forked from M-Labs/nac3
Compare commits
543 Commits
enhance/ca
...
master
Author | SHA1 | Date | |
---|---|---|---|
f817d3347b | |||
2d275949b8 | |||
2783834cb1 | |||
879b063968 | |||
14e80dfab7 | |||
5fdbc34b43 | |||
32f24261f2 | |||
ce40a46f8a | |||
f15a64cc1b | |||
7fac801936 | |||
febfd1241d | |||
4bd5349381 | |||
c15062ab4c | |||
933804e270 | |||
1cfaa1a779 | |||
18e8e5269f | |||
357970a793 | |||
762a2447c3 | |||
8e614d83de | |||
bd66fe48d8 | |||
c59fd286ff | |||
f8530e0ef6 | |||
3ebd4ba5d1 | |||
d1dcfa19ff | |||
8baf111734 | |||
eaaa194a87 | |||
352c7c880b | |||
3c5e247195 | |||
4e21def1a0 | |||
2271b46b96 | |||
d9c180ed13 | |||
8322d457c6 | |||
e480081e4b | |||
12fddc3533 | |||
3ac1083734 | |||
66b8a5e01d | |||
ebbadc2d74 | |||
a2f1b25fd8 | |||
59f19e29df | |||
6cbba8fdde | |||
e6dab25a57 | |||
2dc5e79a23 | |||
dcde1d9c87 | |||
7375983e0c | |||
43e440d2fd | |||
8d975b5ff3 | |||
aae41eef6a | |||
132ba1942f | |||
12358c57b1 | |||
9ffa2d6552 | |||
acb437919d | |||
fadadd7505 | |||
26f1428739 | |||
5880f964bb | |||
7d02f5833d | |||
822f9d33f8 | |||
805a9d23b3 | |||
1ffe2fcc7f | |||
2f0847d77b | |||
dc9efa9e8c | |||
3c0ce3031f | |||
d5e8df070a | |||
dc413dfa43 | |||
19122e2905 | |||
318371a509 | |||
35e3042435 | |||
0e5940c49d | |||
fbf0053c24 | |||
456aefa6ee | |||
49a7469b4a | |||
1531b6cc98 | |||
9bbc40bbfa | |||
790e56d106 | |||
a00eb7969e | |||
27a6f47330 | |||
061747c67b | |||
dc91d9e35a | |||
438943ac6f | |||
678e56c95d | |||
fdfc80ca5f | |||
8b3429d62a | |||
f4c5038b95 | |||
ddd16738a6 | |||
44c49dc102 | |||
e4bd376587 | |||
44498f22f6 | |||
110416d07a | |||
08a7d01a13 | |||
3cd36fddc3 | |||
56a7a9e03d | |||
574ae40f97 | |||
aa293b6bea | |||
eb4b881690 | |||
3d0a1d281c | |||
ad67a99c8f | |||
8e2b50df21 | |||
06092ad29b | |||
d62c6b95fd | |||
95e29d9997 | |||
536ed2146c | |||
d484d44d95 | |||
ac978864f2 | |||
95254f8464 | |||
964945d244 | |||
ae09a0d444 | |||
01edd5af67 | |||
015714eee1 | |||
71dec251e3 | |||
fce61f7b8c | |||
babc081dbd | |||
5337dbe23b | |||
f862c01412 | |||
0c9705f5f1 | |||
5f940f86d9 | |||
5651e00688 | |||
f6745b987f | |||
e0dedc6580 | |||
28f574282c | |||
144f0922db | |||
c58ce9c3a9 | |||
f7e296da53 | |||
b58c99369e | |||
1a535db558 | |||
1ba2e287a6 | |||
f95f979ad3 | |||
48e2148c0f | |||
88e57f7120 | |||
d7633c42bc | |||
a4f53b6e6b | |||
9d9ead211e | |||
26a1b85206 | |||
2822074b2d | |||
fe67ed076c | |||
94e2414df0 | |||
2cee760404 | |||
230982dc84 | |||
2bd3f63991 | |||
b53266e9e6 | |||
86eb22bbf3 | |||
beaa38047d | |||
705dc4ff1c | |||
979209a526 | |||
c3927d0ef6 | |||
202a902cd0 | |||
b6e2644391 | |||
45cd01556b | |||
b6cd2a6993 | |||
a98f33e6d1 | |||
5839badadd | |||
56c845aac4 | |||
65a12d9ab3 | |||
9c6685fa8f | |||
2bb788e4bb | |||
42a2f243b5 | |||
3ce2eddcdc | |||
51bf126a32 | |||
1a197c67f6 | |||
581b2f7bb2 | |||
746329ec5d | |||
e60e8e837f | |||
9fdbe9695d | |||
8065e73598 | |||
192290889b | |||
1407553a2f | |||
c7697606e1 | |||
88d0ccbf69 | |||
a43b59539c | |||
fe06b2806f | |||
7f6c9a25ac | |||
6c8382219f | |||
9274a7b96b | |||
d1c0fe2900 | |||
f2c047ba57 | |||
5e2e77a500 | |||
f3cc4702b9 | |||
3e92c491f5 | |||
7f629f1579 | |||
5640a793e2 | |||
abbaa506ad | |||
f3dc02d646 | |||
ea217eaea1 | |||
5a34551905 | |||
6098b1b853 | |||
668ccb1c95 | |||
a3c624d69d | |||
bd06155f34 | |||
9c33c4209c | |||
122983f11c | |||
71c3a65a31 | |||
8c540d1033 | |||
0cc60a3d33 | |||
a59c26aa99 | |||
02d93b11d1 | |||
59cad5bfe1 | |||
4318f8de84 | |||
15ac00708a | |||
c8dfdcfdea | |||
600a5c8679 | |||
22c4d25802 | |||
308edb8237 | |||
9848795dcc | |||
58222feed4 | |||
518f21d174 | |||
e8e49684bf | |||
b2900b4883 | |||
c6dade1394 | |||
7e3fcc0845 | |||
d3b4c60d7f | |||
5b2b6db7ed | |||
15e62f467e | |||
2c88924ff7 | |||
a744b139ba | |||
2b2b2dbf8f | |||
d9f96dab33 | |||
c5ae0e7c36 | |||
b8dab6cf7c | |||
4d80ba38b7 | |||
33929bda24 | |||
a8e92212c0 | |||
908271014a | |||
c407622f5c | |||
d7952d0629 | |||
ca1395aed6 | |||
7799aa4987 | |||
76016a26ad | |||
8532bf5206 | |||
2cf64d8608 | |||
706759adb2 | |||
b90cf2300b | |||
0fc26df29e | |||
0b074c2cf2 | |||
a0f6961e0e | |||
b1c5c2e1d4 | |||
69320a6cf1 | |||
9e0601837a | |||
432c81a500 | |||
6beff7a268 | |||
6ca7aecd4a | |||
8fd7216243 | |||
4f5e417012 | |||
a0614bad83 | |||
5539d144ed | |||
b3891b9a0d | |||
6fb8939179 | |||
973dc5041a | |||
d0da688aa7 | |||
12c4e1cf48 | |||
9b988647ed | |||
35a7cecc12 | |||
7e3d87f841 | |||
ac0d83ef98 | |||
3ff6db1a29 | |||
d7b806afb4 | |||
fac60c3974 | |||
f5fb504a15 | |||
faa3bb97ad | |||
6a64c9d1de | |||
3dc8498202 | |||
cbf79c5e9c | |||
b8aa17bf8c | |||
f5b998cd9c | |||
c36f85ecb9 | |||
3a8c385e01 | |||
221de4d06a | |||
fb9fe8edf2 | |||
894083c6a3 | |||
669c6aca6b | |||
63d2b49b09 | |||
bf709889c4 | |||
1c72698d02 | |||
54f883f0a5 | |||
4a6845dac6 | |||
00236f48bc | |||
a3e6bb2292 | |||
17171065b1 | |||
540b35ec84 | |||
4bb00c52e3 | |||
faf07527cb | |||
d6a4d0a634 | |||
2242c5af43 | |||
318a675ea6 | |||
32e52ce198 | |||
665ca8e32d | |||
12c12b1d80 | |||
72972fa909 | |||
142cd48594 | |||
8adfe781c5 | |||
339b74161b | |||
8c5ba37d09 | |||
05a8948ff2 | |||
6d171ec284 | |||
0ba68f6657 | |||
693b2a8863 | |||
5faeede0e5 | |||
266707df9d | |||
3d3c258756 | |||
ed1182cb24 | |||
fd025c1137 | |||
f139db9af9 | |||
44487b76ae | |||
1332f113e8 | |||
7632d6f72a | |||
4948395ca2 | |||
3db3061d99 | |||
51c2175c80 | |||
1a31a50b8a | |||
6c10e3d056 | |||
2dbc1ec659 | |||
c80378063a | |||
513d30152b | |||
45e9360c4d | |||
2e01b77fc8 | |||
cea7cade51 | |||
d658d9b00e | |||
eeb474f9e6 | |||
88b72af2d1 | |||
b73f6c4d68 | |||
f47cdec650 | |||
d656880e44 | |||
a91602915a | |||
1c56005a01 | |||
bc40a32524 | |||
c820daf5f8 | |||
25d2de67f7 | |||
2cfb7a7e10 | |||
9238a5e86e | |||
76defac462 | |||
650f354b74 | |||
f062ef5f59 | |||
f52086b706 | |||
0a732691c9 | |||
cbff356d50 | |||
24ac3820b2 | |||
ba32fab374 | |||
c4052b6342 | |||
66c205275f | |||
c85e412206 | |||
075536d7bd | |||
13beeaa2bf | |||
2194dbddd5 | |||
94a1d547d6 | |||
d6565feed3 | |||
83154ef8e1 | |||
0744b938b8 | |||
56fa2b6803 | |||
d06c13f936 | |||
9808923258 | |||
5b11a1dbdd | |||
b21df53e0d | |||
0ec967a468 | |||
ca8459dc7b | |||
b0b804051a | |||
134af79fd6 | |||
7fe2c3496c | |||
144a3fc426 | |||
74096eb9f6 | |||
06e9d90d57 | |||
d89146aa02 | |||
5bade81ddb | |||
0452e6de78 | |||
635c944c90 | |||
e36af3b0a3 | |||
5b1aa812ed | |||
d3cd2a8d99 | |||
202a63274d | |||
76dd5191f5 | |||
8d9df0a615 | |||
07adfb2a18 | |||
f00e458f60 | |||
1bc95a7ba6 | |||
e85f4f9bd2 | |||
ce3e9bf4fe | |||
82091b1be8 | |||
32919949e2 | |||
2abe75d1f4 | |||
676412fe6d | |||
8b9df7252f | |||
6979843431 | |||
fed1361c6a | |||
aa94e0c8a4 | |||
f523e26227 | |||
f026b48e2a | |||
dc874f2994 | |||
95de0800b4 | |||
3d71c6a850 | |||
be55e2ac80 | |||
79c8b759ad | |||
4798c53a21 | |||
23974feae7 | |||
40a3bded36 | |||
c4420e6ab9 | |||
fd36f78005 | |||
8168692cc3 | |||
53d44b9595 | |||
6153f94b05 | |||
4730b595f3 | |||
c2fdb12397 | |||
82bf14785b | |||
2d4329e23c | |||
679656f9e1 | |||
210d9e2334 | |||
181ac3ec1a | |||
3acdfb304d | |||
6e24da9cc5 | |||
f0ab1b858a | |||
08129cc635 | |||
ad4832dcf4 | |||
520bbb246b | |||
b857f1e403 | |||
fa8af37e84 | |||
23b2fee4e7 | |||
ed79d5bb9e | |||
c35ad06949 | |||
135ef557f9 | |||
a176c3eb70 | |||
2cf79510c2 | |||
b6ff75dcaf | |||
588c15f80d | |||
82cc693b11 | |||
520e1adc56 | |||
73e81259f3 | |||
7627acea41 | |||
a777099ea8 | |||
876e6ea7b8 | |||
30c6cffbad | |||
51671800b6 | |||
7195476edb | |||
eecba0b71d | |||
7b4253ccd8 | |||
f58c3a11f8 | |||
d0766a116f | |||
64a3751fc2 | |||
9566047241 | |||
062e318dd5 | |||
c4dc36ae99 | |||
baac348ee6 | |||
847615fc2f | |||
5dfcc63978 | |||
025b3cd02f | |||
e0f440040c | |||
f0715e2b6d | |||
e7fca67786 | |||
52c731c312 | |||
00d1b9be9b | |||
8404d4c4dc | |||
e614dd4257 | |||
937a8b9698 | |||
876ad6c59c | |||
a920fe0501 | |||
727a1886b3 | |||
6af13a8261 | |||
3540d0ab29 | |||
3a6c53d760 | |||
87bc34f7ec | |||
f50a5f0345 | |||
a77fd213e0 | |||
8f1497df83 | |||
5ca2dbeec8 | |||
9a98cde595 | |||
5ba8601b39 | |||
26a01b14d5 | |||
d5f4817134 | |||
789bfb5a26 | |||
4bb0e60981 | |||
623fcf85af | |||
13f06f3e29 | |||
f0da9c0283 | |||
2c4bf3ce59 | |||
e980f19c93 | |||
cfbc37c1ed | |||
50264e8750 | |||
1b77e62901 | |||
fd44ee6887 | |||
c8866b1534 | |||
84a888758a | |||
9d550725b7 | |||
2edc1de0b6 | |||
c3b122acfc | |||
a94927a11d | |||
ebf86cd134 | |||
cccd8f2d00 | |||
3292aed099 | |||
96b7f29679 | |||
3d2abf73c8 | |||
f682e9bf7a | |||
b26cb2b360 | |||
2317516cf6 | |||
77de24ef74 | |||
234a6bde2a | |||
c3db6297d9 | |||
82fdb02d13 | |||
4efdd17513 | |||
49de81ef1e | |||
8492503af2 | |||
e1dbe2526a | |||
f37de381ce | |||
4452c8986a | |||
22e831cb76 | |||
cc538d221a | |||
0d5c53e60c | |||
976a9512c1 | |||
1eacaf9afa | |||
8c7e44098a | |||
282a3e1911 | |||
5cecb2bb74 | |||
1963c30744 | |||
27011f385b | |||
d6302b6ec8 | |||
fef4b2a5ce | |||
b3736c3e99 | |||
e328e44c9a | |||
9e4e90f8a0 | |||
8470915809 | |||
148900302e | |||
5ee08b585f | |||
f1581299fc | |||
af95ba5012 | |||
9c9756be33 | |||
2a922c7480 | |||
e3e2c36ef4 | |||
4f9a0110c4 | |||
12c0eed0a3 | |||
c679474f5c | |||
ab3fa05996 | |||
140f8f8a08 | |||
27fcf8926e | |||
afa7d9b100 | |||
c395472094 | |||
03870f222d | |||
e435b25756 | |||
bd792904f9 | |||
1c3a823670 | |||
f01d833d48 | |||
9d64e606f4 | |||
6dccb343bb | |||
d47534e2ad | |||
8886964776 | |||
f09f3c27a5 | |||
0bbc9ce6f5 | |||
457d3b6cd7 | |||
5f692debd8 | |||
c7735d935b | |||
b47ac1b89b |
32
.clang-format
Normal file
32
.clang-format
Normal file
@ -0,0 +1,32 @@
|
||||
BasedOnStyle: LLVM
|
||||
|
||||
Language: Cpp
|
||||
Standard: Cpp11
|
||||
|
||||
AccessModifierOffset: -1
|
||||
AlignEscapedNewlines: Left
|
||||
AlwaysBreakAfterReturnType: None
|
||||
AlwaysBreakTemplateDeclarations: Yes
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
BinPackParameters: false
|
||||
BreakBeforeBinaryOperators: NonAssignment
|
||||
BreakBeforeTernaryOperators: true
|
||||
BreakConstructorInitializers: AfterColon
|
||||
BreakInheritanceList: AfterColon
|
||||
ColumnLimit: 120
|
||||
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||
ContinuationIndentWidth: 4
|
||||
DerivePointerAlignment: false
|
||||
IndentCaseLabels: true
|
||||
IndentPPDirectives: None
|
||||
IndentWidth: 4
|
||||
MaxEmptyLinesToKeep: 1
|
||||
PointerAlignment: Left
|
||||
ReflowComments: true
