Compare commits

...

10 Commits

Author SHA1 Message Date
occheung 46c84dfc20 add remaining files 2023-06-01 04:27:19 +08:00
occheung 514b649bfc receiver: allow triggered alignment 2023-05-10 00:22:40 +08:00
occheung 1248a46a54 minimal serdes communication loopback 2023-05-08 12:43:02 +08:00
occheung b215dd1b57 init source coding 2023-05-07 11:13:03 +08:00
occheung e8a178a111 multi_serdes: fix formatting 2023-05-07 11:12:31 +08:00
occheung 8bfd229bbe observe bit error 2023-04-26 08:03:47 +08:00
occheung 950d9ee8be include efc 2023-04-26 05:08:33 +08:00
occheung ce1f669138 handle group delay 2023-04-25 12:17:17 +08:00
occheung f55b2593a1 impl multi serdes tx/rx 2023-04-25 09:41:04 +08:00
occheung 24e8e9add9 init multi loopback 2023-04-25 07:59:04 +08:00
17 changed files with 2002 additions and 42 deletions

2
.gitignore vendored
View File

@ -4,3 +4,5 @@ test
*.vcd
*.cfg
*.txt
# Bitstream build directories have _build as their suffixes
*_build

25
bidirectionalIO.py Normal file
View File

@ -0,0 +1,25 @@
from migen import *
class BiDirectionalIO(Module):
def __init__(self, i_pads, o_pads):
self.i = Signal(4)
self.o = Signal(4)
self.t = Signal(4)
for i in range(4):
self.specials += Instance("OBUFTDS",
i_I=self.i[i],
o_O=o_pads[i].p,
o_OB=o_pads[i].n,
# Always chain the 3-states input to serializer
# Vivado will complain otherwise
i_T=self.t[i],
)
for i in range(4):
self.specials += Instance("IBUFDS",
i_I=i_pads[i].p,
i_IB=i_pads[i].n,
o_O=self.o[i],
)

17
comm.py
View File

@ -1,8 +1,8 @@
import serial
def main():
comm = serial.Serial("/dev/ttyUSB3", 115200)
def main(serial_port):
comm = serial.Serial(serial_port, 115200)
# comm.write(b"Hello World!")
# for _ in range(32):
@ -19,4 +19,15 @@ def main():
# print(f'{byte[0]:0>8b}')
if __name__ == "__main__":
main()
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("platform")
args = parser.parse_args()
port_dict = {
"kasli": "/dev/ttyUSB3",
"efc": "/dev/ttyACM1",
}
main(port_dict[args.platform])

View File

@ -7,14 +7,28 @@ let
src = pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "migen";
rev = "7bc4eb1387b39159a74c1dbd1b820728e0bfbbaa";
sha256 = "039jk8y7f0vhr32svg3nd23i88c0bhws8ngxwk9bdznfxvhiy1h6";
rev = "ccaee68e14d3636e1d8fb2e0864dd89b1b1f7384";
sha256 = "sha256-oYdeY0MbTReKbAwmSznnqw0wNawdInJoFJVWW3tesFA=";
fetchSubmodules = true;
};
propagatedBuildInputs = with pkgs.python3Packages; [ colorama ];
};
misoc = pkgs.python3Packages.buildPythonPackage rec {
name = "misoc";
src = pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "misoc";
rev = "0cf0ebb7d4f56cc6d44a3dea3e386efab9d82419";
sha256 = "sha256-TI0agjSSMJtH4mgAMpSO128zxcwSo/AjY1B6AW7zBQQ=";
fetchSubmodules = true;
};
propagatedBuildInputs = with pkgs.python3Packages; [ jinja2 numpy pyserial asyncserial ] ++ [ migen ];
};
vivadoDeps = pkgs: with pkgs; [
libxcrypt
ncurses5
@ -47,6 +61,7 @@ in pkgs.mkShell {
name = "UART-Testing";
buildInputs = [
migen
misoc
pkgs.python3Packages.pyserial
vivado
vivadoEnv

60
flash.py Normal file
View File

@ -0,0 +1,60 @@
import argparse
import tempfile
import subprocess
def get_load_cmd(platform, variant):
return \
'''target create xc7.spi0.proxy testee -chain-position xc7.tap
flash bank spi0 jtagspi 0 0 0 0 xc7.spi0.proxy 0x2
gdb_port disabled
tcl_port disabled
telnet_port disabled
set error_msg "Trying to use configured scan chain anyway"
if {[string first $error_msg [capture "init"]] != -1} {
puts "Found error and exiting"
exit}
xadc_report xc7.tap
pld load 0 {bscan_spi_xc7a100t.bit}
flash probe spi0
flash erase_sector spi0 0 42
flash write_bank spi0 {''' + "{}".format(get_bitstream_path(platform, variant)) + '''} 0x0
flash verify_bank spi0 {''' + "{}".format(get_bitstream_path(platform, variant)) + '''} 0x0
xc7_program xc7.tap
exit'''
def get_build_dir(platform, variant):
return "{}_{}_build".format(platform, variant)
def get_bitstream_path(platform, variant):
return get_build_dir(platform, variant)+"/top.bit"
def run(platform, script):
# Dump script to a temp file
with tempfile.NamedTemporaryFile(mode="w", delete=False) as f:
f.write(script)
board_path = {
"kasli": "board/kasli.cfg",
"efc": "efc.cfg",
}
subprocess.run([
"openocd", "-f", board_path[platform], "-f", f.name
])
supported_platform = [ "kasli", "efc" ]
supported_variants = [ "master", "satellite" ]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("platform")
parser.add_argument("variant")
args = parser.parse_args()
if args.platform not in supported_platform:
raise ValueError("Unsupported platform")
if args.variant not in supported_variants:
raise ValueError("Unsupported variant")
script = get_load_cmd(args.platform, args.variant)
run(args.platform, script)

View File

@ -3,8 +3,8 @@ from migen.build.platforms.sinara import kasli
from migen.genlib.resetsync import AsyncResetSynchronizer
class KasliCRG(Module):
def __init__(self, platform):
class TransceiverCRG(Module):
def __init__(self, platform, clk125, gte=True):
self.platform = platform
# Generated clock domains
@ -16,15 +16,38 @@ class KasliCRG(Module):
# Configure system clock using GTP ports
self.sys_clk_freq = 125e6
clk125 = self.platform.request("clk125_gtp")
clk125_buf = Signal()
clk125_div2 = Signal()
if gte:
self.specials += Instance("IBUFDS_GTE2",
i_CEB=0,
i_I=clk125.p, i_IB=clk125.n,
o_O=clk125_buf,
o_ODIV2=clk125_div2)
else:
self.specials += Instance("IBUFDS",
i_I=clk125.p,
i_IB=clk125.n,
o_O=clk125_buf)
div2_pll_fb = Signal()
inner_pll_locked = Signal()
self.specials += Instance("PLLE2_BASE",
p_CLKIN1_PERIOD=8.0,
i_CLKIN1=clk125_buf,
i_CLKFBIN=div2_pll_fb,
o_CLKFBOUT=div2_pll_fb,
o_LOCKED=inner_pll_locked,
# VCO @ 1GHz
p_CLKFBOUT_MULT=8, p_DIVCLK_DIVIDE=1,
# 200MHz for IDELAYCTRL
p_CLKOUT0_DIVIDE=16, p_CLKOUT0_PHASE=0.0, o_CLKOUT0=clk125_div2,
),
# MMCM to generate different frequencies
mmcm_fb = Signal()

