minimal serdes communication loopback

This commit is contained in:
occheung 2023-05-08 12:43:02 +08:00
parent b215dd1b57
commit 1248a46a54

242
multi_serdes_channel.py Normal file
View File

@ -0,0 +1,242 @@
from migen import *
from sync_serdes import MultiLineRX, MultiLineTX
from migen.genlib.fifo import SyncFIFO
from migen.build.platforms.sinara import kasli, efc
from multi_coders import MultiEncoder, CrossbarDecoder
from kasli_crg import TransceiverCRG
from eem_helpers import generate_pads
from uart import UART
from io_loopback import SingleIOLoopback, IOLoopBack
class MultiTransceiverChannel(Module):
def __init__(self, io_pads, sys_clk_freq):
self.uart_rx = Signal()
self.uart_tx = Signal()
self.submodules.uart = UART(round((115200/sys_clk_freq)*2**32))
self.comb += [
self.uart.phy_rx.eq(self.uart_rx),
self.uart_tx.eq(self.uart.phy_tx),
]
# SERDES impl
self.submodules.tx = MultiLineTX()
self.submodules.rx = MultiLineRX()
# 8b10b encoder & decoder
self.submodules.encoder = MultiEncoder(lsb_first=False)
decoders = [ CrossbarDecoder(lsb_first=False) for _ in range(2) ]
self.submodules += decoders
# The actual channel
self.submodules.channel = IOLoopBack(io_pads)
# FIFO to record transmission received
rx_records = SyncFIFO(16, 32)
self.submodules += rx_records
# Attach FIFO to UART TX, send rate is too slow w.r.t sysclk
self.submodules.tx_fifo = SyncFIFO(8, 64)
self.comb += [
# Loopback channel
self.channel.i.eq(self.tx.ser_out),
self.channel.t.eq(self.tx.t_out),
self.rx.ser_in_no_dly.eq(self.channel.o),
# Link decoders
decoders[0].raw_input.eq(self.rx.rxdata[:10]),
decoders[1].raw_input.eq(self.rx.rxdata[10:]),
# Default encoder linkage
self.tx.txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1])),
# UART TX path
self.uart.tx_data.eq(self.tx_fifo.dout),
self.uart.tx_stb.eq(self.tx_fifo.readable),
self.tx_fifo.re.eq(self.uart.tx_ack),
]
rx_fsm = FSM(reset_state="WAIT_GROUP_ALIGN")
self.submodules += rx_fsm
rx_fsm.act("WAIT_GROUP_ALIGN",
If(self.rx.align_done & rx_records.writable,
rx_records.din.eq(self.rx.rxdata),
rx_records.we.eq(1),
),
If(self.rx.err,
NextState("WRITE_ERR_UPPER"),
).Elif(self.rx.rxdata == 0b11111111111111111111,
decoders[0].start.eq(1),
decoders[1].start.eq(1),
NextState("RECORD_TRANSMISSION"),
),
)
rx_fsm.act("WRITE_ERR_UPPER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b01010101),
NextState("WRITE_ERR_LOWER"),
),
)
rx_fsm.act("WRITE_ERR_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(0b10101010),
NextState("TERMINATE"),
),
)
rx_fsm.act("RECORD_TRANSMISSION",
If(rx_records.writable,
rx_records.din.eq(Cat(decoders[0].d, decoders[1].d)),
rx_records.we.eq(1),
).Else(
NextState("DUMP_TRANSMISSION_UPPER"),
)
)
rx_fsm.act("DUMP_TRANSMISSION_UPPER",
If(rx_records.readable,
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(rx_records.dout[8:]),
NextState("DUMP_TRANSMISSION_LOWER"),
)
).Else(
NextState("TERMINATE"),
),
)
rx_fsm.act("DUMP_TRANSMISSION_LOWER",
If(self.tx_fifo.writable,
self.tx_fifo.we.eq(1),
self.tx_fifo.din.eq(rx_records.dout[:8]),
rx_records.re.eq(1),
NextState("DUMP_TRANSMISSION_UPPER"),
)
)
rx_fsm.act("TERMINATE",
NextState("TERMINATE")
)
tx_fsm = FSM(reset_state="SEND_TRAINING")
self.submodules += tx_fsm
tx_fsm.act("SEND_TRAINING",
self.tx.txdata.eq(0b00100001000010000100),
If(self.rx.align_done,
NextState("SEND_ZERO"),
),
)
send_zero_duration = Signal(2)
tx_fsm.act("SEND_ZERO",
self.tx.txdata.eq(0),
If(send_zero_duration == 0b11,
NextState("SEND_PULSE"),
).Else(
NextValue(send_zero_duration, send_zero_duration + 1),
),
)
tx_fsm.act("SEND_PULSE",
self.tx.txdata.eq(0b11111111111111111111),
self.encoder.start.eq(1),
NextState("WAIT_GROUP_ALIGN"),
)
tx_fsm.act("WAIT_GROUP_ALIGN",
If(self.rx.delay_done,
NextState("SEND_ARB_DATA1"),
),
)
tx_fsm.act("SEND_ARB_DATA1",
self.encoder.d[0].eq(0xDE),
self.encoder.d[1].eq(0xAD),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextState("SEND_ARB_DATA2"),
)
tx_fsm.act("SEND_ARB_DATA2",
self.encoder.d[0].eq(0xBE),
self.encoder.d[1].eq(0xEF),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextState("SEND_ARB_DATA3"),
)
tx_fsm.act("SEND_ARB_DATA3",
self.encoder.d[0].eq(0xBA),
self.encoder.d[1].eq(0xD0),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextState("SEND_ARB_DATA4"),
)
tx_fsm.act("SEND_ARB_DATA4",
self.encoder.d[0].eq(0xCA),
self.encoder.d[1].eq(0xFE),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextState("TERMINATE"),
)
tx_fsm.act("TERMINATE",
self.encoder.d[0].eq(0xAD),
self.encoder.d[1].eq(0xDE),
self.encoder.k[0].eq(0),
self.encoder.k[1].eq(0),
NextState("TERMINATE"),
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("platform")
args = parser.parse_args()
platform_dict = {
"kasli": kasli.Platform(hw_rev="v2.0"),
"efc": efc.Platform(),
}
sysclk_name = {
"kasli": "clk125_gtp",
"efc": "gtp_clk",
}
platform = platform_dict[args.platform]
sysclk = platform.request(sysclk_name[args.platform])
# Generate pads for the I/O blocks
# Using EEM1 for both as both EFC and Kasli has EEM1
# EEM1 are not interconnected
eem = 0
generate_pads(platform, eem)
pads = [
platform.request("dio{}".format(eem), i) for i in range(4)
]
# pad = platform.request("dio{}".format(eem), 0)
crg = TransceiverCRG(platform, sysclk)
top = MultiTransceiverChannel(pads, crg.sys_clk_freq)
# Wire up UART core to the pads
uart_pads = platform.request("serial")
top.comb += [
top.uart_rx.eq(uart_pads.rx),
uart_pads.tx.eq(top.uart_tx),
]
top.submodules += crg
platform.build(top)