|
||||
SortIncludes: false
|
||||
SortUsingDeclarations: true
|
||||
SpaceAfterTemplateKeyword: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
1
.clippy.toml
Normal file
1
.clippy.toml
Normal file
@ -0,0 +1 @@
|
||||
doc-valid-idents = ["CPython", "NumPy", ".."]
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,3 +1,4 @@
|
||||
__pycache__
|
||||
/target
|
||||
/nac3standalone/demo/linalg/target
|
||||
nix/windows/msys2
|
||||
|
24
.pre-commit-config.yaml
Normal file
24
.pre-commit-config.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
|
||||
default_stages: [pre-commit]
|
||||
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: nac3-cargo-fmt
|
||||
name: nac3 cargo format
|
||||
entry: nix
|
||||
language: system
|
||||
types: [file, rust]
|
||||
pass_filenames: false
|
||||
description: Runs cargo fmt on the codebase.
|
||||
args: [develop, -c, cargo, fmt, --all]
|
||||
- id: nac3-cargo-clippy
|
||||
name: nac3 cargo clippy
|
||||
entry: nix
|
||||
language: system
|
||||
types: [file, rust]
|
||||
pass_filenames: false
|
||||
description: Runs cargo clippy on the codebase.
|
||||
args: [develop, -c, cargo, clippy, --tests]
|
1091
Cargo.lock
generated
1091
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
@ -4,6 +4,7 @@ members = [
|
||||
"nac3ast",
|
||||
"nac3parser",
|
||||
"nac3core",
|
||||
"nac3core/nac3core_derive",
|
||||
"nac3standalone",
|
||||
"nac3artiq",
|
||||
"runkernel",
|
||||
|
@ -51,3 +51,12 @@ Use ``nix develop`` in this repository to enter a development shell.
|
||||
If you are using a different shell than bash you can use e.g. ``nix develop --command fish``.
|
||||
|
||||
Build NAC3 with ``cargo build --release``. See the demonstrations in ``nac3artiq`` and ``nac3standalone``.
|
||||
|
||||
### Pre-Commit Hooks
|
||||
|
||||
You are strongly recommended to use the provided pre-commit hooks to automatically reformat files and check for non-optimal Rust practices using Clippy. Run `pre-commit install` to install the hook and `pre-commit` will automatically run `cargo fmt` and `cargo clippy` for you.
|
||||
|
||||
Several things to note:
|
||||
|
||||
- If `cargo fmt` or `cargo clippy` returns an error, the pre-commit hook will fail. You should fix all errors before trying to commit again.
|
||||
- If `cargo fmt` reformats some files, the pre-commit hook will also fail. You should review the changes and, if satisfied, try to commit again.
|
||||
|
8
flake.lock
generated
8
flake.lock
generated
@ -2,16 +2,16 @@
|
||||
"nodes": {
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1701389149,
|
||||
"narHash": "sha256-rU1suTIEd5DGCaAXKW6yHoCfR1mnYjOXQFOaH7M23js=",
|
||||
"lastModified": 1736798957,
|
||||
"narHash": "sha256-qwpCtZhSsSNQtK4xYGzMiyEDhkNzOCz/Vfu4oL2ETsQ=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "5de0b32be6e85dc1a9404c75131316e4ffbc634c",
|
||||
"rev": "9abb87b552b7f55ac8916b6fc9e5cb486656a2f3",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "NixOS",
|
||||
"ref": "nixos-23.11",
|
||||
"ref": "nixos-unstable",
|
||||
"repo": "nixpkgs",
|
||||
"type": "github"
|
||||
}
|
||||
|
43
flake.nix
43
flake.nix
@ -1,11 +1,12 @@
|
||||
{
|
||||
description = "The third-generation ARTIQ compiler";
|
||||
|
||||
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-23.11;
|
||||
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-unstable;
|
||||
|
||||
outputs = { self, nixpkgs }:
|
||||
let
|
||||
pkgs = import nixpkgs { system = "x86_64-linux"; };
|
||||
pkgs32 = import nixpkgs { system = "i686-linux"; };
|
||||
in rec {
|
||||
packages.x86_64-linux = rec {
|
||||
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
|
||||
@ -15,6 +16,22 @@
|
||||
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
||||
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
||||
'';
|
||||
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
|
||||
name = "demo-linalg-stub";
|
||||
src = ./nac3standalone/demo/linalg;
|
||||
cargoLock = {
|
||||
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
|
||||
};
|
||||
doCheck = false;
|
||||
};
|
||||
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
|
||||
name = "demo-linalg-stub32";
|
||||
src = ./nac3standalone/demo/linalg;
|
||||
cargoLock = {
|
||||
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
|
||||
};
|
||||
doCheck = false;
|
||||
};
|
||||
nac3artiq = pkgs.python3Packages.toPythonModule (
|
||||
pkgs.rustPlatform.buildRustPackage rec {
|
||||
name = "nac3artiq";
|
||||
@ -24,7 +41,7 @@
|
||||
lockFile = ./Cargo.lock;
|
||||
};
|
||||
passthru.cargoLock = cargoLock;
|
||||
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
||||
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
|
||||
checkPhase =
|
||||
@ -32,7 +49,9 @@
|
||||
echo "Checking nac3standalone demos..."
|
||||
pushd nac3standalone/demo
|
||||
patchShebangs .
|
||||
./check_demos.sh
|
||||
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
|
||||
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
|
||||
./check_demos.sh -i686
|
||||
popd
|
||||
echo "Running Cargo tests..."
|
||||
cargoCheckHook
|
||||
@ -88,18 +107,18 @@
|
||||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "sipyco";
|
||||
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
|
||||
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
|
||||
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
|
||||
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
|
||||
})
|
||||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "artiq";
|
||||
rev = "8b4572f9cad34ac0c2b6f6bba9382e7b59b2f93b";
|
||||
sha256 = "sha256-O/0sUSxxXU1AL9cmT9qdzCkzdOKREBNftz22/8ouQcc=";
|
||||
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
|
||||
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
|
||||
})
|
||||
];
|
||||
buildInputs = [
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
|
||||
pkgs.llvmPackages_14.llvm.out
|
||||
];
|
||||
phases = [ "buildPhase" "installPhase" ];
|
||||
@ -149,7 +168,7 @@
|
||||
buildInputs = with pkgs; [
|
||||
# build dependencies
|
||||
packages.x86_64-linux.llvm-nac3
|
||||
llvmPackages_14.clang # demo
|
||||
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
|
||||
packages.x86_64-linux.llvm-tools-irrt
|
||||
cargo
|
||||
rustc
|
||||
@ -159,8 +178,14 @@
|
||||
# development tools
|
||||
cargo-insta
|
||||
clippy
|
||||
pre-commit
|
||||
rustfmt
|
||||
];
|
||||
shellHook =
|
||||
''
|
||||
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
|
||||
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
|
||||
'';
|
||||
};
|
||||
devShells.x86_64-linux.msys2 = pkgs.mkShell {
|
||||
name = "nac3-dev-shell-msys2";
|
||||
|
@ -9,18 +9,13 @@ name = "nac3artiq"
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.12"
|
||||
pyo3 = { version = "0.20", features = ["extension-module"] }
|
||||
itertools = "0.13"
|
||||
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
|
||||
parking_lot = "0.12"
|
||||
tempfile = "3.8"
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
tempfile = "3.13"
|
||||
nac3core = { path = "../nac3core" }
|
||||
nac3ld = { path = "../nac3ld" }
|
||||
|
||||
[dependencies.inkwell]
|
||||
version = "0.2"
|
||||
default-features = false
|
||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
|
||||
[features]
|
||||
init-llvm-profile = []
|
||||
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
||||
|
@ -1,66 +0,0 @@
|
||||
class EmbeddingMap:
|
||||
def __init__(self):
|
||||
self.object_inverse_map = {}
|
||||
self.object_map = {}
|
||||
self.string_map = {}
|
||||
self.string_reverse_map = {}
|
||||
self.function_map = {}
|
||||
self.attributes_writeback = []
|
||||
|
||||
# preallocate exception names
|
||||
self.preallocate_runtime_exception_names(["RuntimeError",
|
||||
"RTIOUnderflow",
|
||||
"RTIOOverflow",
|
||||
"RTIODestinationUnreachable",
|
||||
"DMAError",
|
||||
"I2CError",
|
||||
"CacheError",
|
||||
"SPIError",
|
||||
"0:ZeroDivisionError",
|
||||
"0:IndexError",
|
||||
"0:ValueError",
|
||||
"0:RuntimeError",
|
||||
"0:AssertionError",
|
||||
"0:KeyError",
|
||||
"0:NotImplementedError",
|
||||
"0:OverflowError",
|
||||
"0:IOError",
|
||||
"0:UnwrapNoneError"])
|
||||
|
||||
def preallocate_runtime_exception_names(self, names):
|
||||
for i, name in enumerate(names):
|
||||
if ":" not in name:
|
||||
name = "0:artiq.coredevice.exceptions." + name
|
||||
exn_id = self.store_str(name)
|
||||
assert exn_id == i
|
||||
|
||||
def store_function(self, key, fun):
|
||||
self.function_map[key] = fun
|
||||
return key
|
||||
|
||||
def store_object(self, obj):
|
||||
obj_id = id(obj)
|
||||
if obj_id in self.object_inverse_map:
|
||||
return self.object_inverse_map[obj_id]
|
||||
key = len(self.object_map) + 1
|
||||
self.object_map[key] = obj
|
||||
self.object_inverse_map[obj_id] = key
|
||||
return key
|
||||
|
||||
def store_str(self, s):
|
||||
if s in self.string_reverse_map:
|
||||
return self.string_reverse_map[s]
|
||||
key = len(self.string_map)
|
||||
self.string_map[key] = s
|
||||
self.string_reverse_map[s] = key
|
||||
return key
|
||||
|
||||
def retrieve_function(self, key):
|
||||
return self.function_map[key]
|
||||
|
||||
def retrieve_object(self, key):
|
||||
return self.object_map[key]
|
||||
|
||||
def retrieve_str(self, key):
|
||||
return self.string_map[key]
|
||||
|
24
nac3artiq/demo/list_cmp.py
Normal file
24
nac3artiq/demo/list_cmp.py
Normal file
@ -0,0 +1,24 @@
|
||||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class EmptyList:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@rpc
|
||||
def get_empty(self) -> list[int32]:
|
||||
return []
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
a: list[int32] = self.get_empty()
|
||||
if a != []:
|
||||
raise ValueError
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
EmptyList().run()
|
@ -6,7 +6,6 @@ from typing import Generic, TypeVar
|
||||
from math import floor, ceil
|
||||
|
||||
import nac3artiq
|
||||
from embedding_map import EmbeddingMap
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -112,10 +111,15 @@ def extern(function):
|
||||
register_function(function)
|
||||
return function
|
||||
|
||||
def rpc(function):
|
||||
"""Decorates a function declaration defined by the core device runtime."""