180
minimal_loopback.py Normal file
View File

@ -0,0 +1,180 @@
from migen import *
from sync_serdes import *
from migen.genlib.fifo import SyncFIFO
from migen.build.platforms.sinara import kasli
from migen.genlib.misc import WaitTimer
from kasli_crg import TransceiverCRG
from eem_helpers import generate_pads
from uart import UART
from io_loopback import SingleIOLoopback
class SingleSerDesLoopBack(Module):
def __init__(self, io_pad, sys_clk_freq, debug):
self.uart_rx = Signal()
self.uart_tx = Signal()
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
]
self.submodules.tx = SingleLineTX()
self.submodules.rx = SingleLineRX()
# Debugging reader
self.submodules.bitslip_reader = BitSlipReader()
self.submodules.postslip_reader = BitSlipReader()
# Alignment modules
self.submodules.slave_aligner = SlaveAligner()
# The actual channel
self.submodules.channel = SingleIOLoopback(io_pad)
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.comb += [
# Repetitively send 0b00100
self.tx.txdata.eq(0b00100),
# Loopback channel
self.channel.i.eq(self.tx.ser_out),
self.rx.ser_in_no_dly.eq(self.channel.o),
self.channel.t.eq(self.tx.t_out),
# TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
]
# Debugging logics
self.comb += [
self.bitslip_reader.loopback_rxdata.eq(self.rx.rxdata),
self.postslip_reader.loopback_rxdata.eq(self.rx.rxdata),
self.slave_aligner.loopback_rxdata.eq(self.rx.rxdata),
self.rx.master_bitslip.eq(
self.bitslip_reader.bitslip
| self.slave_aligner.master_bitslip
| self.postslip_reader.bitslip
),
self.rx.slave_bitslip.eq(
self.bitslip_reader.bitslip
| self.slave_aligner.master_bitslip
| self.postslip_reader.bitslip
),
]
bitslip_count = Signal(3)
fsm = FSM(reset_state="WAIT_DONE")
self.submodules += fsm
fsm.act("WAIT_DONE",
self.bitslip_reader.start.eq(1),
If(self.bitslip_reader.done,
NextValue(bitslip_count, 0),
NextState("WRITE_UPPER"),
),
)
fsm.act("WRITE_UPPER",
If(bitslip_count == 5,
NextState("WAIT_BITSLIP_ALIGNED"),
).Elif(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.bitslip_reader.data_result[bitslip_count][8:]),
NextState("WRITE_LOWER"),
),
)
fsm.act("WRITE_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.bitslip_reader.data_result[bitslip_count][:8]),
NextValue(bitslip_count, bitslip_count + 1),
NextState("WRITE_UPPER"),
)
)
fsm.act("WAIT_BITSLIP_ALIGNED",
self.slave_aligner.start.eq(1),
If(self.slave_aligner.done,
NextState("BARRIER_UPPER"),
),
)
fsm.act("BARRIER_UPPER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0xFF),
NextState("BARRIER_LOWER"),
),
)
fsm.act("BARRIER_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0xFF),
NextState("REWAIT_BITSLIP_READ_DONE"),
),
)
fsm.act("REWAIT_BITSLIP_READ_DONE",
self.postslip_reader.start.eq(1),
If(self.postslip_reader.done,
NextValue(bitslip_count, 0),
NextState("REWRITE_UPPER"),
),
)
fsm.act("REWRITE_UPPER",
If(bitslip_count == 5,
NextState("TERMINATE"),
).Elif(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.postslip_reader.data_result[bitslip_count][8:]),
NextState("REWRITE_LOWER"),
),
)
fsm.act("REWRITE_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.postslip_reader.data_result[bitslip_count][:8]),
NextValue(bitslip_count, bitslip_count + 1),
NextState("REWRITE_UPPER"),
)
)
fsm.act("TERMINATE",
NextState("TERMINATE"),
)
self.comb += self.tx.txdata.eq(0b00100)
if __name__ == "__main__":
platform = kasli.Platform(hw_rev="v2.0")
# Generate pads for the I/O blocks
eem = 3
generate_pads(platform, eem)
pad = platform.request("dio{}".format(eem), 0)
crg = TransceiverCRG(platform, platform.request("clk125_gtp"))
top = SingleSerDesLoopBack(pad, crg.sys_clk_freq, True)
# Wire up UART core to the pads
uart_pads = platform.request("serial")
top.comb += [
top.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(top.uart_tx),
]
top.submodules += crg
platform.build(top)

123
multi_coders.py Normal file
View File

@ -0,0 +1,123 @@
from migen import *
from misoc.cores.code_8b10b import SingleEncoder, Decoder
class MultiEncoder(Module):
# For 4-channel EEM
# Thus, no need for words parameter
# It is always a 2-wds -> 4-ch conversion
# Implement using crossbar, so we don't need to do clock domain conversion
# while maintaining proper disparity
def __init__(self, lsb_first=False):
WORDS = 2
# Keep the link layer interface identical to standard encoders
self.d = [Signal(8) for _ in range(WORDS)]
self.k = [Signal() for _ in range(WORDS)]
# Output interface is simplified because we have custom physical layer
self.output = [Signal(10) for _ in range(WORDS)]
# Module start signal
self.start = Signal()
# lsb_first should not be set set
# But technically if the same setting is reflected on the decoder
# It shouldn't be an issue
if lsb_first:
raise ValueError("lsb_first must not be set")
# Phase of the encoder
# Alternate crossbar between encoder and SERDES every cycle
phase = Signal()
# Intermediate registers for output and disparity
# More significant bits are buffered due to channel geometry
# Disparity bit is delayed. The same encoder is shared by 2 SERDES
output_bufs = [Signal(5) for _ in range(WORDS)]
disp_bufs = [Signal() for _ in range(WORDS)]
encoders = [SingleEncoder(lsb_first) for _ in range(WORDS)]
self.submodules += encoders
for d, k, output, output_buf, disp_buf, encoder in \
zip(self.d, self.k, self.output, output_bufs, disp_bufs, encoders):
self.comb += [
encoder.d.eq(d),
encoder.k.eq(k),
encoder.disp_in.eq(disp_buf),
# Implementing switching crossbar
If(phase,
output.eq(Cat(encoder.output[0:5], output_buf))
).Else(
output.eq(Cat(output_buf, encoder.output[0:5]))
),
]
# Handle intermediate registers
self.sync += [
disp_buf.eq(encoder.disp_out),
output_buf.eq(encoder.output[5:10]),
]
aligned = Signal()
self.sync += [
# Phase switching
phase.eq(~phase),
If(~aligned & self.start,
aligned.eq(1),
# Later statements take precedent
phase.eq(0),
),
]
# Unlike the usual 8b10b decoder, it needs to know which SERDES to decode
class CrossbarDecoder(Module):
def __init__(self, lsb_first=False):
self.raw_input = Signal(10)
self.d = Signal(8)
self.k = Signal()
# Notifier signal when group alignmnet is completed
self.start = Signal()
aligned = Signal()
phase = Signal()
# Intermediate register for input
buffer = Signal(5)
self.submodules.decoder = Decoder(lsb_first)
# lsb_first should not be set set
# But technically if the same setting is reflected on the decoder
# It shouldn't be an issue
if lsb_first:
raise ValueError("lsb_first must not be set")
# Update phase & synchronous elements
self.sync += [
phase.eq(~phase),
If(~aligned & self.start,
aligned.eq(1),
phase.eq(0),
),
If(phase,
buffer.eq(self.raw_input[:5]),
).Else(
buffer.eq(self.raw_input[5:])
),
]
# Send appropriate input to decoder
self.comb += [
If(phase,
self.decoder.input.eq(Cat(buffer, self.raw_input[5:])),
).Else(
self.decoder.input.eq(Cat(buffer, self.raw_input[:5])),
),
]
self.comb += [
self.d.eq(self.decoder.d),
self.k.eq(self.decoder.k),
]

