location)),
}
} else {
match &value.node {
@ -216,11 +227,9 @@ fn handle_assignment_pattern(
handle_assignment_pattern(
std::slice::from_ref(tar),
val,
resolver,
resolver.clone(),
internal_resolver,
def_list,
unifier,
primitives,
composer,
)?;
}
Ok(())
@ -238,9 +247,40 @@ fn handle_assignment_pattern(
}
}
fn main() {
const SIZE_T: u32 = usize::BITS;
fn handle_global_var(
target: &Expr,
value: Option<&Expr>,
resolver: &Arc<dyn SymbolResolver + Send + Sync>,
internal_resolver: &ResolverInternal,
composer: &mut TopLevelComposer,
) -> Result<(), String> {
let ExprKind::Name { id, .. } = target.node else {
return Err(format!(
"global variable declaration must be an identifier (at {})",
target.location,
));
};
let Some(value) = value else {
return Err(format!("global variable `{id}` must be initialized in its definition"));
};
if let Ok(val) = parse_parameter_default_value(value, &**resolver) {
internal_resolver.add_module_global(id, val);
let (name, def_id, _) = composer
.register_top_level_var(id, None, Some(resolver.clone()), "__main__", target.location)
.unwrap();
internal_resolver.add_id_def(name, def_id);
Ok(())
} else {
Err(format!(
"failed to evaluate this expression `{:?}` as a constant at {}",
target.node, target.location,
))
}
}
fn main() {
let cli = CommandLineArgs::parse();
let CommandLineArgs { file_name, threads, opt_level, emit_llvm, triple, mcpu, target_features } =
cli;
@ -273,22 +313,36 @@ fn main() {
_ => OptimizationLevel::Aggressive,
};
let target_machine_options = CodeGenTargetMachineOptions {
triple,
cpu: mcpu,
features: target_features,
reloc_mode: RelocMode::PIC,
..host_target_machine
};
let target_machine = target_machine_options
.create_target_machine(opt_level)
.expect("couldn't create target machine");
let context = nac3core::inkwell::context::Context::create();
let size_t =
context.ptr_sized_int_type(&target_machine.get_target_data(), None).get_bit_width();
let program = match fs::read_to_string(file_name.clone()) {
Ok(program) => program,
Err(err) => {
println!("Cannot open input file: {err}");
return;
panic!("Cannot open input file: {err}");
}
};
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(SIZE_T).0;
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(size_t).0;
let (mut composer, builtins_def, builtins_ty) =
TopLevelComposer::new(vec![], ComposerConfig::default(), SIZE_T);
TopLevelComposer::new(vec![], vec![], ComposerConfig::default(), size_t);
let internal_resolver: Arc<ResolverInternal> = ResolverInternal {
id_to_type: builtins_ty.into(),
id_to_def: builtins_def.into(),
class_names: Mutex::default(),
module_globals: Mutex::default(),
str_store: Mutex::default(),
}
@ -296,27 +350,41 @@ fn main() {
let resolver =
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
// Process IRRT
let irrt = load_irrt(&context, resolver.as_ref());
if emit_llvm {
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
}
// Process the Python script
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
for stmt in parser_result {
match &stmt.node {
StmtKind::Assign { targets, value, .. } => {
let def_list = composer.extract_def_list();
let unifier = &mut composer.unifier;
let primitives = &composer.primitives_ty;
if let Err(err) = handle_assignment_pattern(
targets,
value,
resolver.as_ref(),
resolver.clone(),
internal_resolver.as_ref(),
&def_list,
unifier,
primitives,
&mut composer,
) {
eprintln!("{err}");
return;
panic!("{err}");
}
}
StmtKind::AnnAssign { target, value, .. } => {
if let Err(err) = handle_global_var(
target,
value.as_ref().map(Box::as_ref),
&resolver,
internal_resolver.as_ref(),
&mut composer,
) {
panic!("{err}");
}
}
// allow (and ignore) "from __future__ import annotations"
StmtKind::ImportFrom { module, names, .. }
if module == &Some("__future__".into())
@ -340,7 +408,19 @@ fn main() {
let signature = store.from_signature(&mut composer.unifier, &primitive, &signature, &mut cache);
let signature = store.add_cty(signature);
composer.start_analysis(true).unwrap();
if let Err(errors) = composer.start_analysis(true) {
let error_count = errors.len();
eprintln!("{error_count} error(s) occurred during top level analysis.");
for (error_i, error) in errors.iter().enumerate() {
let error_num = error_i + 1;
eprintln!("=========== ERROR {error_num}/{error_count} ============");
eprintln!("{error}");
}
eprintln!("==================================");
panic!("top level analysis failed");
}
let top_level = Arc::new(composer.make_top_level_context());
@ -359,16 +439,7 @@ fn main() {
instance_to_stmt[""].clone()
};
let llvm_options = CodeGenLLVMOptions {
opt_level,
target: CodeGenTargetMachineOptions {
triple,
cpu: mcpu,
features: target_features,
reloc_mode: RelocMode::PIC,
..host_target_machine
},
};
let llvm_options = CodeGenLLVMOptions { opt_level, target: target_machine_options };
let task = CodeGenTask {
subst: Vec::default(),
@ -391,14 +462,14 @@ fn main() {
membuffer.lock().push(buffer);
})));
let threads = (0..threads)
.map(|i| Box::new(DefaultCodeGenerator::new(format!("module{i}"), SIZE_T)))
.map(|i| Box::new(DefaultCodeGenerator::new(format!("module{i}"), size_t)))
.collect();
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
// Link all modules together into `main`
let buffers = membuffers.lock();
let context = inkwell::context::Context::create();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
.unwrap();
@ -418,25 +489,18 @@ fn main() {
main.link_in_module(other).unwrap();
}
let irrt = load_irrt(&context);
if emit_llvm {
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
}
main.link_in_module(irrt).unwrap();
// Private all functions except "run"
let mut function_iter = main.get_first_function();
while let Some(func) = function_iter {
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
func.set_linkage(inkwell::module::Linkage::Private);
func.set_linkage(Linkage::Private);
}
function_iter = func.get_next_function();
}
let target_machine = llvm_options
.target
.create_target_machine(llvm_options.opt_level)
.expect("couldn't create target machine");
// Optimize `main`
let pass_options = PassBuilderOptions::create();
pass_options.set_merge_functions(true);
let passes = format!("default<O{}>", opt_level as u32);
@ -445,6 +509,7 @@ fn main() {
panic!("Failed to run optimization for module `main`: {}", err.to_string());
}
// Write output
target_machine
.write_to_file(&main, FileType::Object, Path::new("module.o"))
.expect("couldn't write module to file");

View File

@ -21,6 +21,6 @@ build() {
}
package() {
mkdir -p $pkgdir/clang64/lib/python3.11/site-packages
cp ${srcdir}/nac3artiq.pyd $pkgdir/clang64/lib/python3.11/site-packages
mkdir -p $pkgdir/clang64/lib/python3.12/site-packages
cp ${srcdir}/nac3artiq.pyd $pkgdir/clang64/lib/python3.12/site-packages
}

View File

@ -21,10 +21,10 @@ let
text =
''
implementation=CPython
version=3.11
version=3.12
shared=true
abi3=false
lib_name=python3.11
lib_name=python3.12
lib_dir=${msys2-env}/clang64/lib
pointer_width=64
build_flags=WITH_THREAD

Some files were not shown because too many files have changed in this diff Show More