|
||||
register_function(function)
|
||||
return function
|
||||
|
||||
def rpc(arg=None, flags={}):
|
||||
"""Decorates a function or method to be executed on the host interpreter."""
|
||||
if arg is None:
|
||||
def inner_decorator(function):
|
||||
return rpc(function, flags)
|
||||
return inner_decorator
|
||||
register_function(arg)
|
||||
return arg
|
||||
|
||||
def kernel(function_or_method):
|
||||
"""Decorates a function or method to be executed on the core device."""
|
||||
@ -188,6 +192,46 @@ def print_int64(x: int64):
|
||||
raise NotImplementedError("syscall not simulated")
|
||||
|
||||
|
||||
class EmbeddingMap:
|
||||
def __init__(self):
|
||||
self.object_inverse_map = {}
|
||||
self.object_map = {}
|
||||
self.string_map = {}
|
||||
self.string_reverse_map = {}
|
||||
self.function_map = {}
|
||||
self.attributes_writeback = []
|
||||
|
||||
def store_function(self, key, fun):
|
||||
self.function_map[key] = fun
|
||||
return key
|
||||
|
||||
def store_object(self, obj):
|
||||
obj_id = id(obj)
|
||||
if obj_id in self.object_inverse_map:
|
||||
return self.object_inverse_map[obj_id]
|
||||
key = len(self.object_map) + 1
|
||||
self.object_map[key] = obj
|
||||
self.object_inverse_map[obj_id] = key
|
||||
return key
|
||||
|
||||
def store_str(self, s):
|
||||
if s in self.string_reverse_map:
|
||||
return self.string_reverse_map[s]
|
||||
key = len(self.string_map)
|
||||
self.string_map[key] = s
|
||||
self.string_reverse_map[s] = key
|
||||
return key
|
||||
|
||||
def retrieve_function(self, key):
|
||||
return self.function_map[key]
|
||||
|
||||
def retrieve_object(self, key):
|
||||
return self.object_map[key]
|
||||
|
||||
def retrieve_str(self, key):
|
||||
return self.string_map[key]
|
||||
|
||||
|
||||
@nac3
|
||||
class Core:
|
||||
ref_period: KernelInvariant[float]
|
||||
@ -201,7 +245,7 @@ class Core:
|
||||
embedding = EmbeddingMap()
|
||||
|
||||
if allow_registration:
|
||||
compiler.analyze(registered_functions, registered_classes)
|
||||
compiler.analyze(registered_functions, registered_classes, set())
|
||||
allow_registration = False
|
||||
|
||||
if hasattr(method, "__self__"):
|
||||
|
26
nac3artiq/demo/module.py
Normal file
26
nac3artiq/demo/module.py
Normal file
@ -0,0 +1,26 @@
|
||||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
# Global Variable Definition
|
||||
X: Kernel[int32] = 1
|
||||
|
||||
# TopLevelFunction Defintion
|
||||
@kernel
|
||||
def display_X():
|
||||
print_int32(X)
|
||||
|
||||
# TopLevel Class Definition
|
||||
@nac3
|
||||
class A:
|
||||
@kernel
|
||||
def __init__(self):
|
||||
self.set_x(1)
|
||||
|
||||
@kernel
|
||||
def set_x(self, new_val: int32):
|
||||
global X
|
||||
X = new_val
|
||||
|
||||
@kernel
|
||||
def get_X(self) -> int32:
|
||||
return X
|
26
nac3artiq/demo/module_support.py
Normal file
26
nac3artiq/demo/module_support.py
Normal file
@ -0,0 +1,26 @@
|
||||
from min_artiq import *
|
||||
import module as module_definition
|
||||
|
||||
@nac3
|
||||
class TestModuleSupport:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
# Accessing classes
|
||||
obj = module_definition.A()
|
||||
obj.get_X()
|
||||
obj.set_x(2)
|
||||
|
||||
# Calling functions
|
||||
module_definition.display_X()
|
||||
|
||||
# Updating global variables
|
||||
module_definition.X = 9
|
||||
module_definition.display_X()
|
||||
|
||||
if __name__ == "__main__":
|
||||
TestModuleSupport().run()
|
29
nac3artiq/demo/numpy_primitives_decay.py
Normal file
29
nac3artiq/demo/numpy_primitives_decay.py
Normal file
@ -0,0 +1,29 @@
|
||||
from min_artiq import *
|
||||
import numpy
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class NumpyBoolDecay:
|
||||
core: KernelInvariant[Core]
|
||||
np_true: KernelInvariant[bool]
|
||||
np_false: KernelInvariant[bool]
|
||||
np_int: KernelInvariant[int32]
|
||||
np_float: KernelInvariant[float]
|
||||
np_str: KernelInvariant[str]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
self.np_true = numpy.True_
|
||||
self.np_false = numpy.False_
|
||||
self.np_int = numpy.int32(0)
|
||||
self.np_float = numpy.float64(0.0)
|
||||
self.np_str = numpy.str_("")
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NumpyBoolDecay().run()
|
26
nac3artiq/demo/str_abi.py
Normal file
26
nac3artiq/demo/str_abi.py
Normal file
@ -0,0 +1,26 @@
|
||||
from min_artiq import *
|
||||
from numpy import ndarray, zeros as np_zeros
|
||||
|
||||
|
||||
@nac3
|
||||
class StrFail:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def hello(self, arg: str):
|
||||
pass
|
||||
|
||||
@kernel
|
||||
def consume_ndarray(self, arg: ndarray[str, 1]):
|
||||
pass
|
||||
|
||||
def run(self):
|
||||
self.hello("world")
|
||||
self.consume_ndarray(np_zeros([10], dtype=str))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
StrFail().run()
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,15 @@
|
||||
use inkwell::{values::BasicValueEnum, AddressSpace, AtomicOrdering};
|
||||
use nac3core::codegen::CodeGenContext;
|
||||
use itertools::Either;
|
||||
|
||||
use nac3core::{
|
||||
codegen::CodeGenContext,
|
||||
inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue},
|
||||
AddressSpace, AtomicOrdering,
|
||||
},
|
||||
};
|
||||
|
||||
/// Functions for manipulating the timeline.
|
||||
pub trait TimeFns {
|
||||
|
||||
/// Emits LLVM IR for `now_mu`.
|
||||
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx>;
|
||||
|
||||
@ -26,32 +32,33 @@ impl TimeFns for NowPinningTimeFns64 {
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr =
|
||||
ctx.builder.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr");
|
||||
|
||||
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
let now_loptr = unsafe {
|
||||
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
|
||||
};
|
||||
}
|
||||
.unwrap();
|
||||
|
||||
let (BasicValueEnum::IntValue(now_hi), BasicValueEnum::IntValue(now_lo)) = (
|
||||
ctx.builder.build_load(now_hiptr, "now.hi"),
|
||||
ctx.builder.build_load(now_loptr, "now.lo"),
|
||||
) else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hi = ctx
|
||||
.builder
|
||||
.build_load(now_hiptr, "now.hi")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let now_lo = ctx
|
||||
.builder
|
||||
.build_load(now_loptr, "now.lo")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "");
|
||||
let shifted_hi = ctx.builder.build_left_shift(
|
||||
zext_hi,
|
||||
i64_type.const_int(32, false),
|
||||
"",
|
||||
);
|
||||
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "");
|
||||
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").into()
|
||||
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
|
||||
let shifted_hi =
|
||||
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
|
||||
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
|
||||
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").map(Into::into).unwrap()
|
||||
}
|
||||
|
||||
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
|
||||
@ -59,105 +66,100 @@ impl TimeFns for NowPinningTimeFns64 {
|
||||
let i64_type = ctx.ctx.i64_type();
|
||||
|
||||
let i64_32 = i64_type.const_int(32, false);
|
||||
let BasicValueEnum::IntValue(time) = t else {
|
||||
unreachable!()
|
||||
};
|
||||
let time = t.into_int_value();
|
||||
|
||||
let time_hi = ctx.builder.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, "time.hi"),
|
||||
i32_type,
|
||||
"",
|
||||
);
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
|
||||
let time_hi = ctx
|
||||
.builder
|
||||
.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
|
||||
i32_type,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
||||
let now = ctx
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx.builder.build_bitcast(
|
||||
now,
|
||||
i32_type.ptr_type(AddressSpace::default()),
|
||||
"now.hi.addr",
|
||||
);
|
||||
|
||||
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
let now_loptr = unsafe {
|
||||
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
|
||||
};
|
||||
}
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_hiptr, time_hi)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_loptr, time_lo)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
fn emit_delay_mu<'ctx>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dt: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
|
||||
let i64_type = ctx.ctx.i64_type();
|
||||
let i32_type = ctx.ctx.i32_type();
|
||||
let now = ctx
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr =
|
||||
ctx.builder.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr");
|
||||
|
||||
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
let now_loptr = unsafe {
|
||||
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
|
||||
};
|
||||
}
|
||||
.unwrap();
|
||||
|
||||
let (
|
||||
BasicValueEnum::IntValue(now_hi),
|
||||
BasicValueEnum::IntValue(now_lo),
|
||||
BasicValueEnum::IntValue(dt),
|
||||
) = (
|
||||
ctx.builder.build_load(now_hiptr, "now.hi"),
|
||||
ctx.builder.build_load(now_loptr, "now.lo"),
|
||||
dt,
|
||||
) else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hi = ctx
|
||||
.builder
|
||||
.build_load(now_hiptr, "now.hi")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let now_lo = ctx
|
||||
.builder
|
||||
.build_load(now_loptr, "now.lo")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let dt = dt.into_int_value();
|
||||
|
||||
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "");
|
||||
let shifted_hi = ctx.builder.build_left_shift(
|
||||
zext_hi,
|
||||
i64_type.const_int(32, false),
|
||||
"",
|
||||
);
|
||||
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "");
|
||||
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now");
|
||||
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
|
||||
let shifted_hi =
|
||||
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
|
||||
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
|
||||
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now").unwrap();
|
||||
|
||||
let time = ctx.builder.build_int_add(now_val, dt, "time");
|
||||
let time_hi = ctx.builder.build_int_truncate(
|
||||
ctx.builder.build_right_shift(
|
||||
time,
|
||||
i64_type.const_int(32, false),
|
||||
false,
|
||||
"",
|
||||
),
|
||||
i32_type,
|
||||
"time.hi",
|
||||
);
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
|
||||
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
|
||||
let time_hi = ctx
|
||||
.builder
|
||||
.build_int_truncate(
|
||||
ctx.builder
|
||||
.build_right_shift(time, i64_type.const_int(32, false), false, "")
|
||||
.unwrap(),
|
||||
i32_type,
|
||||
"time.hi",
|
||||
)
|
||||
.unwrap();
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_store(now_hiptr, time_hi)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_loptr, time_lo)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
}
|
||||
@ -174,16 +176,16 @@ impl TimeFns for NowPinningTimeFns {