259
multi_serdes_channel.py Normal file
View File

@ -0,0 +1,259 @@
from migen import *
from sync_serdes import MultiLineRX, MultiLineTX
from migen.genlib.fifo import SyncFIFO
from migen.build.platforms.sinara import kasli, efc
from multi_coders import MultiEncoder, CrossbarDecoder
from kasli_crg import TransceiverCRG
from eem_helpers import generate_pads
from uart import UART
from io_loopback import SingleIOLoopback, IOLoopBack
class MultiTransceiverChannel(Module):
def __init__(self, io_pads, sys_clk_freq):
self.uart_rx = Signal()
self.uart_tx = Signal()
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
]
# SERDES impl
self.submodules.tx = MultiLineTX()
self.submodules.rx = MultiLineRX()
# 8b10b encoder & decoder
self.submodules.encoder = MultiEncoder(lsb_first=False)
decoders = [ CrossbarDecoder(lsb_first=False) for _ in range(2) ]
self.submodules += decoders
# The actual channel
self.submodules.channel = IOLoopBack(io_pads)
# FIFO to record transmission received
rx_records = SyncFIFO(16, 128)
self.submodules += rx_records
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.comb += [
# Loopback channel
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
self.rx.ser_in_no_dly.eq(self.channel.o),
# Link decoders
decoders[0].raw_input.eq(self.rx.rxdata[:10]),
decoders[1].raw_input.eq(self.rx.rxdata[10:]),
# Default encoder linkage
self.tx.txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1])),
# UART TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
# Immediate start RX alignment procedure
self.rx.start.eq(1),
]
rx_fsm = FSM(reset_state="WAIT_GROUP_ALIGN")
self.submodules += rx_fsm
rx_fsm.act("WAIT_GROUP_ALIGN",
If(self.rx.align_done & rx_records.writable,
rx_records.din.eq(self.rx.rxdata),
rx_records.we.eq(1),
),
If(self.rx.err,
NextState("WRITE_ERR_UPPER"),
).Elif(self.rx.rxdata == 0b11111111111111111111,
decoders[0].start.eq(1),
decoders[1].start.eq(1),
NextState("RECORD_TRANSMISSION"),
),
)
rx_fsm.act("WRITE_ERR_UPPER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b01010101),
NextState("WRITE_ERR_LOWER"),
),
)
rx_fsm.act("WRITE_ERR_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b10101010),
NextState("TERMINATE"),
),
)
rx_fsm.act("RECORD_TRANSMISSION",
If(rx_records.writable,
rx_records.din.eq(Cat(decoders[0].d, decoders[1].d)),
rx_records.we.eq(1),
).Else(
NextState("DUMP_TRANSMISSION_UPPER"),
)
)
rx_fsm.act("DUMP_TRANSMISSION_UPPER",
If(rx_records.readable,
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(rx_records.dout[8:]),
NextState("DUMP_TRANSMISSION_LOWER"),
)
).Else(
NextState("TERMINATE"),
),
)
rx_fsm.act("DUMP_TRANSMISSION_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(rx_records.dout[:8]),
rx_records.re.eq(1),
NextState("DUMP_TRANSMISSION_UPPER"),
)
)
rx_fsm.act("TERMINATE",
NextState("TERMINATE")
)
tx_fsm = FSM(reset_state="SEND_TRAINING")
self.submodules += tx_fsm
tx_fsm.act("SEND_TRAINING",
self.tx.txdata.eq(0b00100001000010000100),
If(self.rx.align_done,
NextState("SEND_ZERO"),
),
)
send_zero_duration = Signal(2)
tx_fsm.act("SEND_ZERO",
self.tx.txdata.eq(0),
If(send_zero_duration == 0b11,
NextState("SEND_PULSE"),
).Else(
NextValue(send_zero_duration, send_zero_duration + 1),
),
)
tx_fsm.act("SEND_PULSE",
self.tx.txdata.eq(0b11111111111111111111),
self.encoder.start.eq(1),
NextState("WAIT_GROUP_ALIGN"),
)
data = [ Signal(8) for _ in range(2) ]
tx_fsm.act("WAIT_GROUP_ALIGN",
If(self.rx.delay_done,
NextValue(data[0], 0x80),
NextValue(data[1], 0x7F),
NextState("TERMINATE"),
),
)
tx_fsm.act("TERMINATE",
self.encoder.d[0].eq(data[0]),
self.encoder.d[1].eq(data[1]),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextValue(data[0], data[0] + 1),
NextValue(data[1], data[1] - 1),
NextState("TERMINATE"),
)
# tx_fsm.act("SEND_ARB_DATA1",
# self.encoder.d[0].eq(0xDE),
# self.encoder.d[1].eq(0xAD),
# self.encoder.k[0].eq(0),
# self.encoder.k[1].eq(0),
# NextState("SEND_ARB_DATA2"),
# )
# tx_fsm.act("SEND_ARB_DATA2",
# self.encoder.d[0].eq(0xBE),
# self.encoder.d[1].eq(0xEF),
# self.encoder.k[0].eq(0),
# self.encoder.k[1].eq(0),
# NextState("SEND_ARB_DATA3"),
# )
# tx_fsm.act("SEND_ARB_DATA3",
# self.encoder.d[0].eq(0xBA),
# self.encoder.d[1].eq(0xD0),
# self.encoder.k[0].eq(0),
# self.encoder.k[1].eq(0),
# NextState("SEND_ARB_DATA4"),
# )
# tx_fsm.act("SEND_ARB_DATA4",
# self.encoder.d[0].eq(0xCA),
# self.encoder.d[1].eq(0xFE),
# self.encoder.k[0].eq(0),
# self.encoder.k[1].eq(0),
# NextState("TERMINATE"),
# )
# tx_fsm.act("TERMINATE",
# self.encoder.d[0].eq(0xAD),
# self.encoder.d[1].eq(0xDE),
# self.encoder.k[0].eq(0),
# self.encoder.k[1].eq(0),
# NextState("TERMINATE"),
# )
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("platform")
args = parser.parse_args()
platform_dict = {
"kasli": kasli.Platform(hw_rev="v2.0"),
"efc": efc.Platform(),
}
sysclk_name = {
"kasli": "clk125_gtp",
"efc": "gtp_clk",
}
platform = platform_dict[args.platform]
sysclk = platform.request(sysclk_name[args.platform])
# Generate pads for the I/O blocks
# Using EEM1 for both as both EFC and Kasli has EEM1
# EEM1 are not interconnected
eem = 4
generate_pads(platform, eem)
pads = [
platform.request("dio{}".format(eem), i) for i in range(4)
]
# pad = platform.request("dio{}".format(eem), 0)
crg = TransceiverCRG(platform, sysclk)
top = MultiTransceiverChannel(pads, crg.sys_clk_freq)
# Wire up UART core to the pads
uart_pads = platform.request("serial")
top.comb += [
top.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(top.uart_tx),
]
top.submodules += crg
platform.build(top)

