2021-01-27 01:49:58 +08:00
|
|
|
use super::cossin;
|
2020-12-22 23:49:12 +08:00
|
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
|
2021-01-27 01:49:58 +08:00
|
|
|
/// Generic vector for integer IIR filter.
|
|
|
|
/// This struct is used to hold the x/y input/output data vector or the b/a coefficient
|
|
|
|
/// vector.
|
2021-01-18 05:19:14 +08:00
|
|
|
#[derive(Copy, Clone, Default, Deserialize, Serialize)]
|
|
|
|
pub struct IIRState(pub [i32; 5]);
|
2020-12-22 23:49:12 +08:00
|
|
|
|
2021-01-27 01:49:58 +08:00
|
|
|
impl IIRState {
|
|
|
|
/// Lowpass biquad filter using cutoff and sampling frequencies. Taken from:
|
|
|
|
/// https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
|
|
|
|
///
|
|
|
|
/// # Args
|
|
|
|
/// * `f` - Corner frequency, or 3dB cutoff frequency (in units of sample rate).
|
|
|
|
/// * `q` - Quality factor (1/sqrt(2) for critical).
|
|
|
|
/// * `k` - DC gain.
|
|
|
|
///
|
|
|
|
/// # Returns
|
|
|
|
/// 2nd-order IIR filter coefficients in the form [b0,b1,b2,a1,a2]. a0 is set to -1.
|
|
|
|
pub fn lowpass(f: f64, q: f64, k: f64) -> IIRState {
|
|
|
|
let scale = (1i64 << 32) as f64;
|
|
|
|
let fcossin = cossin((f * scale) as u32 as i32);
|
|
|
|
let fcos = fcossin.0 as f64 / scale;
|
|
|
|
let fsin = fcossin.1 as f64 / scale;
|
|
|
|
let alpha = fsin / (2. * q);
|
|
|
|
// IIR uses Q2.30 fixed point
|
|
|
|
let a0 = (1. + alpha) / (1 << IIR::SHIFT) as f64;
|
|
|
|
let b0 = (k / 2. * (1. - fcos) / a0) as _;
|
|
|
|
let a1 = (2. * fcos / a0) as _;
|
|
|
|
let a2 = ((alpha - 1.) / a0) as _;
|
|
|
|
|
|
|
|
IIRState([b0, 2 * b0, b0, a1, a2])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-12-22 23:49:12 +08:00
|
|
|
fn macc(y0: i32, x: &[i32], a: &[i32], shift: u32) -> i32 {
|
|
|
|
// Rounding bias, half up
|
|
|
|
let y0 = ((y0 as i64) << shift) + (1 << (shift - 1));
|
|
|
|
let y = x
|
|
|
|
.iter()
|
|
|
|
.zip(a)
|
|
|
|
.map(|(x, a)| *x as i64 * *a as i64)
|
|
|
|
.fold(y0, |y, xa| y + xa);
|
|
|
|
(y >> shift) as i32
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Integer biquad IIR
|
|
|
|
///
|
|
|
|
/// See `dsp::iir::IIR` for general implementation details.
|
|
|
|
/// Offset and limiting disabled to suit lowpass applications.
|
|
|
|
/// Coefficient scaling fixed and optimized.
|
2021-01-18 05:19:14 +08:00
|
|
|
#[derive(Copy, Clone, Default, Deserialize, Serialize)]
|
2020-12-22 23:49:12 +08:00
|
|
|
pub struct IIR {
|
|
|
|
pub ba: IIRState,
|
|
|
|
// pub y_offset: i32,
|
|
|
|
// pub y_min: i32,
|
|
|
|
// pub y_max: i32,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl IIR {
|
2021-01-22 22:11:16 +08:00
|
|
|
/// Coefficient fixed point format: signed Q2.30.
|
|
|
|
/// Tailored to low-passes, PI, II etc.
|
2021-01-18 05:19:14 +08:00
|
|
|
pub const SHIFT: u32 = 30;
|
2020-12-22 23:49:12 +08:00
|
|
|
|
|
|
|
/// Feed a new input value into the filter, update the filter state, and
|
|
|
|
/// return the new output. Only the state `xy` is modified.
|
|
|
|
///
|
|
|
|
/// # Arguments
|
|
|
|
/// * `xy` - Current filter state.
|
|
|
|
/// * `x0` - New input.
|
|
|
|
pub fn update(&self, xy: &mut IIRState, x0: i32) -> i32 {
|
2021-01-18 05:19:14 +08:00
|
|
|
let n = self.ba.0.len();
|
|
|
|
debug_assert!(xy.0.len() == n);
|
2020-12-22 23:49:12 +08:00
|
|
|
// `xy` contains x0 x1 y0 y1 y2
|
|
|
|
// Increment time x1 x2 y1 y2 y3
|
|
|
|
// Shift x1 x1 x2 y1 y2
|
|
|
|
// This unrolls better than xy.rotate_right(1)
|
2021-01-18 05:19:14 +08:00
|
|
|
xy.0.copy_within(0..n - 1, 1);
|
2020-12-22 23:49:12 +08:00
|
|
|
// Store x0 x0 x1 x2 y1 y2
|
2021-01-18 05:19:14 +08:00
|
|
|
xy.0[0] = x0;
|
2020-12-22 23:49:12 +08:00
|
|
|
// Compute y0 by multiply-accumulate
|
2021-01-18 05:19:14 +08:00
|
|
|
let y0 = macc(0, &xy.0, &self.ba.0, IIR::SHIFT);
|
2020-12-22 23:49:12 +08:00
|
|
|
// Limit y0
|
|
|
|
// let y0 = y0.max(self.y_min).min(self.y_max);
|
|
|
|
// Store y0 x0 x1 y0 y1 y2
|
2021-01-18 05:19:14 +08:00
|
|
|
xy.0[n / 2] = y0;
|
2020-12-22 23:49:12 +08:00
|
|
|
y0
|
|
|
|
}
|
|
|
|
}
|