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_raw = ctx.builder.build_load(now.as_pointer_value(), "now");
|
||||
|
||||
let BasicValueEnum::IntValue(now_raw) = now_raw else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_raw = ctx
|
||||
.builder
|
||||
.build_load(now.as_pointer_value(), "now")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let i64_32 = i64_type.const_int(32, false);
|
||||
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo");
|
||||
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi");
|
||||
ctx.builder.build_or(now_lo, now_hi, "now_mu").into()
|
||||
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
|
||||
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
|
||||
ctx.builder.build_or(now_lo, now_hi, "now_mu").map(Into::into).unwrap()
|
||||
}
|
||||
|
||||
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
|
||||
@ -191,48 +193,44 @@ impl TimeFns for NowPinningTimeFns {
|
||||
let i64_type = ctx.ctx.i64_type();
|
||||
let i64_32 = i64_type.const_int(32, false);
|
||||
|
||||
let BasicValueEnum::IntValue(time) = t else {
|
||||
unreachable!()
|
||||
};
|
||||
let time = t.into_int_value();
|
||||
|
||||
let time_hi = ctx.builder.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, ""),
|
||||
i32_type,
|
||||
"time.hi",
|
||||
);
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
|
||||
let time_hi = ctx
|
||||
.builder
|
||||
.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, "").unwrap(),
|
||||
i32_type,
|
||||
"time.hi",
|
||||
)
|
||||
.unwrap();
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc").unwrap();
|
||||
let now = ctx
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx.builder.build_bitcast(
|
||||
now,
|
||||
i32_type.ptr_type(AddressSpace::default()),
|
||||
"now.hi.addr",
|
||||
);
|
||||
|
||||
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
let now_loptr = unsafe {
|
||||
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
|
||||
};
|
||||
}
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_hiptr, time_hi)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_loptr, time_lo)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
fn emit_delay_mu<'ctx>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dt: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
|
||||
let i32_type = ctx.ctx.i32_type();
|
||||
let i64_type = ctx.ctx.i64_type();
|
||||
let i64_32 = i64_type.const_int(32, false);
|
||||
@ -240,41 +238,45 @@ impl TimeFns for NowPinningTimeFns {
|
||||
.module
|
||||
.get_global("now")
|
||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_raw = ctx.builder.build_load(now.as_pointer_value(), "");
|
||||
let now_raw = ctx
|
||||
.builder
|
||||
.build_load(now.as_pointer_value(), "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let (BasicValueEnum::IntValue(now_raw), BasicValueEnum::IntValue(dt)) = (now_raw, dt) else {
|
||||
unreachable!()
|
||||
};
|
||||
let dt = dt.into_int_value();
|
||||
|
||||
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo");
|
||||
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi");
|
||||
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val");
|
||||
let time = ctx.builder.build_int_add(now_val, dt, "time");
|
||||
let time_hi = ctx.builder.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, "time.hi"),
|
||||
i32_type,
|
||||
"now_trunc",
|
||||
);
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
|
||||
let now_hiptr = ctx.builder.build_bitcast(
|
||||
now,
|
||||
i32_type.ptr_type(AddressSpace::default()),
|
||||
"now.hi.addr",
|
||||
);
|
||||
|
||||
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
|
||||
unreachable!()
|
||||
};
|
||||
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
|
||||
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
|
||||
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val").unwrap();
|
||||
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
|
||||
let time_hi = ctx
|
||||
.builder
|
||||
.build_int_truncate(
|
||||
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
|
||||
i32_type,
|
||||
"now_trunc",
|
||||
)
|
||||
.unwrap();
|
||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
let now_loptr = unsafe {
|
||||
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
|
||||
};
|
||||
}
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_hiptr, time_hi)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_store(now_loptr, time_lo)
|
||||
.unwrap()
|
||||
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
|
||||
.unwrap();
|
||||
}
|
||||
@ -289,7 +291,11 @@ impl TimeFns for ExternTimeFns {
|
||||
let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| {
|
||||
ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None)
|
||||
});
|
||||
ctx.builder.build_call(now_mu, &[], "now_mu").try_as_basic_value().left().unwrap()
|
||||
ctx.builder
|
||||
.build_call(now_mu, &[], "now_mu")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
|
||||
@ -300,14 +306,10 @@ impl TimeFns for ExternTimeFns {
|
||||
None,
|
||||
)
|
||||
});
|
||||
ctx.builder.build_call(at_mu, &[t.into()], "at_mu");
|
||||
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
|
||||
}
|
||||
|
||||
fn emit_delay_mu<'ctx>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dt: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
|
||||
let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
"delay_mu",
|
||||
@ -315,7 +317,7 @@ impl TimeFns for ExternTimeFns {
|
||||
None,
|
||||
)
|
||||
});
|
||||
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu");
|
||||
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10,7 +10,6 @@ constant-optimization = ["fold"]
|
||||
fold = []
|
||||
|
||||
[dependencies]
|
||||
lazy_static = "1.4"
|
||||
parking_lot = "0.12"
|
||||
string-interner = "0.14"
|
||||
string-interner = "0.17"
|
||||
fxhash = "0.2"
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -28,12 +28,12 @@ impl From<bool> for Constant {
|
||||
}
|
||||
impl From<i32> for Constant {
|
||||
fn from(i: i32) -> Constant {
|
||||
Self::Int(i as i128)
|
||||
Self::Int(i128::from(i))
|
||||
}
|
||||
}
|
||||
impl From<i64> for Constant {
|
||||
fn from(i: i64) -> Constant {
|
||||
Self::Int(i as i128)
|
||||
Self::Int(i128::from(i))
|
||||
}
|
||||
}
|
||||
|
||||
@ -50,6 +50,7 @@ pub enum ConversionFlag {
|
||||
}
|
||||
|
||||
impl ConversionFlag {
|
||||
#[must_use]
|
||||
pub fn try_from_byte(b: u8) -> Option<Self> {
|
||||
match b {
|
||||
b's' => Some(Self::Str),
|
||||
@ -69,6 +70,7 @@ pub struct ConstantOptimizer {
|
||||
#[cfg(feature = "constant-optimization")]
|
||||
impl ConstantOptimizer {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn new() -> Self {
|
||||
Self { _priv: () }
|
||||
}
|
||||
@ -85,33 +87,22 @@ impl<U> crate::fold::Fold<U> for ConstantOptimizer {
|
||||
fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> {
|
||||
match node.node {
|
||||
crate::ExprKind::Tuple { elts, ctx } => {
|
||||
let elts = elts
|
||||
.into_iter()
|
||||
.map(|x| self.fold_expr(x))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
let expr = if elts
|
||||
.iter()
|
||||
.all(|e| matches!(e.node, crate::ExprKind::Constant { .. }))
|
||||
{
|
||||
let tuple = elts
|
||||
.into_iter()
|
||||
.map(|e| match e.node {
|
||||
crate::ExprKind::Constant { value, .. } => value,
|
||||
_ => unreachable!(),
|
||||
})
|
||||
.collect();
|
||||
crate::ExprKind::Constant {
|
||||
value: Constant::Tuple(tuple),
|
||||
kind: None,
|
||||
}
|
||||
} else {
|
||||
crate::ExprKind::Tuple { elts, ctx }
|
||||
};
|
||||
Ok(crate::Expr {
|
||||
node: expr,
|
||||
custom: node.custom,
|
||||
location: node.location,
|
||||
})
|
||||
let elts =
|
||||
elts.into_iter().map(|x| self.fold_expr(x)).collect::<Result<Vec<_>, _>>()?;
|
||||
let expr =
|
||||
if elts.iter().all(|e| matches!(e.node, crate::ExprKind::Constant { .. })) {
|
||||
let tuple = elts
|
||||
.into_iter()
|
||||
.map(|e| match e.node {
|
||||
crate::ExprKind::Constant { value, .. } => value,
|
||||
_ => unreachable!(),
|
||||
})
|
||||
.collect();
|
||||
crate::ExprKind::Constant { value: Constant::Tuple(tuple), kind: None }
|
||||
} else {
|
||||
crate::ExprKind::Tuple { elts, ctx }
|
||||
};
|
||||
Ok(crate::Expr { node: expr, custom: node.custom, location: node.location })
|
||||
}
|
||||
_ => crate::fold::fold_expr(self, node),
|
||||
}
|
||||
@ -127,7 +118,7 @@ mod tests {
|
||||
use crate::fold::Fold;
|
||||
use crate::*;
|
||||
|
||||
let location = Location::new(0, 0, Default::default());
|
||||
let location = Location::new(0, 0, FileName::default());
|
||||
let custom = ();
|
||||
let ast = Located {
|
||||
location,
|
||||
@ -138,18 +129,12 @@ mod tests {
|
||||
Located {
|
||||
location,
|
||||
custom,
|
||||
node: ExprKind::Constant {
|
||||
value: 1.into(),
|
||||
kind: None,
|
||||
},
|
||||
node: ExprKind::Constant { value: 1.into(), kind: None },
|
||||
},
|
||||
Located {
|
||||
location,
|
||||
custom,
|
||||
node: ExprKind::Constant {
|
||||
value: 2.into(),
|
||||
kind: None,
|
||||
},
|
||||
node: ExprKind::Constant { value: 2.into(), kind: None },
|
||||
},
|
||||
Located {
|
||||
location,
|
||||
@ -160,26 +145,17 @@ mod tests {
|
||||
Located {
|
||||
location,
|
||||
custom,
|
||||
node: ExprKind::Constant {
|
||||
value: 3.into(),
|
||||
kind: None,
|
||||
},
|
||||
node: ExprKind::Constant { value: 3.into(), kind: None },
|
||||
},
|
||||
Located {
|
||||
location,
|
||||
custom,
|
||||
node: ExprKind::Constant {
|
||||
value: 4.into(),
|
||||
kind: None,
|
||||
},
|
||||
node: ExprKind::Constant { value: 4.into(), kind: None },
|
||||
},
|
||||
Located {
|
||||
location,
|
||||
custom,
|
||||
node: ExprKind::Constant {
|
||||
value: 5.into(),
|
||||
kind: None,
|
||||
},
|
||||
node: ExprKind::Constant { value: 5.into(), kind: None },
|
||||
},
|
||||
],
|
||||
},
|
||||
@ -187,9 +163,7 @@ mod tests {
|
||||
],
|
||||
},
|
||||
};
|
||||
let new_ast = ConstantOptimizer::new()
|
||||
.fold_expr(ast)
|
||||
.unwrap_or_else(|e| match e {});
|
||||
let new_ast = ConstantOptimizer::new().fold_expr(ast).unwrap_or_else(|e| match e {});
|
||||
assert_eq!(
|
||||
new_ast,
|
||||
Located {
|
||||
@ -199,11 +173,7 @@ mod tests {
|
||||
value: Constant::Tuple(vec![
|
||||
1.into(),
|
||||
2.into(),
|
||||
Constant::Tuple(vec![
|
||||
3.into(),
|
||||
4.into(),
|
||||
5.into(),
|
||||
])
|
||||
Constant::Tuple(vec![3.into(), 4.into(), 5.into(),])
|
||||
]),
|
||||
kind: None
|
||||
},
|
||||
|
@ -64,11 +64,4 @@ macro_rules! simple_fold {
|
||||
};
|
||||
}
|
||||
|
||||
simple_fold!(
|
||||
usize,
|
||||
String,
|
||||
bool,
|
||||
StrRef,
|
||||
constant::Constant,
|
||||
constant::ConversionFlag
|
||||
);
|
||||
simple_fold!(usize, String, bool, StrRef, constant::Constant, constant::ConversionFlag);
|
||||
|
@ -2,6 +2,7 @@ use crate::{Constant, ExprKind};
|
||||
|
||||
impl<U> ExprKind<U> {
|
||||
/// Returns a short name for the node suitable for use in error messages.