230
multi_serdes_loopback.py Normal file
View File

@ -0,0 +1,230 @@
from migen import *
from sync_serdes import MultiLineRX, MultiLineTX
from migen.genlib.fifo import SyncFIFO
from migen.build.platforms.sinara import kasli, efc
from kasli_crg import TransceiverCRG
from eem_helpers import generate_pads
from uart import UART
from io_loopback import SingleIOLoopback, IOLoopBack
class MultiSerDesLoopBack(Module):
def __init__(self, io_pads, sys_clk_freq):
self.uart_rx = Signal()
self.uart_tx = Signal()
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
]
self.submodules.tx = MultiLineTX()
self.submodules.rx = MultiLineRX()
# The actual channel
self.submodules.channel = IOLoopBack(io_pads)
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.comb += [
# Repetitively send 0b00100
# Note: Replicate() doesn't work, 0b00100 is lowered into 3'd4
# I need 5'd4 for the replicate operator in Verilog
self.tx.txdata.eq(0b00100001000010000100),
# Loopback channel
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
self.rx.ser_in_no_dly.eq(self.channel.o),
# TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
# Just start RX alignment, no reason to wait
self.rx.start.eq(1),
]
self.submodules.rx_fsm = FSM(reset_state="WAIT_GROUP_ALIGN")
sampled_rxdata = Array(Signal(20) for _ in range(16))
sample_idx = Signal(4)
self.rx_fsm.act("WAIT_GROUP_ALIGN",
If(self.rx.err,
NextState("WRITE_ERR_UPPER"),
).Elif(self.rx.rxdata == 0b11111111111111111111,
NextValue(sampled_rxdata[0], self.rx.rxdata),
NextValue(sample_idx, 1),
NextState("SAMPLE_RXDATA"),
),
)
self.rx_fsm.act("WRITE_ERR_UPPER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b01010101),
NextState("WRITE_ERR_LOWER"),
),
)
self.rx_fsm.act("WRITE_ERR_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b10101010),
NextState("TERMINATE"),
),
)
self.rx_fsm.act("SAMPLE_RXDATA",
If(sample_idx == 15,
NextValue(sample_idx, 0),
NextState("WRITE_PATTERN_FIRST_UPPER"),
).Else(
NextValue(sampled_rxdata[sample_idx], self.rx.rxdata),
NextValue(sample_idx, sample_idx + 1),
),
)
self.rx_fsm.act("WRITE_PATTERN_FIRST_UPPER",
If(sample_idx == 15,
NextState("TERMINATE"),
).Elif(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(sampled_rxdata[sample_idx][8:10]),
NextState("WRITE_PATTERN_FIRST_LOWER"),
),
)
self.rx_fsm.act("WRITE_PATTERN_FIRST_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(sampled_rxdata[sample_idx][:8]),
NextState("WRITE_PATTERN_SECOND_UPPER"),
),
)
self.rx_fsm.act("WRITE_PATTERN_SECOND_UPPER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(sampled_rxdata[sample_idx][18:20]),
NextState("WRITE_PATTERN_SECOND_LOWER"),
),
)
self.rx_fsm.act("WRITE_PATTERN_SECOND_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(sampled_rxdata[sample_idx][10:18]),
NextValue(sample_idx, sample_idx + 1),
NextState("WRITE_PATTERN_FIRST_UPPER"),
),
)
self.rx_fsm.act("TERMINATE",
NextState("TERMINATE"),
)
self.submodules.tx_fsm = FSM(reset_state="SEND_TRAINING")
self.tx_fsm.act("SEND_TRAINING",
self.tx.txdata.eq(0b00100001000010000100),
If(self.rx.align_done,
NextState("SEND_ZERO"),
),
)
send_zero_duration = Signal(2)
self.tx_fsm.act("SEND_ZERO",
self.tx.txdata.eq(0),
If(send_zero_duration == 0b11,
NextState("SEND_PULSE"),
).Else(
NextValue(send_zero_duration, send_zero_duration + 1),
),
)
self.tx_fsm.act("SEND_PULSE",
self.tx.txdata.eq(0b11111111111111111111),
NextState("WAIT_GROUP_ALIGN"),
)
self.tx_fsm.act("WAIT_GROUP_ALIGN",
self.tx.txdata.eq(0),
If(self.rx.delay_done,
NextState("SEND_ARB_DATA1"),
),
)
self.tx_fsm.act("SEND_ARB_DATA1",
self.tx.txdata.eq(0b00111001110011100111),
NextState("SEND_ARB_DATA2"),
)
self.tx_fsm.act("SEND_ARB_DATA2",
self.tx.txdata.eq(0),
NextState("SEND_ARB_DATA3"),
)
self.tx_fsm.act("SEND_ARB_DATA3",
self.tx.txdata.eq(0xDEADB),
NextState("SEND_ARB_DATA4"),
)
self.tx_fsm.act("SEND_ARB_DATA4",
self.tx.txdata.eq(0xBCAFE),
NextState("TERMINATE"),
)
self.tx_fsm.act("TERMINATE",
self.tx.txdata.eq(0),
NextState("TERMINATE"),
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("platform")
args = parser.parse_args()
platform_dict = {
"kasli": kasli.Platform(hw_rev="v2.0"),
"efc": efc.Platform(),
}
sysclk_name = {
"kasli": "clk125_gtp",
"efc": "gtp_clk",
}
platform = platform_dict[args.platform]
sysclk = platform.request(sysclk_name[args.platform])
# Generate pads for the I/O blocks
# Using EEM1 for both as both EFC and Kasli has EEM1
# EEM1 are not interconnected
eem = 1
generate_pads(platform, eem)
pads = [
platform.request("dio{}".format(eem), i+4) for i in range(4)
]
# pad = platform.request("dio{}".format(eem), 0)
crg = TransceiverCRG(platform, sysclk)
top = MultiSerDesLoopBack(pads, crg.sys_clk_freq)
# Wire up UART core to the pads
uart_pads = platform.request("serial")
top.comb += [
top.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(top.uart_tx),
]
top.submodules += crg
platform.build(top)

