pounder_test/dsp/src/iir_int.rs

98 lines
3.0 KiB
Rust
Raw Normal View History

2021-02-26 01:01:53 +08:00
use super::tools::macc_i32;
2021-02-04 22:21:05 +08:00
use core::f64::consts::PI;
2021-03-01 21:46:12 +08:00
use miniconf::MiniconfAtomic;
2021-02-21 03:27:30 +08:00
use serde::Deserialize;
/// Generic vector for integer IIR filter.
/// This struct is used to hold the x/y input/output data vector or the b/a coefficient
/// vector.
pub type Vec5 = [i32; 5];
trait Coeff {
/// Lowpass biquad filter using cutoff and sampling frequencies. Taken from:
/// https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
///
/// # Args
/// * `f` - Corner frequency, or 3dB cutoff frequency (in units of sample rate).
2021-01-27 02:19:03 +08:00
/// This is only accurate for low corner frequencies less than ~0.01.
/// * `q` - Quality factor (1/sqrt(2) for critical).
/// * `k` - DC gain.
///
/// # Returns
/// 2nd-order IIR filter coefficients in the form [b0,b1,b2,a1,a2]. a0 is set to -1.
fn lowpass(f: f64, q: f64, k: f64) -> Self;
}
impl Coeff for Vec5 {
fn lowpass(f: f64, q: f64, k: f64) -> Self {
2021-01-27 02:19:03 +08:00
// 3rd order Taylor approximation of sin and cos.
let f = f * 2. * PI;
2021-02-02 22:41:47 +08:00
let f2 = f * f * 0.5;
let fcos = 1. - f2;
let fsin = f * (1. - f2 / 3.);
let alpha = fsin / (2. * q);
// IIR uses Q2.30 fixed point
2021-02-04 22:21:05 +08:00
let a0 = (1. + alpha) / (1 << IIR::SHIFT) as f64;
2021-02-09 19:17:48 +08:00
let b0 = (k / 2. * (1. - fcos) / a0 + 0.5) as _;
let a1 = (2. * fcos / a0 + 0.5) as _;
let a2 = ((alpha - 1.) / a0 + 0.5) as _;
[b0, 2 * b0, b0, a1, a2]
}
}
/// Integer biquad IIR
///
/// See `dsp::iir::IIR` for general implementation details.
/// Offset and limiting disabled to suit lowpass applications.
/// Coefficient scaling fixed and optimized.
2021-03-01 21:46:12 +08:00
#[derive(Copy, Clone, Default, Debug, MiniconfAtomic, Deserialize)]
pub struct IIR {
pub ba: Vec5,
2021-06-25 21:23:35 +08:00
pub y_offset: i32,
pub y_min: i32,
pub y_max: i32,
}
impl IIR {
/// Coefficient fixed point format: signed Q2.30.
/// Tailored to low-passes, PI, II etc.
2021-01-18 05:19:14 +08:00
pub const SHIFT: u32 = 30;
/// Feed a new input value into the filter, update the filter state, and
/// return the new output. Only the state `xy` is modified.
///
/// # Arguments
/// * `xy` - Current filter state.
/// * `x0` - New input.
pub fn update(&self, xy: &mut Vec5, x0: i32) -> i32 {
let n = self.ba.len();
debug_assert!(xy.len() == n);
// `xy` contains x0 x1 y0 y1 y2
// Increment time x1 x2 y1 y2 y3
// Shift x1 x1 x2 y1 y2
// This unrolls better than xy.rotate_right(1)
xy.copy_within(0..n - 1, 1);
// Store x0 x0 x1 x2 y1 y2
xy[0] = x0;
// Compute y0 by multiply-accumulate
2021-06-25 21:23:35 +08:00
let y0 = macc_i32(self.y_offset, xy, &self.ba, IIR::SHIFT);
// Limit y0
2021-06-25 21:23:35 +08:00
let y0 = y0.max(self.y_min).min(self.y_max);
// Store y0 x0 x1 y0 y1 y2
xy[n / 2] = y0;
y0
}
}
2021-01-27 02:19:03 +08:00
#[cfg(test)]
mod test {
2021-02-17 23:25:21 +08:00
use super::{Coeff, Vec5};
2021-01-27 02:19:03 +08:00
#[test]
fn lowpass_gen() {
2021-02-09 19:17:48 +08:00
let ba = Vec5::lowpass(1e-5, 1. / 2f64.sqrt(), 2.);
println!("{:?}", ba);
2021-01-27 02:19:03 +08:00
}
}