|
||||
#[must_use]
|
||||
pub fn name(&self) -> &'static str {
|
||||
match self {
|
||||
ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => {
|
||||
@ -34,10 +35,7 @@ impl<U> ExprKind<U> {
|
||||
ExprKind::Starred { .. } => "starred",
|
||||
ExprKind::Slice { .. } => "slice",
|
||||
ExprKind::JoinedStr { values } => {
|
||||
if values
|
||||
.iter()
|
||||
.any(|e| matches!(e.node, ExprKind::JoinedStr { .. }))
|
||||
{
|
||||
if values.iter().any(|e| matches!(e.node, ExprKind::JoinedStr { .. })) {
|
||||
"f-string expression"
|
||||
} else {
|
||||
"literal"
|
||||
|
@ -1,5 +1,12 @@
|
||||
#[macro_use]
|
||||
extern crate lazy_static;
|
||||
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
clippy::missing_errors_doc,
|
||||
clippy::missing_panics_doc,
|
||||
clippy::module_name_repetitions,
|
||||
clippy::too_many_lines,
|
||||
clippy::wildcard_imports
|
||||
)]
|
||||
|
||||
mod ast_gen;
|
||||
mod constant;
|
||||
@ -9,6 +16,6 @@ mod impls;
|
||||
mod location;
|
||||
|
||||
pub use ast_gen::*;
|
||||
pub use location::{Location, FileName};
|
||||
pub use location::{FileName, Location};
|
||||
|
||||
pub type Suite<U = ()> = Vec<Stmt<U>>;
|
||||
|
@ -1,6 +1,6 @@
|
||||
//! Datatypes to support source location information.
|
||||
use std::cmp::Ordering;
|
||||
use crate::ast_gen::StrRef;
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt;
|
||||
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
@ -22,7 +22,7 @@ impl From<String> for FileName {
|
||||
pub struct Location {
|
||||
pub row: usize,
|
||||
pub column: usize,
|
||||
pub file: FileName
|
||||
pub file: FileName,
|
||||
}
|
||||
|
||||
impl fmt::Display for Location {
|
||||
@ -35,12 +35,12 @@ impl Ord for Location {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
let file_cmp = self.file.0.to_string().cmp(&other.file.0.to_string());
|
||||
if file_cmp != Ordering::Equal {
|
||||
return file_cmp
|
||||
return file_cmp;
|
||||
}
|
||||
|
||||
let row_cmp = self.row.cmp(&other.row);
|
||||
if row_cmp != Ordering::Equal {
|
||||
return row_cmp
|
||||
return row_cmp;
|
||||
}
|
||||
|
||||
self.column.cmp(&other.column)
|
||||
@ -76,23 +76,22 @@ impl Location {
|
||||
)
|
||||
}
|
||||
}
|
||||
Visualize {
|
||||
loc: *self,
|
||||
line,
|
||||
desc,
|
||||
}
|
||||
Visualize { loc: *self, line, desc }
|
||||
}
|
||||
}
|
||||
|
||||
impl Location {
|
||||
#[must_use]
|
||||
pub fn new(row: usize, column: usize, file: FileName) -> Self {
|
||||
Location { row, column, file }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn row(&self) -> usize {
|
||||
self.row
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn column(&self) -> usize {
|
||||
self.column
|
||||
}
|
||||
|
@ -4,17 +4,26 @@ version = "0.1.0"
|
||||
authors = ["M-Labs"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["derive"]
|
||||
derive = ["dep:nac3core_derive"]
|
||||
no-escape-analysis = []
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.12"
|
||||
itertools = "0.13"
|
||||
crossbeam = "0.8"
|
||||
indexmap = "2.6"
|
||||
parking_lot = "0.12"
|
||||
rayon = "1.5"
|
||||
rayon = "1.10"
|
||||
nac3core_derive = { path = "nac3core_derive", optional = true }
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
strum = "0.26"
|
||||
strum_macros = "0.26"
|
||||
|
||||
[dependencies.inkwell]
|
||||
version = "0.2"
|
||||
version = "0.5"
|
||||
default-features = false
|
||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
|
||||
[dev-dependencies]
|
||||
test-case = "1.2.0"
|
||||
|
@ -1,4 +1,3 @@
|
||||
use regex::Regex;
|
||||
use std::{
|
||||
env,
|
||||
fs::File,
|
||||
@ -7,35 +6,58 @@ use std::{
|
||||
process::{Command, Stdio},
|
||||
};
|
||||
|
||||
use regex::Regex;
|
||||
|
||||
fn main() {
|
||||
const FILE: &str = "src/codegen/irrt/irrt.c";
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
let irrt_dir = Path::new("irrt");
|
||||
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
/*
|
||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||
*/
|
||||
const FLAG: &[&str] = &[
|
||||
let mut flags: Vec<&str> = vec![
|
||||
"--target=wasm32",
|
||||
FILE,
|
||||
"-O3",
|
||||
"-x",
|
||||
"c++",
|
||||
"-std=c++20",
|
||||
"-fno-discard-value-names",
|
||||
"-fno-exceptions",
|
||||
"-fno-rtti",
|
||||
"-emit-llvm",
|
||||
"-S",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-o",
|
||||
"-",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
println!("cargo:rerun-if-changed={FILE}");
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_path = Path::new(&out_dir);
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => {
|
||||
flags.push("-O0");
|
||||
flags.push("-DIRRT_DEBUG_ASSERT");
|
||||
}
|
||||
Ok("release") => {
|
||||
flags.push("-O3");
|
||||
}
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
}
|
||||
|
||||
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||
|
||||
// Compile IRRT and capture the LLVM IR output
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(FLAG)
|
||||
.args(flags)
|
||||
.output()
|
||||
.map(|o| {
|
||||
.inspect(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
@ -43,7 +65,17 @@ fn main() {
|
||||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||
let mut filtered_output = String::with_capacity(output.len());
|
||||
|
||||
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
|
||||
// Filter out irrelevant IR
|
||||
//
|
||||
// Regex:
|
||||
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
|
||||
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
|
||||
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
|
||||
// - `(?m:^@.+?=.+$)` captures global constants
|
||||
let regex_filter = Regex::new(
|
||||
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
|
||||
)
|
||||
.unwrap();
|
||||
for f in regex_filter.captures_iter(&output) {
|
||||
assert_eq!(f.len(), 1);
|
||||
filtered_output.push_str(&f[0]);
|
||||
@ -54,18 +86,22 @@ fn main() {
|
||||
.unwrap()
|
||||
.replace_all(&filtered_output, "");
|
||||
|
||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
||||
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
|
||||
// For debugging
|
||||
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
|
||||
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
|
||||
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
|
||||
if env::var(DEBUG_DUMP_IRRT).is_ok() {
|
||||
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||
file.write_all(output.as_bytes()).unwrap();
|
||||
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
|
||||
|
||||
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||
}
|
||||
|
||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||
.stdin(Stdio::piped())
|
||||
.arg("-o")
|
||||
.arg(out_path.join("irrt.bc"))
|
||||
.arg(out_dir.join("irrt.bc"))
|
||||
.spawn()
|
||||
.unwrap();
|
||||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||
|
15
nac3core/irrt/irrt.cpp
Normal file
15
nac3core/irrt/irrt.cpp
Normal file
@ -0,0 +1,15 @@
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/math.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
#include "irrt/string.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/ndarray/iter.hpp"
|
||||
#include "irrt/ndarray/indexing.hpp"
|
||||
#include "irrt/ndarray/array.hpp"
|
||||
#include "irrt/ndarray/reshape.hpp"
|
||||
#include "irrt/ndarray/broadcast.hpp"
|
||||
#include "irrt/ndarray/transpose.hpp"
|
||||
#include "irrt/ndarray/matmul.hpp"
|
9
nac3core/irrt/irrt/cslice.hpp
Normal file
9
nac3core/irrt/irrt/cslice.hpp
Normal file
@ -0,0 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
template<typename SizeT>
|
||||
struct CSlice {
|
||||
void* base;
|
||||
SizeT len;
|
||||
};
|
25
nac3core/irrt/irrt/debug.hpp
Normal file
25
nac3core/irrt/irrt/debug.hpp
Normal file
@ -0,0 +1,25 @@
|
||||
#pragma once
|
||||
|
||||
// Set in nac3core/build.rs
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||
#else
|
||||
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||
#endif
|
||||
|
||||
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
|
||||
|
||||
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
|
||||
if ((lhs) != (rhs)) { \
|
||||
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define debug_assert(SizeT, expr) \
|
||||
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
|
||||
if (!(expr)) { \
|
||||
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||
} \
|
||||
}
|
85
nac3core/irrt/irrt/exception.hpp
Normal file
85
nac3core/irrt/irrt/exception.hpp
Normal file
@ -0,0 +1,85 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/cslice.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
/**
|
||||
* @brief The int type of ARTIQ exception IDs.
|
||||
*/
|
||||
using ExceptionId = int32_t;
|
||||
|
||||
/*
|
||||
* Set of exceptions C++ IRRT can use.
|
||||
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||
*/
|
||||
extern "C" {
|
||||
ExceptionId EXN_INDEX_ERROR;
|
||||
ExceptionId EXN_VALUE_ERROR;
|
||||
ExceptionId EXN_ASSERTION_ERROR;
|
||||
ExceptionId EXN_TYPE_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Extern function to `__nac3_raise`
|
||||
*
|
||||
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||
*/
|
||||
extern "C" void __nac3_raise(void* err);
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief NAC3's Exception struct
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct Exception {
|
||||
ExceptionId id;
|
||||
CSlice<SizeT> filename;
|
||||
int32_t line;
|
||||
int32_t column;
|
||||
CSlice<SizeT> function;
|
||||
CSlice<SizeT> msg;
|
||||
int64_t params[3];
|
||||
};
|
||||
|
||||
constexpr int64_t NO_PARAM = 0;
|
||||
|
||||
template<typename SizeT>
|
||||
void _raise_exception_helper(ExceptionId id,
|
||||
const char* filename,
|
||||
int32_t line,
|
||||
const char* function,
|
||||
const char* msg,
|
||||
int64_t param0,
|
||||
int64_t param1,
|
||||
int64_t param2) {
|
||||
Exception<SizeT> e = {
|
||||
.id = id,
|
||||
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(filename))},
|
||||
.line = line,
|
||||
.column = 0,
|
||||
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(function))},
|
||||
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(msg))},
|
||||
};
|
||||
e.params[0] = param0;
|
||||
e.params[1] = param1;
|
||||
e.params[2] = param2;
|
||||
__nac3_raise(reinterpret_cast<void*>(&e));
|
||||
__builtin_unreachable();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
/**
|
||||
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||
* @param SizeT The runtime `size_t` type.
|
||||
* @param id The ID of the exception to raise.
|
||||
* @param msg A global constant C-string of the error message.
|
||||
*
|
||||
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
|
||||
* `NO_PARAM` to indicate they are unused.
|
||||
*/
|
||||
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
25
nac3core/irrt/irrt/int_types.hpp
Normal file
25
nac3core/irrt/irrt/int_types.hpp
Normal file
@ -0,0 +1,25 @@
|
||||
#pragma once
|
||||
|
||||
#if __STDC_VERSION__ >= 202000
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
#else
|
||||
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-type"
|
||||
using int8_t = _ExtInt(8);
|
||||
using uint8_t = unsigned _ExtInt(8);
|
||||
using int32_t = _ExtInt(32);
|
||||
using uint32_t = unsigned _ExtInt(32);
|
||||
using int64_t = _ExtInt(64);
|
||||
using uint64_t = unsigned _ExtInt(64);
|
||||
#pragma clang diagnostic pop
|
||||
|
||||
#endif
|
||||
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
96
nac3core/irrt/irrt/list.hpp
Normal file
96
nac3core/irrt/irrt/list.hpp
Normal file
@ -0,0 +1,96 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct List {
|
||||
uint8_t* items;
|
||||
SizeT len;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
void* dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
void* src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr)
|
||||
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca) {
|
||||
void* tmp = __builtin_alloca(src_arr_len * size);
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
} // extern "C"
|
95
nac3core/irrt/irrt/math.hpp
Normal file
95
nac3core/irrt/irrt/math.hpp
Normal file
@ -0,0 +1,95 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template<typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) { \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
||||
// Putting semicolons here to make clang-format not reformat this into
|
||||
// a stair shape.