255
pulse_read_rx.py Normal file
View File

@ -0,0 +1,255 @@
from migen import *
from migen.genlib.fifo import SyncFIFO
from migen.genlib.misc import WaitTimer
from migen.build.platforms.sinara import kasli, efc
from eem_helpers import generate_pads
from serdes_comm import BiDirectionalIO
from sync_serdes import SingleLineRX, BitSlipReader, SlaveAligner
from uart_log import UARTLogger
from kasli_crg import TransceiverCRG
class SingleLineReader(Module):
def __init__(self, uart_log, i_pads, o_pads):
# UART Logger
self.submodules.uart_logger = uart_log
# Recorder
self.submodules.rx_buffer = SyncFIFO(10, 64)
# PHY Channel
self.submodules.channel = BiDirectionalIO(i_pads, o_pads)
# Single line RX SERDES
self.submodules.rx = SingleLineRX()
# bitslip reader
self.submodules.bitslip_reader = BitSlipReader()
self.submodules.postslip_reader = BitSlipReader()
# Alignment modules
self.submodules.slave_aligner = SlaveAligner()
# Connect SERDES to PHY
self.comb += [
self.rx.ser_in_no_dly.eq(self.channel.o[0]),
]
# Debugging logics
self.comb += [
self.bitslip_reader.loopback_rxdata.eq(self.rx.rxdata),
self.postslip_reader.loopback_rxdata.eq(self.rx.rxdata),
self.slave_aligner.loopback_rxdata.eq(self.rx.rxdata),
self.rx.master_bitslip.eq(
self.bitslip_reader.bitslip
| self.slave_aligner.master_bitslip
| self.postslip_reader.bitslip
),
self.rx.slave_bitslip.eq(
self.bitslip_reader.bitslip
| self.slave_aligner.master_bitslip
| self.postslip_reader.bitslip
),
]
bitslip_count = Signal(3)
fsm = FSM(reset_state="WAIT_DONE")
self.submodules += fsm
fsm.act("WAIT_DONE",
self.bitslip_reader.start.eq(1),
If(self.bitslip_reader.done,
NextValue(bitslip_count, 0),
NextState("WRITE_UPPER"),
),
)
fsm.act("WRITE_UPPER",
If(bitslip_count == 5,
NextState("WAIT_BITSLIP_ALIGNED"),
).Elif(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(self.bitslip_reader.data_result[bitslip_count][8:]),
NextState("WRITE_LOWER"),
),
)
fsm.act("WRITE_LOWER",
If(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(self.bitslip_reader.data_result[bitslip_count][:8]),
NextValue(bitslip_count, bitslip_count + 1),
NextState("WRITE_UPPER"),
)
)
fsm.act("WAIT_BITSLIP_ALIGNED",
self.slave_aligner.start.eq(1),
If(self.slave_aligner.done,
NextState("BARRIER_UPPER"),
),
)
fsm.act("BARRIER_UPPER",
If(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(0xFF),
NextState("BARRIER_LOWER"),
),
)
fsm.act("BARRIER_LOWER",
If(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(0xFF),
NextState("REWAIT_BITSLIP_READ_DONE"),
),
)
fsm.act("REWAIT_BITSLIP_READ_DONE",
self.postslip_reader.start.eq(1),
If(self.postslip_reader.done,
NextValue(bitslip_count, 0),
NextState("REWRITE_UPPER"),
),
)
fsm.act("REWRITE_UPPER",
If(bitslip_count == 5,
NextState("TERMINATE"),
).Elif(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(self.postslip_reader.data_result[bitslip_count][8:]),
NextState("REWRITE_LOWER"),
),
)
fsm.act("REWRITE_LOWER",
If(self.uart_logger.tx_fifo.writable,
self.uart_logger.tx_fifo.we.eq(1),
self.uart_logger.tx_fifo.din.eq(self.postslip_reader.data_result[bitslip_count][:8]),
NextValue(bitslip_count, bitslip_count + 1),
NextState("REWRITE_UPPER"),
)
)
fsm.act("TERMINATE",
NextState("TERMINATE"),
)
# self.submodules.wait_timer = WaitTimer(127)
# shift_count = Signal(5)
# self.submodules.fsm = FSM(reset_state="WAIT")
# self.fsm.act("WAIT",
# self.wait_timer.wait.eq(1),
# If(shift_count == 10,
# NextState("DUMP_UPPER"),
# ).Elif(self.wait_timer.done,
# NextState("MEASURE"),
# ),
# )
# self.fsm.act("MEASURE",
# If(self.rx_buffer.writable,
# self.rx_buffer.we.eq(1),
# self.rx_buffer.din.eq(self.rx.rxdata),
# NextState("SHIFT1"),
# ),
# )
# self.fsm.act("SHIFT1",
# self.rx.master_bitslip.eq(1),
# self.rx.slave_bitslip.eq(1),
# NextState("GAP"),
# )
# self.fsm.act("GAP",
# NextState("SHIFT2"),
# )
# self.fsm.act("SHIFT2",
# self.rx.master_bitslip.eq(1),
# self.rx.slave_bitslip.eq(1),
# NextValue(shift_count, shift_count + 1),
# NextState("WAIT"),
# )
# self.fsm.act("DUMP_UPPER",
# If(self.rx_buffer.readable,
# If(self.uart_logger.tx_fifo.writable,
# self.uart_logger.tx_fifo.we.eq(1),
# self.uart_logger.tx_fifo.din.eq(self.rx_buffer.dout[8:]),
# NextState("DUMP_LOWER"),
# ),
# ).Else(
# NextState("TERMINATE"),
# )
# )
# self.fsm.act("DUMP_LOWER",
# If(self.uart_logger.tx_fifo.writable,
# self.uart_logger.tx_fifo.we.eq(1),
# self.uart_logger.tx_fifo.din.eq(self.rx_buffer.dout[:8]),
# self.rx_buffer.re.eq(1),
# NextState("DUMP_UPPER"),
# ),
# )
# self.fsm.act("TERMINATE",
# NextState("TERMINATE"),
# )
if __name__ == "__main__":
import argparse
import functools
import os
parser = argparse.ArgumentParser()
parser.add_argument("platform")
args = parser.parse_args()
platform_dict = {
"kasli": kasli.Platform(hw_rev="v2.0"),
"efc": efc.Platform(),
}
sysclk_name = {
"kasli": "clk125_gtp",
"efc": "gtp_clk",
}
platform = platform_dict[args.platform]
sysclk = platform.request(sysclk_name[args.platform])
# Generate pads for the I/O blocks
for eem in range(2):
generate_pads(platform, eem)
data_eem = 0
i_pads = [
platform.request("dio{}".format(data_eem), i) for i in range(4)
]
o_pads = [
platform.request("dio{}".format(data_eem), i+4) for i in range(4)
]
crg = TransceiverCRG(platform, sysclk)
uart_logger = UARTLogger(crg.sys_clk_freq)
top = SingleLineReader(uart_logger, i_pads, o_pads)
# Wire up UART core to the pads
uart_pads = platform.request("serial")
top.comb += [
uart_logger.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(uart_logger.uart_tx),
]
top.submodules += crg
output_dir = "{}_{}_build".format(args.platform, "satellite")
platform.build(top, build_dir=output_dir)

395
serdes_comm.py Normal file
View File

@ -0,0 +1,395 @@
from migen import *
from sync_serdes import MultiLineRX, MultiLineTX
from multi_coders import MultiEncoder, CrossbarDecoder
from migen.build.platforms.sinara import kasli, efc
from eem_helpers import generate_pads
from kasli_crg import TransceiverCRG
from uart import UART
from migen.genlib.fifo import SyncFIFO
class BiDirectionalIO(Module):
def __init__(self, i_pads, o_pads):
self.i = Signal(4)
self.o = Signal(4)
self.t = Signal(4)
for i in range(4):
self.specials += Instance("OBUFTDS",
i_I=self.i[i],
o_O=o_pads[i].p,
o_OB=o_pads[i].n,
# Always chain the 3-states input to serializer
# Vivado will complain otherwise
i_T=self.t[i],
)
for i in range(4):
self.specials += Instance("IBUFDS",
i_I=i_pads[i].p,
i_IB=i_pads[i].n,
o_O=self.o[i],
)
class ClockOut(Module):
def __init__(self, clk_out):
self.clk = Signal()
# clk_buffer = Signal()
# clk_se = Signal()
# self.specials += Instance("BUFIO",
# i_I=self.clk,
# o_O=clk_buffer,
# )
# self.specials += Instance("ODDR",
# i_C=clk_buffer, i_CE=1, i_D1=0, i_D2=1, o_Q=clk_se),
self.specials += Instance("OBUFDS",
i_I=self.clk,
o_O=clk_out.p,
o_OB=clk_out.n,
)
class Master(Module):
def __init__(self, i_pads, o_pads):
self.sysclk = ClockSignal("sys")
self.submodules.tx = MultiLineTX()
self.submodules.rx = MultiLineRX()
self.submodules.channel = BiDirectionalIO(i_pads, o_pads)
self.submodules.encoder = MultiEncoder(lsb_first=False)
decoders = [ CrossbarDecoder(lsb_first=False) for _ in range(2) ]
self.submodules += decoders
self.comb += [
# Transmitter to SERDES
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
# SERDES to receiver
self.rx.ser_in_no_dly.eq(self.channel.o),
# Connect encoders & decoders by default
# Overrule the encoder connection during alignment
self.tx.txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1])),
decoders[0].raw_input.eq(self.rx.rxdata[:10]),
decoders[1].raw_input.eq(self.rx.rxdata[10:]),
]
tx_fsm = FSM(reset_state="SEND_TRAINING")
self.submodules += tx_fsm
tx_fsm.act("SEND_TRAINING",
self.tx.txdata.eq(0b00100001000010000100),
# Keep sending the training sequence unless
# an identifier is received
NextState("SEND_TRAINING"),
# If(self.rx.rxdata == 0b11111111111111111111,
# NextState("WAIT_IDENT_END"),
# ),
)
tx_fsm.act("WAIT_IDENT_END",
self.tx.txdata.eq(0),
If(self.rx.rxdata != 0b11111111111111111111,
NextState("SEND_ZERO"),
),
)
send_zero_duration = Signal(3)
tx_fsm.act("SEND_ZERO",
self.tx.txdata.eq(0),
If(send_zero_duration == 0b111,
NextState("SEND_PULSE"),
).Else(
NextValue(send_zero_duration, send_zero_duration + 1),
),
)
tx_fsm.act("SEND_PULSE",
self.tx.txdata.eq(0b11111111111111111111),
self.encoder.start.eq(1),
# Slave decoder start will be triggered by this state
NextState("WAIT_GROUP_ALIGN"),
)
data = [ Signal(8) for _ in range(2) ]
tx_fsm.act("WAIT_GROUP_ALIGN",
# Wait for the identifier from the slave
# TODO: Align the master receiver after
If(self.rx.rxdata == 0b11111111111111111111,
NextValue(data[0], 0x80),
NextValue(data[1], 0x7F),
NextState("TERMINATE"),
),
)
tx_fsm.act("TERMINATE",
self.encoder.d[0].eq(0x89),
self.encoder.d[1].eq(0x75),
NextValue(data[0], data[0] + 1),
NextValue(data[1], data[1] - 1),
NextState("TERMINATE"),
)
class Satellite(Module):
def __init__(self, i_pads, o_pads, sys_clk_freq):
self.uart_rx = Signal()
self.uart_tx = Signal()
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
]
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.comb += [
# UART TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
]
self.submodules.tx = MultiLineTX()
self.submodules.rx = MultiLineRX()
self.submodules.channel = BiDirectionalIO(i_pads, o_pads)
self.submodules.encoder = MultiEncoder(lsb_first=False)
decoders = [ CrossbarDecoder(lsb_first=False) for _ in range(2) ]
self.submodules += decoders
self.comb += [
# Transmitter to SERDES
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
# SERDES to receiver
self.rx.ser_in_no_dly.eq(self.channel.o),
# Immediately start alignment for RX
self.rx.start.eq(1),
# Connect encoders & decoders by default
# Overrule the encoder connection during alignment
self.tx.txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1])),
decoders[0].raw_input.eq(self.rx.rxdata[:10]),
decoders[1].raw_input.eq(self.rx.rxdata[10:]),
# Start decoder after delay_done is set
decoders[0].start.eq(self.rx.delay_done),
decoders[1].start.eq(self.rx.delay_done),
]
rx_fsm = FSM(reset_state="WAIT_ALIGN_DELAY")
self.submodules += rx_fsm
log_buffer = SyncFIFO(20, 128)
self.submodules += log_buffer
rx_fsm.act("WAIT_ALIGN_DELAY",
If(self.rx.align_done & log_buffer.writable,
log_buffer.we.eq(1),
log_buffer.din.eq(self.rx.rxdata),
),
If(~log_buffer.writable,
NextState("DUMP_LOG_UPPER"),
),
If(self.rx.delay_done,
NextState("LOG_TRAFFIC"),
),
)
rx_fsm.act("LOG_TRAFFIC",
If(log_buffer.writable,
log_buffer.we.eq(1),
log_buffer.din[0:8].eq(decoders[0].d),
log_buffer.din[10:18].eq(decoders[1].d),
# log_buffer.din.eq(self.rx.rxdata),
).Else(
NextState("DUMP_LOG_UPPER"),
),
)
rx_fsm.act("DUMP_LOG_UPPER",
If(log_buffer.readable,
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(log_buffer.dout[18:20]),
NextState("DUMP_LOG_LOWER"),
),
).Else(
NextState("TERMINATE")
),
)
rx_fsm.act("DUMP_LOG_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(log_buffer.dout[10:18]),
# log_buffer.re.eq(1),
NextState("DUMP_LOG_UPPER_SECOND"),
),
)
rx_fsm.act("DUMP_LOG_UPPER_SECOND",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(log_buffer.dout[8:10]),
NextState("DUMP_LOG_LOWER_SECOND"),
),
)
rx_fsm.act("DUMP_LOG_LOWER_SECOND",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(log_buffer.dout[:8]),
log_buffer.re.eq(1),
NextState("DUMP_LOG_UPPER"),
),
)
rx_fsm.act("TERMINATE",
NextState("TERMINATE"),
)
tx_fsm = FSM(reset_state="WAIT_RX_INTRA_ALIGN")
self.submodules += tx_fsm
tx_fsm.act("WAIT_RX_INTRA_ALIGN",
# Note: (Redundant) Only send something when aligned
self.tx.txdata.eq(0),
If(self.rx.align_done,
NextState("SEND_INTRA_ALIGN_IDENT"),
),
)
# Master receiver is not aligned yet
# We need to account for the possibility of group delay
# and SERDES misalignment
# 4 cycles of full 1s seems sufficiently detectable
ident_timer = Signal(2)
tx_fsm.act("SEND_INTRA_ALIGN_IDENT",
self.tx.txdata.eq(0b11111111111111111111),
If(ident_timer == 0b11,
NextValue(ident_timer, 0),
NextState("WAIT_RX_GROUP_ALIGN"),
).Else(
NextValue(ident_timer, ident_timer + 1)
),
)
tx_fsm.act("WAIT_RX_GROUP_ALIGN",
self.tx.txdata.eq(0),
If(self.rx.delay_done,
NextState("SEND_RX_DELAY_IDENT"),
),
)
tx_fsm.act("SEND_RX_DELAY_IDENT",
self.tx.txdata.eq(0b11111111111111111111),
If(ident_timer == 0b11,
NextValue(ident_timer, 0),
NextState("TERMINATE"),
).Else(
NextValue(ident_timer, ident_timer + 1)
),
)
tx_fsm.act("TERMINATE",
# TODO: Release the TX serdes to the encoders
self.tx.txdata.eq(0),
NextState("TERMINATE"),
)
if __name__ == "__main__":
import argparse
import functools
import os
parser = argparse.ArgumentParser()
parser.add_argument("platform")
parser.add_argument("variant")
args = parser.parse_args()
platform_dict = {
"kasli": kasli.Platform(hw_rev="v2.0"),
"efc": efc.Platform(),
}
sysclk_name = {
"kasli": "clk125_gtp",
"efc": "gtp_clk",
}
platform = platform_dict[args.platform]
# Generate pads for the I/O blocks
for eem in range(2):
generate_pads(platform, eem)
data_eem = 0
clk_eem = 1
clk_pad = platform.request("dio{}".format(clk_eem), 0)
# Manage clock source
if args.variant == "master":
sysclk = platform.request(sysclk_name[args.platform])
# Fan out clock through EEM1 pair 0
# clkout = ClockOut(clk_pad)
elif args.variant == "satellite":
# Receive clock from EEM1 pair 0
sysclk = clk_pad
if args.variant == "master":
i_pads = [
platform.request("dio{}".format(data_eem), i) for i in range(4)
]
o_pads = [
platform.request("dio{}".format(data_eem), i+4) for i in range(4)
]
elif args.variant == "satellite":
i_pads = [
platform.request("dio{}".format(data_eem), i) for i in range(4)
]
o_pads = [
platform.request("dio{}".format(data_eem), i+4) for i in range(4)
]
else:
raise ValueError("variant {} not implemented".format(args.variant))
crg = TransceiverCRG(platform, sysclk, gte=(args.variant == "master"))
variant = {
"master": functools.partial(Master, i_pads, o_pads),
"satellite": functools.partial(Satellite, i_pads, o_pads, crg.sys_clk_freq),
}
module_cls = variant[args.variant]
top = module_cls()
# Wire up UART core to the pads
if args.variant == "satellite":
uart_pads = platform.request("serial")
top.comb += [
top.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(top.uart_tx),
]
top.submodules += crg
# if args.variant == "master":
# top.submodules += clkout
# top.comb += clkout.clk.eq(top.sysclk)
output_dir = "{}_{}_build".format(args.platform, args.variant)
platform.build(top, build_dir=output_dir)

50
short_pulse_tx.py Normal file
View File

@ -0,0 +1,50 @@
from migen import *
from migen.build.platforms.sinara import kasli, efc
from sync_serdes import MultiLineTX
from bidirectionalIO import BiDirectionalIO
from eem_helpers import generate_pads
from kasli_crg import TransceiverCRG
class ShortPulseTX(Module):
def __init__(self, i_pads, o_pads):
# TX serdes
self.submodules.tx = MultiLineTX()
# TX PHY
self.submodules.channel = BiDirectionalIO(i_pads, o_pads)
self.comb += [
# Transmitter to SERDES
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
# # SERDES to receiver
# self.rx.ser_in_no_dly.eq(self.channel.o),
# Hardwire TX with 1 pulse signal
self.tx.txdata.eq(0b00000000000000010000)
]
if __name__ == "__main__":
platform = efc.Platform()
# Generate pads for the I/O blocks
for eem in range(2):
generate_pads(platform, eem)
data_eem = 0
i_pads = [
platform.request("dio{}".format(data_eem), i) for i in range(4)
]
o_pads = [
platform.request("dio{}".format(data_eem), i+4) for i in range(4)
]
crg = TransceiverCRG(platform, platform.request("gtp_clk"))
top = ShortPulseTX(i_pads, o_pads)
top.submodules += crg
output_dir = "{}_{}_build".format("efc", "master")
platform.build(top, build_dir=output_dir)