|
||||
DEF_nac3_int_exp_(int32_t);
|
||||
DEF_nac3_int_exp_(int64_t);
|
||||
DEF_nac3_int_exp_(uint32_t);
|
||||
DEF_nac3_int_exp_(uint64_t);
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
} // namespace
|
13
nac3core/irrt/irrt/math_util.hpp
Normal file
13
nac3core/irrt/irrt/math_util.hpp
Normal file
@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
namespace {
|
||||
template<typename T>
|
||||
const T& max(const T& a, const T& b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
const T& min(const T& a, const T& b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
} // namespace
|
132
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
132
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
@ -0,0 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::array {
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
|
||||
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
|
||||
* [3.0]])`)
|
||||
*
|
||||
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
|
||||
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
|
||||
* of implementation details.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
if (shape[axis] == -1) {
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
} else {
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len) {
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims) {
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `set_and_validate_list_shape_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
|
||||
*
|
||||
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
|
||||
*
|
||||
* # Notes on `ndarray`
|
||||
* The caller is responsible for allocating space for `ndarray`.
|
||||
* Here is what this function expects from `ndarray` when called:
|
||||
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
|
||||
* - `ndarray->itemsize` has to be initialized.
|
||||
* - `ndarray->ndims` has to be initialized.
|
||||
* - `ndarray->shape` has to be initialized.
|
||||
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
|
||||
* When this function call ends:
|
||||
* - `ndarray->data` is written with contents from `<list>`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims) {
|
||||
// `list` has type `list[scalar]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief See `write_list_to_array_helper`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace ndarray::array
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
340
nac3core/irrt/irrt/ndarray/basic.hpp
Normal file
340
nac3core/irrt/irrt/ndarray/basic.hpp
Normal file
@ -0,0 +1,340 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::basic {
|
||||
/**
|
||||
* @brief Assert that `shape` does not contain negative dimensions.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape to check on
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
if (shape[axis] < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"negative dimensions are not allowed; axis {0} "
|
||||
"has dimension {1}",
|
||||
axis, shape[axis], NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_output_shape_same(SizeT ndarray_ndims,
|
||||
const SizeT* ndarray_shape,
|
||||
SizeT output_ndims,
|
||||
const SizeT* output_shape) {
|
||||
if (ndarray_ndims != output_ndims) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||
output_ndims, ndarray_ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
||||
if (ndarray_shape[axis] != output_shape[axis]) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"Mismatched dimensions on axis {0}, output has "
|
||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||
axis, output_shape[axis], ndarray_shape[axis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an ndarray given its shape.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape of the ndarray
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||
*
|
||||
* @param ndims Number of elements in `shape` and `indices`
|
||||
* @param shape The shape of the ndarray
|
||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||
* @param nth The index of the element of interest.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
SizeT dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an `ndarray`
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.size`
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT size(const NDArray<SizeT>* ndarray) {
|
||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return of the number of its content of an `ndarray`.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
||||
return size(ndarray) * ndarray->itemsize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.__len__`.
|
||||
*
|
||||
* @param dst_length The length.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
SizeT len(const NDArray<SizeT>* ndarray) {
|
||||
if (ndarray->ndims != 0) {
|
||||
return ndarray->shape[0];
|
||||
}
|
||||
|
||||
// numpy prohibits `__len__` on unsized objects
|
||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||
*
|
||||
* You may want to see ndarray's rules for C-contiguity:
|
||||
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
*/
|
||||
template<typename SizeT>
|
||||
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
||||
// References:
|
||||
// - tinynumpy's implementation:
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||
// - ndarray's flags["C_CONTIGUOUS"]:
|
||||
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||
// - ndarray's rules for C-contiguity:
|
||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
|
||||
// From
|
||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||
//
|
||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||
// the following must hold:
|
||||
//
|
||||
// strides[-1] == itemsize
|
||||
// strides[i] == shape[i+1] * strides[i + 1]
|
||||
// [...]
|
||||
// According to these rules, a 0- or 1-dimensional array is either both
|
||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||
// there are exceptions for arrays with zero or one item, in the first
|
||||
// case the check is relaxed up to and including the first dimension
|
||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||
// can be true for all dimensions and both flags are set.
|
||||
|
||||
if (ndarray->ndims == 0) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
||||
SizeT axis_i = ndarray->ndims - i - 1;
|
||||
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
||||
void* element = ndarray->data;
|
||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
||||
void* element = ndarray->data;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
SizeT dim = ndarray->shape[axis];
|
||||
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
|
||||
nth /= dim;
|
||||
}
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
|
||||
*
|
||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||
stride_product *= ndarray->shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set an element in `ndarray`.
|
||||
*
|
||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||
*
|
||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// TODO: Make this faster with memcpy when we see a contiguous segment.
|
||||
// TODO: Handle overlapping.
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||
|
||||
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::basic
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::basic;
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
||||
const int32_t* ndarray_shape,
|
||||
int32_t output_ndims,
|
||||
const int32_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
|
||||
const int64_t* ndarray_shape,
|
||||
int64_t output_ndims,
|
||||
const int64_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
165
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
165
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
@ -0,0 +1,165 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
struct ShapeEntry {
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray::broadcast {
|
||||
/**
|
||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||
*
|
||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
*/
|
||||
template<typename SizeT>
|
||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
|
||||
if (src_ndims > target_ndims) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 0; i < src_ndims; i++) {
|
||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||
if (!(src_dim == 1 || target_dim == src_dim)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||
*
|
||||
* @param num_shapes Number of entries in `shapes`
|
||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||
* @param dst_ndims The length of `dst_shape`.
|
||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||
* of `np.broadcast_shapes` and write it here.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
|
||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
||||
dst_shape[dst_axis] = 1;
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
SizeT max_ndims_found = 0;
|
||||
#endif
|
||||
|
||||
for (SizeT i = 0; i < num_shapes; i++) {
|
||||
ShapeEntry<SizeT> entry = shapes[i];
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||
#endif
|
||||
|
||||
for (SizeT j = 0; j < entry.ndims; j++) {
|
||||
SizeT entry_axis = entry.ndims - j - 1;
|
||||
SizeT dst_axis = dst_ndims - j - 1;
|
||||
|
||||
SizeT entry_dim = entry.shape[entry_axis];
|
||||
SizeT dst_dim = dst_shape[dst_axis];
|
||||
|
||||
if (dst_dim == 1) {
|
||||
dst_shape[dst_axis] = entry_dim;
|
||||
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
||||
// Do nothing
|
||||
} else {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"shape mismatch: objects cannot be broadcast "
|
||||
"to a single shape.",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||
*
|
||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||
* and return the result by modifying `dst_ndarray`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is unchanged.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||
src_ndarray->shape)) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
|
||||
// Freeze the steps in-place
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
} else {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::broadcast
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::broadcast;
|
||||
|
||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
||||
const ShapeEntry<int32_t>* shapes,
|
||||
int32_t dst_ndims,
|
||||
int32_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
||||
const ShapeEntry<int64_t>* shapes,
|
||||
int64_t dst_ndims,
|
||||
int64_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
}
|
51
nac3core/irrt/irrt/ndarray/def.hpp
Normal file
51
nac3core/irrt/irrt/ndarray/def.hpp
Normal file
@ -0,0 +1,51 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief The NDArray object
|
||||
*
|
||||
* Official numpy implementation:
|
||||
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
|
||||
*
|
||||
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
|
||||
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
|
||||
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
|
||||
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
|
||||
* `data`. There are also minor differences in the struct layout.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct NDArray {
|
||||
/**
|
||||
* @brief The number of bytes of a single element in `data`.
|
||||
*/
|
||||
SizeT itemsize;
|
||||
|
||||
/**
|
||||
* @brief The number of dimensions of this shape.
|
||||
*/
|
||||
SizeT ndims;
|
||||
|
||||
/**
|
||||
* @brief The NDArray shape, with length equal to `ndims`.
|
||||
*
|
||||
* Note that it may contain 0.
|
||||
*/
|
||||
SizeT* shape;
|
||||
|
||||
/**
|
||||
* @brief Array strides, with length equal to `ndims`
|
||||
*
|
||||
* The stride values are in units of bytes, not number of elements.
|
||||
*
|
||||
* Note that `strides` can have negative values or contain 0.
|
||||
*/
|
||||
SizeT* strides;
|
||||
|
||||
/**
|
||||
* @brief The underlying data this `ndarray` is pointing to.
|
||||
*/
|
||||
void* data;
|
||||
};
|
||||
} // namespace
|
219
nac3core/irrt/irrt/ndarray/indexing.hpp
Normal file
219
nac3core/irrt/irrt/ndarray/indexing.hpp
Normal file
@ -0,0 +1,219 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
namespace {
|
||||
typedef uint8_t NDIndexType;
|
||||
|
||||
/**
|
||||
* @brief A single element index
|
||||
*
|
||||
* `data` points to a `int32_t`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||
|
||||
/**
|
||||
* @brief A slice index
|
||||
*
|
||||
* `data` points to a `Slice<int32_t>`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||
|
||||
/**
|
||||
* @brief `np.newaxis` / `None`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||
|
||||
/**
|
||||
* @brief `Ellipsis` / `...`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||
|
||||
/**
|
||||
* @brief An index used in ndarray indexing
|
||||
*
|
||||
* That is:
|
||||
* ```
|
||||
* my_ndarray[::-1, 3, ..., np.newaxis]
|
||||
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
|
||||
* ```
|
||||
*/
|
||||
struct NDIndex {
|
||||
/**
|
||||
* @brief Enum tag to specify the type of index.
|
||||
*
|
||||
* Please see the comment of each enum constant.
|
||||
*/
|
||||
NDIndexType type;
|
||||
|
||||
/**
|
||||
* @brief The accompanying data associated with `type`.
|
||||
*
|
||||
* Please see the comment of each enum constant.
|
||||
*/
|
||||
uint8_t* data;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray::indexing {
|
||||
/**
|
||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
*
|
||||
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
||||
*
|
||||
* This function also does proper assertions on `indices` to check for out of bounds access and more.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||
* indexing `src_ndarray` with `indices`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data`.
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||
*
|
||||
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||
* @param src_ndarray The NDArray to be indexed.
|
||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// Validate `indices`.
|
||||
|
||||
// Expected value of `dst_ndarray->ndims`.
|
||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||
SizeT num_indexed = 0;
|
||||
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
||||
SizeT num_ellipsis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_indices; i++) {
|
||||
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
expected_dst_ndims--;
|
||||
num_indexed++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
|
||||
num_indexed++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
expected_dst_ndims++;
|
||||
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
num_ellipsis++;
|
||||
if (num_ellipsis > 1) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||
|
||||
if (src_ndarray->ndims - num_indexed < 0) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"too many indices for array: array is {0}-dimensional, "
|
||||
"but {1} were indexed",
|
||||
src_ndarray->ndims, num_indices, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Reference code:
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
SizeT src_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (int32_t i = 0; i < num_indices; i++) {
|
||||
const NDIndex* index = &indices[i];
|
||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
SizeT input = (SizeT) * ((int32_t*)index->data);
|
||||
|
||||
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
||||
if (k == -1) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"index {0} is out of bounds for axis {1} "
|
||||
"with size {2}",
|
||||
input, src_axis, src_ndarray->shape[src_axis]);
|
||||
}
|
||||
|
||||
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
|
||||
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_SLICE) {
|
||||
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
|
||||
|
||||
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||
|
||||
dst_ndarray->data =
|
||||
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
dst_ndarray->shape[dst_axis] = 1;
|
||||
|
||||
dst_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
// The number of ':' entries this '...' implies.
|
||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||
|
||||
for (SizeT j = 0; j < ellipsis_size; j++) {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||
}
|
||||
} // namespace ndarray::indexing
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::indexing;
|
||||
|
||||
void __nac3_ndarray_index(int32_t num_indices,
|
||||
NDIndex* indices,
|
||||
NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_index64(int64_t num_indices,
|
||||
NDIndex* indices,
|
||||
NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
146
nac3core/irrt/irrt/ndarray/iter.hpp
Normal file
146
nac3core/irrt/irrt/ndarray/iter.hpp
Normal file
@ -0,0 +1,146 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief Helper struct to enumerate through an ndarray *efficiently*.
|
||||
*
|
||||
* Example usage (in pseudo-code):
|
||||
* ```
|
||||
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
|
||||
* NDIter nditer;
|
||||
* nditer.initialize(my_ndarray);
|
||||
* while (nditer.has_element()) {
|
||||
* // This body is run 6 (= my_ndarray.size) times.
|
||||
*
|
||||
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
|
||||
* print(nditer.indices);
|
||||
*
|
||||
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
|
||||
* print(nditer.nth);
|
||||
*
|
||||
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
|
||||
* print(*((double *) nditer.element))
|
||||
*
|
||||
* nditer.next(); // Go to next element.