View File

@ -1,9 +1,9 @@
from migen import *
from sync_serdes import *
from migen.genlib.fifo import SyncFIFO
from migen.build.platforms.sinara import kasli
from migen.build.platforms.sinara import kasli, efc
from migen.genlib.misc import WaitTimer
from kasli_crg import KasliCRG
from kasli_crg import TransceiverCRG
from eem_helpers import generate_pads
from uart import UART
from io_loopback import SingleIOLoopback
@ -82,11 +82,6 @@ class SingleSerDesLoopBack(Module):
# Debugging logics
if debug:
self.comb += [
# Start the reader initially
self.bitslip_reader.start.eq(1),
self.post_align_reader.start.eq(0),
self.phase_reader.start.eq(0),
self.bitslip_reader.loopback_rxdata.eq(self.rx.rxdata),
self.post_align_reader.loopback_rxdata.eq(self.rx.rxdata),
self.phase_reader.loopback_rxdata.eq(self.rx.rxdata),
@ -212,7 +207,9 @@ class SingleSerDesLoopBack(Module):
self.submodules += fsm
fsm.act("WAIT_DONE",
self.bitslip_reader.start.eq(1),
If(self.bitslip_reader.done,
NextValue(bitslip_count, 0),
NextState("WRITE_UPPER"),
),
)
@ -229,11 +226,13 @@ class SingleSerDesLoopBack(Module):
)
fsm.act("WRITE_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.bitslip_reader.data_result[bitslip_count][:8]),
NextValue(bitslip_count, bitslip_count + 1),
NextState("WRITE_UPPER"),
)
)
fsm.act("START_SLAVE_ALIGNER",
self.slave_aligner.start.eq(1),
@ -373,6 +372,12 @@ class SingleSerDesLoopBack(Module):
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(self.delay_solver.opt_delay_tap),
NextState("WAIT_OPT_DELAY_ACTIVE"),
),
)
fsm.act("WAIT_OPT_DELAY_ACTIVE",
If(self.rx.cnt_out == self.delay_solver.opt_delay_tap,
NextState("RESAMPLE_RXDATA_UPPER"),
),
)
@ -465,18 +470,16 @@ class SingleSerDesLoopBack(Module):
if __name__ == "__main__":
platform = kasli.Platform(hw_rev="v2.0")
# platform = kasli.Platform(hw_rev="v2.0")
platform = efc.Platform()
# Generate pads for the I/O blocks
eem = 3
eem = 1
generate_pads(platform, eem)
# pads = [
# platform.request("dio{}".format(eem), i) for i in range(4)
# ]
pad = platform.request("dio{}".format(eem), 0)
crg = KasliCRG(platform)
top = SingleSerDesLoopBack(pad, crg.sys_clk_freq, False)
crg = TransceiverCRG(platform, platform.request("gtp_clk"))
top = SingleSerDesLoopBack(pad, crg.sys_clk_freq, True)
# Wire up UART core to the pads
uart_pads = platform.request("serial")

View File

@ -1,5 +1,6 @@
from migen import *
from migen.genlib.misc import WaitTimer
from migen.genlib.fifo import SyncFIFO
from util import PriorityEncoderMSB
@ -36,7 +37,6 @@ class SingleLineRX(Module):
self.ce = Signal()
self.cnt_in = Signal(5)
self.cnt_out = Signal(5)
self.opt_delay = Signal(5)
self.master_bitslip = Signal()
self.slave_bitslip = Signal()
@ -207,9 +207,8 @@ class SlaveAligner(Module):
self.done = Signal()
self.master_bitslip = Signal()
self.slave_bitslip = Signal()
# self.data_result = Array(Signal(10) for _ in range(5))
self.slip_count = Signal(3)
slip_count = Signal(3)
check_odd = Signal()
check_even = Signal()
@ -220,8 +219,6 @@ class SlaveAligner(Module):
fsm.act("WAIT_START",
If(self.start,
NextState("WAIT_TIMER"),
).Else(
NextState("WAIT_START"),
)
)
@ -244,7 +241,7 @@ class SlaveAligner(Module):
NextValue(check_even, self.loopback_rxdata[0]),
NextState("CHECK_MASTER_BITSLIP"),
).Else(
NextValue(self.slip_count, self.slip_count + 1),
NextValue(slip_count, slip_count + 1),
NextState("HIGH_BITSLIP_FIRST"),
)
)
@ -266,7 +263,7 @@ class SlaveAligner(Module):
fsm.act("HIGH_BITSLIP_SECOND",
self.master_bitslip.eq(1),
self.slave_bitslip.eq(1),
If(self.slip_count == 5,
If(slip_count == 5,
NextState("SHIFT_WAIT_TIMER"),
).Else(
NextState("WAIT_TIMER"),
@ -314,7 +311,7 @@ class SlaveAligner(Module):
# After eliminating the potentially duplicating pattern,
# Shift the entire output pattern for delay tap optimization
# Ideally, the optimized first edge would be the middle pair
# So, shift it until bit 4/5 is set and bit 6 is not set
# So, shift it until bit 3/4 is set but bit 5 is not set
fsm.act("SHIFT_WAIT_TIMER",
self.stab_timer.wait.eq(1),
If(self.stab_timer.done,
@ -323,7 +320,7 @@ class SlaveAligner(Module):
)
fsm.act("SHIFT_SAMPLE_PATTERN",
If((self.loopback_rxdata[4:6] != 0) & ~self.loopback_rxdata[6],
If((self.loopback_rxdata[3:5] != 0) & ~self.loopback_rxdata[5],
NextState("TERMINATE"),
).Else(
NextState("SHIFT_HIGH_BITSLIP_FIRST"),
@ -552,7 +549,13 @@ class DelayOptimizer(Module):
fsm.act("LOAD_OPT_DELAY",
self.ld.eq(1),
# The optimal delay tap is prepared in the SAMPLE_PULSE_OUT state
NextState("WAIT_DELAY_LOAD"),
)
fsm.act("WAIT_DELAY_LOAD",
If(self.delay_tap == self.opt_delay_tap,
NextState("TERMINATE"),
),
)
fsm.act("TERMINATE",
@ -560,3 +563,201 @@ class DelayOptimizer(Module):
self.select_odd.eq(self.expected_pulse[0]),
NextState("TERMINATE"),
)
class SyncSingleRX(Module):
def __init__(self):
# Ports
# IN: Undelayed serial signal
self.ser_in_no_dly = Signal()
# IN: Start RX alignment signal
self.start = Signal()
# OUT: Received data after self-alignment, decimation
self.rxdata = Signal(5)
# OUT: RXDATA from this channel is self-aligned
self.align_done = Signal()
# Components
self.submodules.rx = SingleLineRX()
self.submodules.slave_aligner = SlaveAligner()
self.submodules.delay_solver = DelayOptimizer()
# Sample decimation
select_odd = Signal()
decimated_rxdata = Signal(5)
# Dataflow
self.comb += [
# Delay and oversample the original signal
self.rx.ser_in_no_dly.eq(self.ser_in_no_dly),
# Use the deserialized signals for alignment
self.slave_aligner.loopback_rxdata.eq(self.rx.rxdata),
self.delay_solver.loopback_rxdata.eq(self.rx.rxdata),
# Decimate the oversampled signals
If(select_odd,
decimated_rxdata.eq(self.rx.rxdata[1::2]),
).Else(
decimated_rxdata.eq(self.rx.rxdata[::2]),
),
# Send it to the output
self.rxdata.eq(decimated_rxdata),
]
# Control signals
self.comb += [
# Bitslip alignment
self.rx.master_bitslip.eq(self.slave_aligner.master_bitslip),
self.rx.slave_bitslip.eq(self.slave_aligner.slave_bitslip),
# Tap delay optimization
self.rx.ce.eq(self.delay_solver.inc_en),
self.rx.ld.eq(self.delay_solver.ld),
self.rx.cnt_in.eq(self.delay_solver.opt_delay_tap),
self.delay_solver.delay_tap.eq(self.rx.cnt_out),
]
self.submodules.fsm = FSM(reset_state="WAIT_SIGNAL")
self.fsm.act("WAIT_SIGNAL",
If((self.rx.rxdata != 0) & self.start,
NextState("WAIT_ALIGNER")
),
)
self.fsm.act("WAIT_ALIGNER",
self.slave_aligner.start.eq(1),
If(self.slave_aligner.done,
NextState("WAIT_DELAY_OPT"),
),
)
self.fsm.act("WAIT_DELAY_OPT",
self.delay_solver.start.eq(1),
If(self.delay_solver.done,
NextValue(select_odd, self.delay_solver.select_odd),
NextState("INTRA_ALIGN_DONE"),
),
)
self.fsm.act("INTRA_ALIGN_DONE",
self.align_done.eq(1),
NextState("INTRA_ALIGN_DONE"),
)
class MultiLineTX(Module):
def __init__(self):
# Ports
# IN: Unserialized data
self.txdata = Signal(20)
# OUT: Serialized data
self.ser_out = Signal(4)
# OUT: 3-state signal output
self.t_out = Signal(4)
for idx in range(4):
single_tx = SingleLineTX()
self.comb += [
self.ser_out[idx].eq(single_tx.ser_out),
self.t_out[idx].eq(single_tx.t_out),
single_tx.txdata.eq(self.txdata[5*idx:5*(idx+1)]),
]
self.submodules += single_tx
class MultiLineRX(Module):
def __init__(self):
# Ports
# IN: Undelayed serial signal
self.ser_in_no_dly = Signal(4)
# IN: Start alignment process of all channels
self.start = Signal()
# OUT: Received data after self-alignment, decimation
self.rxdata = Signal(20)
# OUT: RXDATA from all channels are self-aligned
self.align_done = Signal()
# OUT: Group delay compensated
self.delay_done = Signal()
# OUT: Group delay adjustment failed
self.err = Signal()
channel_align_done = Signal(4)
self.comb += self.align_done.eq(channel_align_done == 0b1111)
buffer_outflow = Signal(4)
self.comb += buffer_outflow.eq(0b1111)
for idx in range(4):
single_rx = SyncSingleRX()
self.comb += [
single_rx.ser_in_no_dly.eq(self.ser_in_no_dly[idx]),
channel_align_done[idx].eq(single_rx.align_done),
# Propagate start alignment signal to all channels
single_rx.start.eq(self.start),
]
# FIFOs for handling group delay
# Signal from each OSERDES group can have a different delay
# So, add delay to the groups that receives the pulse early
# Maximum delay = 8
channel_buffer = SyncFIFO(5, 16)
self.comb += [
# Allow data go through the FIFO unless aligning
# Pay the memory delay cost
channel_buffer.we.eq(1),
channel_buffer.re.eq(buffer_outflow[idx]),
# Data always flow from individual RX to the rxdata port
channel_buffer.din.eq(single_rx.rxdata),
self.rxdata[5*idx:5*(idx+1)].eq(channel_buffer.dout),
]
# If at any point the FIFO fills up,
# group delay can no longer be determined and compensated
self.sync += [
If(~channel_buffer.writable,
self.err.eq(1),
),
]
self.submodules += [ single_rx, channel_buffer ]
self.submodules.fsm = FSM(reset_state="WAIT_ALIGN_DONE")
self.fsm.act("WAIT_ALIGN_DONE",
If(self.align_done,
NextState("WAIT_ZERO"),
),
)
self.fsm.act("WAIT_ZERO",
If(self.rxdata == 0,
NextState("WAIT_PULSE"),
),
)
self.fsm.act("WAIT_PULSE",
# Control outflow until all channels finds the pulse
If(self.rxdata == 0b11111111111111111111,
buffer_outflow.eq(0b1111),
self.delay_done.eq(1),
NextState("GROUP_DELAY_DONE"),
).Else(
buffer_outflow[0].eq(self.rxdata[ 0: 5] == 0),
buffer_outflow[1].eq(self.rxdata[ 5:10] == 0),
buffer_outflow[2].eq(self.rxdata[10:15] == 0),
buffer_outflow[3].eq(self.rxdata[15:20] == 0),
),
)
self.fsm.act("GROUP_DELAY_DONE",
self.delay_done.eq(1),
NextState("GROUP_DELAY_DONE"),
)

103
test_coder.py Normal file
View File

@ -0,0 +1,103 @@
from migen import *
from multi_coders import MultiEncoder, CrossbarDecoder
class IdentityCoders(Module):
def __init__(self):
self.submodules.encoder = MultiEncoder(lsb_first=False)
decoders = [ CrossbarDecoder(lsb_first=False) for _ in range(2) ]
self.submodules += decoders
# Interface fo input/output
self.d_in = [ Signal(8) for _ in range(2) ]
self.k_in = [ Signal() for _ in range(2) ]
self.d_out = [ Signal(8) for _ in range(2) ]
self.k_out = [ Signal() for _ in range(2) ]
# Signal to start both encoders & decoders
self.encoder_start = Signal()
self.decoder_start = Signal()
self.comb += self.encoder.start.eq(self.encoder_start)
for decoder in decoders:
self.comb += decoder.start.eq(self.decoder_start)
# Interconnect encoders and decoders
for encoder_output, decoder in zip(self.encoder.output, decoders):
self.sync += decoder.raw_input.eq(encoder_output)
for d_in, k_in, encoder_d, encoder_k in \
zip(self.d_in, self.k_in, self.encoder.d, self.encoder.k):
self.comb += [
# Connect symbols to encoder
encoder_d.eq(d_in),
encoder_k.eq(k_in),
]
# Connect symbols from decoder
for d_out, k_out, decoder in zip(self.d_out, self.k_out, decoders):
self.comb += [
d_out.eq(decoder.d),
k_out.eq(decoder.k),
]
import random
def testbench(dut, transmission_delay=1):
data_size = 256
list_of_data = [
(random.randint(0, 0xFF), random.getrandbits(1)) \
for _ in range(data_size)
]
# Control characters
controls = [
0x1C, 0x3C, 0x5C, 0x7C, 0x9C, 0xBC, 0xDC, 0xFC,
0xF7, 0xFB, 0xFD, 0xFE
]
# Correct control symbols
for idx, (data, control) in enumerate(list_of_data):
if control:
list_of_data[idx] = (controls[random.randint(0, len(controls) - 1)], 1)
# Decoder, Encoder, and the channel all introduces delay
delay_list = [ None ] * 5
send_list = list_of_data + delay_list
recv_list = delay_list + list_of_data
yield dut.encoder_start.eq(1)
# Skip exactly 1 cycle. The channel has 1 cycle delay.
yield
yield dut.decoder_start.eq(1)
for _ in range(transmission_delay):
yield
for data_in, data_out in zip(send_list, recv_list):
if data_in is not None:
d_in, k_in = data_in
yield dut.d_in[0].eq(d_in)
yield dut.d_in[1].eq(d_in)
yield dut.k_in[0].eq(k_in)
yield dut.k_in[1].eq(k_in)
else:
yield dut.d_in[0].eq(0)
yield dut.d_in[1].eq(0)
yield dut.k_in[0].eq(0)
yield dut.k_in[1].eq(0)
if data_out is not None:
d_out, k_out = data_out
assert (yield dut.d_out[0]) == d_out
assert (yield dut.d_out[1]) == d_out
assert (yield dut.k_out[0]) == k_out
assert (yield dut.k_out[1]) == k_out
yield
for _ in range(10):
yield
for delay in range(16):
dut = IdentityCoders()
run_simulation(dut, testbench(dut, delay), vcd_name="coders.vcd")

25
uart_log.py Normal file
View File

@ -0,0 +1,25 @@
from migen import *
from migen.genlib.fifo import SyncFIFO
from uart import UART
class UARTLogger(Module):
def __init__(self, sys_clk_freq):
# UART PHY interface
self.uart_rx = Signal()
self.uart_tx = Signal()
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
# PHY connection
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
# UART TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
]