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* Interesting cases:
|
||||
* - If `my_ndarray.ndims` == 0, there is one iteration.
|
||||
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
struct NDIter {
|
||||
// Information about the ndarray being iterated over.
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
SizeT* strides;
|
||||
|
||||
/**
|
||||
* @brief The current indices.
|
||||
*
|
||||
* Must be allocated by the caller.
|
||||
*/
|
||||
SizeT* indices;
|
||||
|
||||
/**
|
||||
* @brief The nth (0-based) index of the current indices.
|
||||
*
|
||||
* Initially this is 0.
|
||||
*/
|
||||
SizeT nth;
|
||||
|
||||
/**
|
||||
* @brief Pointer to the current element.
|
||||
*
|
||||
* Initially this points to first element of the ndarray.
|
||||
*/
|
||||
void* element;
|
||||
|
||||
/**
|
||||
* @brief Cache for the product of shape.
|
||||
*
|
||||
* Could be 0 if `shape` has 0s in it.
|
||||
*/
|
||||
SizeT size;
|
||||
|
||||
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
|
||||
this->ndims = ndims;
|
||||
this->shape = shape;
|
||||
this->strides = strides;
|
||||
|
||||
this->indices = indices;
|
||||
this->element = element;
|
||||
|
||||
// Compute size
|
||||
this->size = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
this->size *= shape[i];
|
||||
}
|
||||
|
||||
// `indices` starts on all 0s.
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
indices[axis] = 0;
|
||||
nth = 0;
|
||||
}
|
||||
|
||||
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
|
||||
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
|
||||
// element as well.
|
||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
||||
}
|
||||
|
||||
// Is the current iteration valid?
|
||||
// If true, then `element`, `indices` and `nth` contain details about the current element.
|
||||
bool has_element() { return nth < size; }
|
||||
|
||||
// Go to the next element.
|
||||
void next() {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
indices[axis]++;
|
||||
if (indices[axis] >= shape[axis]) {
|
||||
indices[axis] = 0;
|
||||
|
||||
// TODO: There is something called backstrides to speedup iteration.
|
||||
// See https://ajcr.net/stride-guide-part-1/, and
|
||||
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
|
||||
} else {
|
||||
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
nth++;
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
|
||||
return iter->has_element();
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
|
||||
return iter->has_element();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next(NDIter<int32_t>* iter) {
|
||||
iter->next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
|
||||
iter->next();
|
||||
}
|
||||
}
|
98
nac3core/irrt/irrt/ndarray/matmul.hpp
Normal file
98
nac3core/irrt/irrt/ndarray/matmul.hpp
Normal file
@ -0,0 +1,98 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/basic.hpp"
|
||||
#include "irrt/ndarray/broadcast.hpp"
|
||||
#include "irrt/ndarray/iter.hpp"
|
||||
|
||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||
|
||||
namespace {
|
||||
namespace ndarray::matmul {
|
||||
|
||||
/**
|
||||
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||
*
|
||||
* Example:
|
||||
* Suppose `a_shape == [1, 97, 4, 2]`
|
||||
* and `b_shape == [99, 98, 1, 2, 5]`,
|
||||
*
|
||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||
* ^^^^^^^^^^ ^^^^
|
||||
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
||||
*
|
||||
* @param a_ndims Length of `a_shape`.
|
||||
* @param a_shape Shape of `a`.
|
||||
* @param b_ndims Length of `b_shape`.
|
||||
* @param b_shape Shape of `b`.
|
||||
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
||||
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void calculate_shapes(SizeT a_ndims,
|
||||
SizeT* a_shape,
|
||||
SizeT b_ndims,
|
||||
SizeT* b_shape,
|
||||
SizeT final_ndims,
|
||||
SizeT* new_a_shape,
|
||||
SizeT* new_b_shape,
|
||||
SizeT* dst_shape) {
|
||||
debug_assert(SizeT, a_ndims >= 2);
|
||||
debug_assert(SizeT, b_ndims >= 2);
|
||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||
|
||||
// Check that a and b are compatible for matmul
|
||||
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
|
||||
// This is a custom error message. Different from NumPy.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
||||
}
|
||||
|
||||
const SizeT num_entries = 2;
|
||||
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||
|
||||
// TODO: Optimize this
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
||||
|
||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
}
|
||||
} // namespace ndarray::matmul
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::matmul;
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
|
||||
int32_t* a_shape,
|
||||
int32_t b_ndims,
|
||||
int32_t* b_shape,
|
||||
int32_t final_ndims,
|
||||
int32_t* new_a_shape,
|
||||
int32_t* new_b_shape,
|
||||
int32_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
|
||||
int64_t* a_shape,
|
||||
int64_t b_ndims,
|
||||
int64_t* b_shape,
|
||||
int64_t final_ndims,
|
||||
int64_t* new_a_shape,
|
||||
int64_t* new_b_shape,
|
||||
int64_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
}
|
97
nac3core/irrt/irrt/ndarray/reshape.hpp
Normal file
97
nac3core/irrt/irrt/ndarray/reshape.hpp
Normal file
@ -0,0 +1,97 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
|
||||
namespace {
|
||||
namespace ndarray::reshape {
|
||||
/**
|
||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||
*
|
||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||
* modified to contain the resolved dimension.
|
||||
*
|
||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||
*
|
||||
* @param size The `.size` of `<ndarray>`
|
||||
* @param new_ndims Number of elements in `new_shape`
|
||||
* @param new_shape Target shape to reshape to
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
|
||||
// Is there a -1 in `new_shape`?
|
||||
bool neg1_exists = false;
|
||||
// Location of -1, only initialized if `neg1_exists` is true
|
||||
SizeT neg1_axis_i;
|
||||
// The computed ndarray size of `new_shape`
|
||||
SizeT new_size = 1;
|
||||
|
||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
|
||||
SizeT dim = new_shape[axis_i];
|
||||
if (dim < 0) {
|
||||
if (dim == -1) {
|
||||
if (neg1_exists) {
|
||||
// Multiple `-1` found. Throw an error.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
} else {
|
||||
neg1_exists = true;
|
||||
neg1_axis_i = axis_i;
|
||||
}
|
||||
} else {
|
||||
// TODO: What? In `np.reshape` any negative dimensions is
|
||||
// treated like its `-1`.
|
||||
//
|
||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||
//
|
||||
// It is not documented by numpy.
|
||||
// Throw an error for now...
|
||||
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
||||
NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
new_size *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool can_reshape;
|
||||
if (neg1_exists) {
|
||||
// Let `x` be the unknown dimension
|
||||
// Solve `x * <new_size> = <size>`
|
||||
if (new_size == 0 && size == 0) {
|
||||
// `x` has infinitely many solutions
|
||||
can_reshape = false;
|
||||
} else if (new_size == 0 && size != 0) {
|
||||
// `x` has no solutions
|
||||
can_reshape = false;
|
||||
} else if (size % new_size != 0) {
|
||||
// `x` has no integer solutions
|
||||
can_reshape = false;
|
||||
} else {
|
||||
can_reshape = true;
|
||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||
}
|
||||
} else {
|
||||
can_reshape = (new_size == size);
|
||||
}
|
||||
|
||||
if (!can_reshape) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::reshape
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
}
|
143
nac3core/irrt/irrt/ndarray/transpose.hpp
Normal file
143
nac3core/irrt/irrt/ndarray/transpose.hpp
Normal file
@ -0,0 +1,143 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/ndarray/def.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
||||
/*
|
||||
* Notes on `np.transpose(<array>, <axes>)`
|
||||
*
|
||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||
* but it is not documented in numpy.
|
||||
*
|
||||
* Supporting it for now.
|
||||
*/
|
||||
|
||||
namespace {
|
||||
namespace ndarray::transpose {
|
||||
/**
|
||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||
*
|
||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||
* is specified but the user, use this function to do assertions on it.
|
||||
*
|
||||
* @param ndims The number of dimensions of `<array>`
|
||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||
* @param axes The user specified `<axes>`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
|
||||
if (ndims != num_axes) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Optimize this
|
||||
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
axe_specified[i] = false;
|
||||
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||
if (axis == -1) {
|
||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (axe_specified[axis]) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
axe_specified[axis] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||
*
|
||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||
*
|
||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||
*
|
||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged
|
||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||
*
|
||||
* @param src_ndarray The NDArray to build a transpose view on
|
||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||
const auto ndims = src_ndarray->ndims;
|
||||
|
||||
if (axes != nullptr)
|
||||
assert_transpose_axes(ndims, num_axes, axes);
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||
if (axes == nullptr) {
|
||||
// `np.transpose(<array>, axes=None)`
|
||||
|
||||
/*
|
||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||
* is reversing the order of strides and shape.
|
||||
*
|
||||
* This is a fast implementation to handle this special (but very common) case.
|
||||
*/
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||
}
|
||||
} else {
|
||||
// `np.transpose(<array>, <axes>)`
|
||||
|
||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace ndarray::transpose
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::transpose;
|
||||
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray,
|
||||
int32_t num_axes,
|
||||
const int32_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray,
|
||||
int64_t num_axes,
|
||||
const int64_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
}
|
47
nac3core/irrt/irrt/range.hpp
Normal file
47
nac3core/irrt/irrt/range.hpp
Normal file
@ -0,0 +1,47 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
namespace range {
|
||||
template<typename T>
|
||||
T len(T start, T stop, T step) {
|
||||
// Reference:
|
||||
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
||||
if (step > 0 && start < stop)
|
||||
return 1 + (stop - 1 - start) / step;
|
||||
else if (step < 0 && start > stop)
|
||||
return 1 + (start - 1 - stop) / (-step);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
} // namespace range
|
||||
|
||||
/**
|
||||
* @brief A Python range.
|
||||
*/
|
||||
template<typename T>
|
||||
struct Range {
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
|
||||
/**
|
||||
* @brief Calculate the `len()` of this range.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
T len() {
|
||||
debug_assert(SizeT, step != 0);
|
||||
return range::len(start, stop, step);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace range;
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
||||
return len(start, end, step);
|
||||
}
|
||||
}
|
156
nac3core/irrt/irrt/slice.hpp
Normal file
156
nac3core/irrt/irrt/slice.hpp
Normal file
@ -0,0 +1,156 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/debug.hpp"
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
#include "irrt/range.hpp"
|
||||
|
||||
namespace {
|
||||
namespace slice {
|
||||
/**
|
||||
* @brief Resolve a possibly negative index in a list of a known length.
|
||||
*
|
||||
* Returns -1 if the resolved index is out of the list's bounds.
|
||||
*/
|
||||
template<typename T>
|
||||
T resolve_index_in_length(T length, T index) {
|
||||
T resolved = index < 0 ? length + index : index;
|
||||
if (0 <= resolved && resolved < length) {
|
||||
return resolved;
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve a slice as a range.
|
||||
*
|
||||
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
|
||||
*/
|
||||
template<typename T>
|
||||
void indices(bool start_defined,
|
||||
T start,
|
||||
bool stop_defined,
|
||||
T stop,
|
||||
bool step_defined,
|
||||
T step,
|
||||
T length,
|
||||
T* range_start,
|
||||
T* range_stop,
|
||||
T* range_step) {
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
*range_step = step_defined ? step : 1;
|
||||
bool step_is_negative = *range_step < 0;
|
||||
|
||||
T lower, upper;
|
||||
if (step_is_negative) {
|
||||
lower = -1;
|
||||
upper = length - 1;
|
||||
} else {
|
||||
lower = 0;
|
||||
upper = length;
|
||||
}
|
||||
|
||||
if (start_defined) {
|
||||
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
||||
} else {
|
||||
*range_start = step_is_negative ? upper : lower;
|
||||
}
|
||||
|
||||
if (stop_defined) {
|
||||
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
||||
} else {
|
||||
*range_stop = step_is_negative ? lower : upper;
|
||||
}
|
||||
}
|
||||
} // namespace slice
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with **unresolved** indices.
|
||||
*/
|
||||
template<typename T>
|
||||
struct Slice {
|
||||
bool start_defined;
|
||||
T start;
|
||||
|
||||
bool stop_defined;
|
||||
T stop;
|
||||
|
||||
bool step_defined;
|
||||
T step;
|
||||
|
||||
Slice() { this->reset(); }
|
||||
|
||||
void reset() {
|
||||
this->start_defined = false;
|
||||
this->stop_defined = false;
|
||||
this->step_defined = false;
|
||||
}
|
||||
|
||||
void set_start(T start) {
|
||||
this->start_defined = true;
|
||||
this->start = start;
|
||||
}
|
||||
|
||||
void set_stop(T stop) {
|
||||
this->stop_defined = true;
|
||||
this->stop = stop;
|
||||
}
|
||||
|
||||
void set_step(T step) {
|
||||
this->step_defined = true;
|
||||
this->step = step;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve this slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
Range<T> indices(T length) {
|
||||
// Reference:
|
||||
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
debug_assert(SizeT, length >= 0);
|
||||
|
||||
Range<T> result;
|
||||
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
||||
&result.stop, &result.step);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `.indices()` but with assertions.
|
||||
*/
|
||||
template<typename SizeT>
|
||||
Range<T> indices_checked(T length) {
|
||||
// TODO: Switch to `SizeT length`
|
||||
|
||||
if (length < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (this->step_defined && this->step == 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
return this->indices<SizeT>(length);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
}
|
23
nac3core/irrt/irrt/string.hpp
Normal file
23
nac3core/irrt/irrt/string.hpp
Normal file
@ -0,0 +1,23 @@
|
||||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
|
||||
if (len1 != len2) {
|
||||
return 0;
|
||||
}
|
||||
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
|
||||
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
|
||||
}
|
||||
|
||||
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
|
||||
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
|
||||
}
|
||||
}
|
21
nac3core/nac3core_derive/Cargo.toml
Normal file
21
nac3core/nac3core_derive/Cargo.toml
Normal file
@ -0,0 +1,21 @@
|
||||
[package]
|
||||
name = "nac3core_derive"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[lib]
|
||||
proc-macro = true
|
||||
|
||||
[[test]]
|
||||
name = "structfields_tests"
|
||||
path = "tests/structfields_test.rs"
|
||||
|
||||
[dev-dependencies]
|
||||
nac3core = { path = ".." }
|
||||
trybuild = { version = "1.0", features = ["diff"] }
|
||||
|
||||
[dependencies]
|
||||
proc-macro2 = "1.0"
|
||||
proc-macro-error = "1.0"
|
||||
syn = "2.0"
|
||||
quote = "1.0"
|
320
nac3core/nac3core_derive/src/lib.rs
Normal file
320
nac3core/nac3core_derive/src/lib.rs
Normal file
@ -0,0 +1,320 @@
|
||||
use proc_macro::TokenStream;
|
||||
use proc_macro_error::{abort, proc_macro_error};
|
||||
use quote::quote;
|
||||
use syn::{
|
||||
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
|
||||
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
|
||||
};
|
||||
|
||||
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
|
||||
///
|
||||
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
|
||||
/// `expected_ty_name`, otherwise returns [`None`].
|
||||
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
|
||||
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segments = &path.segments;
|
||||
if segments.len() != 1 {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segment = segments.iter().next().unwrap();
|
||||
if segment.ident != expected_ty_name {
|
||||
return None;
|
||||
}
|
||||
|
||||
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
|
||||
return Some(Vec::new());
|
||||
};
|
||||
let args = &path_args.args;
|
||||
|
||||
Some(args.iter().cloned().collect::<Vec<_>>())
|
||||
}
|
||||
|
||||
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
|
||||
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
|
||||
path.require_ident()
|
||||
.ok()
|
||||
.filter(|ident| target_idents.iter().any(|target| ident == target))
|
||||
.map(|ident| Ident::new(replacement, ident.span()))
|
||||
}
|
||||
|
||||
/// Extracts the left-hand side of a dot-expression.
|
||||
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
|
||||
match expr {
|
||||
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
|
||||
/// replacement is performed.
|
||||
///
|
||||
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
|
||||
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
|
||||
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) = expr
|
||||
{
|
||||
return if extract_dot_operand(operand).is_some() {
|
||||
if replace_top_level_receiver(operand, ident).is_some() {
|
||||
Some(expr)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
*operand = Box::new(Expr::Path(ExprPath {
|
||||
attrs: Vec::default(),
|
||||
qself: None,
|
||||
path: ident.into(),
|
||||
}));
|
||||
|
||||
Some(expr)
|
||||
};
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
|
||||
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
|
||||
///
|
||||
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
|
||||
/// return `vec![c, b, a]`.
|
||||
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
|
||||
let mut o = extract_dot_operand(expr);
|
||||
|
||||
std::iter::from_fn(move || {
|
||||
let this = o;
|
||||
o = o.as_ref().and_then(|o| extract_dot_operand(o));
|
||||
|
||||
this
|
||||
})
|
||||
}
|
||||
|
||||
/// Normalizes a value expression for use when creating an instance of this structure, returning a
|
||||
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
|
||||
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
|
||||
match &expr {
|
||||
Expr::Path(ExprPath { qself: None, path, .. }) => {
|
||||
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
|
||||
quote! { #ident }
|
||||
} else {
|
||||
abort!(
|
||||
path,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
Expr::Call(_) => {
|
||||
quote! { ctx.#expr }
|
||||
}
|
||||
|
||||
Expr::MethodCall(_) => {
|
||||
let base_receiver = iter_dot_operands(expr).last();
|
||||
|
||||
match base_receiver {
|
||||
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
|
||||
{
|
||||
let ident =
|
||||
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
|
||||
{
|
||||
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
|
||||
_ => quote! { ctx.#expr },
|
||||
}
|
||||
}
|
||||
|
||||
_ => {
|
||||
abort!(
|
||||
expr,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Derives an implementation of `codegen::types::structure::StructFields`.
|
||||
///
|
||||
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
|
||||
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
|
||||
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
|
||||
///
|
||||
/// # Prerequisites
|
||||
///
|
||||
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
|
||||
/// `StructFields`.
|
||||
///
|
||||
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
|
||||
/// with either `StructField` or [`PhantomData`] types.
|
||||
///
|
||||
/// # Attributes for [`StructFields`]
|
||||
///
|
||||
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
|
||||
/// accepts one of the following:
|
||||
///
|
||||
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
|
||||
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
|
||||
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
|
||||
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
|
||||
/// `usize.array_type(3)`.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
|
||||
///
|
||||
/// ```rust,ignore
|
||||
/// use nac3core::{
|
||||
/// codegen::types::structure::StructField,
|
||||
/// inkwell::{
|
||||
/// values::{IntValue, PointerValue},
|
||||
/// AddressSpace,
|
||||
/// },
|
||||
/// };
|
||||
/// use nac3core_derive::StructFields;
|
||||
///
|
||||
/// // All classes that implement StructFields must also implement Eq and Copy
|
||||
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
/// pub struct SliceValue<'ctx> {
|
||||
/// // Declares ptr have a value type of i8*
|
||||
/// //
|
||||
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
|
||||
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
///
|
||||
/// // Declares len have a value type of usize, depending on the target compilation platform
|
||||
/// #[value_type(usize)]
|
||||
/// len: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// }
|
||||
/// ```
|
||||
#[proc_macro_derive(StructFields, attributes(value_type))]
|
||||
#[proc_macro_error]
|
||||
pub fn derive(input: TokenStream) -> TokenStream {
|
||||
let input = parse_macro_input!(input as syn::DeriveInput);
|
||||
let ident = &input.ident;
|
||||
|
||||
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
|
||||
abort!(input, "Only structs with named fields are supported");
|
||||
};
|
||||
if let Err(err_span) =
|
||||
fields
|
||||
.iter()
|
||||
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
|
||||
{
|
||||
abort!(err_span, "Only structs with named fields are supported");
|
||||
};
|
||||
|
||||
// Check if struct<'ctx>
|
||||
if input.generics.params.len() != 1 {
|
||||
abort!(input.generics, "Expected exactly 1 generic parameter")
|
||||
}
|
||||
|
||||
let phantom_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
|
||||
.map(|field| field.ident.as_ref().unwrap())
|
||||
.cloned()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let field_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
|
||||
.map(|field| {
|
||||
let ident = field.ident.as_ref().unwrap();
|
||||
let ty = &field.ty;
|
||||
|
||||
let Some(_) = extract_generic_args("StructField", ty) else {
|
||||
abort!(field, "Only StructField and PhantomData are allowed")
|
||||
};
|
||||
|
||||
let attrs = &field.attrs;
|
||||
let Some(value_type_attr) =
|
||||
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
|
||||
else {
|
||||
abort!(field, "Expected #[value_type(...)] attribute for field");
|
||||
};
|
||||
|
||||
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
|
||||
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
|
||||
};
|
||||
|
||||
let value_expr_toks = normalize_value_expr(&value_type_expr);
|
||||
|
||||
(ident.clone(), value_expr_toks)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
|
||||
let phantoms_create = phantom_info
|
||||
.iter()
|
||||
.map(|id| quote! { #id: ::std::marker::PhantomData })
|
||||
.collect::<Vec<_>>();
|
||||
let fields_create = field_info
|
||||
.iter()
|
||||
.map(|(id, ty)| {
|
||||
let id_lit = LitStr::new(&id.to_string(), id.span());
|
||||
quote! {
|
||||
#id: ::nac3core::codegen::types::structure::StructField::create(
|
||||
&mut counter,
|
||||
#id_lit,
|
||||
#ty,
|
||||
)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `.into()` impl of `StructField` for `StructFields::to_vec`
|
||||
let fields_into =
|
||||
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
|
||||
|
||||
let impl_block = quote! {
|
||||
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
|
||||
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
|
||||
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
|
||||
|
||||
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
|
||||
|
||||
#ident {
|
||||
#(#fields_create),*
|
||||
#(#phantoms_create),*
|
||||
}
|
||||
}
|
||||
|
||||
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
|
||||
vec![
|
||||
#(#fields_into),*
|
||||
]
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
impl_block.into()
|
||||
}
|
9
nac3core/nac3core_derive/tests/structfields_empty.rs
Normal file
9
nac3core/nac3core_derive/tests/structfields_empty.rs
Normal file
@ -0,0 +1,9 @@
|
||||
use nac3core_derive::StructFields;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct EmptyValue<'ctx> {
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
fn main() {}
|
20
nac3core/nac3core_derive/tests/structfields_ndarray.rs
Normal file
20
nac3core/nac3core_derive/tests/structfields_ndarray.rs
Normal file
@ -0,0 +1,20 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDArrayValue<'ctx> {
|
||||
#[value_type(usize)]
|
||||
ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
18
nac3core/nac3core_derive/tests/structfields_slice.rs
Normal file
18
nac3core/nac3core_derive/tests/structfields_slice.rs
Normal file
@ -0,0 +1,18 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
18
nac3core/nac3core_derive/tests/structfields_slice_context.rs
Normal file
18
nac3core/nac3core_derive/tests/structfields_slice_context.rs
Normal file
@ -0,0 +1,18 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
18
nac3core/nac3core_derive/tests/structfields_slice_ctx.rs
Normal file
18
nac3core/nac3core_derive/tests/structfields_slice_ctx.rs
Normal file
@ -0,0 +1,18 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
18
nac3core/nac3core_derive/tests/structfields_slice_sizet.rs
Normal file
18
nac3core/nac3core_derive/tests/structfields_slice_sizet.rs
Normal file
@ -0,0 +1,18 @@
|
||||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(size_t)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
10
nac3core/nac3core_derive/tests/structfields_test.rs
Normal file
10
nac3core/nac3core_derive/tests/structfields_test.rs
Normal file
@ -0,0 +1,10 @@
|
||||
#[test]
|
||||
fn test_parse_empty() {
|
||||
let t = trybuild::TestCases::new();
|
||||
t.pass("tests/structfields_empty.rs");
|
||||
t.pass("tests/structfields_slice.rs");
|
||||
t.pass("tests/structfields_slice_ctx.rs");
|
||||
t.pass("tests/structfields_slice_context.rs");
|
||||
t.pass("tests/structfields_slice_sizet.rs");
|
||||
t.pass("tests/structfields_ndarray.rs");
|
||||
}
|
2100
nac3core/src/codegen/builtin_fns.rs
Normal file
2100
nac3core/src/codegen/builtin_fns.rs
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,15 +1,20 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use indexmap::IndexMap;
|
||||
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::SymbolValue,
|
||||
toplevel::DefinitionId,
|
||||
typecheck::{
|
||||
type_inferencer::PrimitiveStore,
|
||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
|
||||
typedef::{
|
||||
into_var_map, FunSignature, FuncArg, Type, TypeEnum, TypeVar, TypeVarId, Unifier,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
use nac3parser::ast::StrRef;
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct ConcreteTypeStore {
|
||||
store: Vec<ConcreteTypeEnum>,
|
||||
}
|
||||
@ -22,6 +27,7 @@ pub struct ConcreteFuncArg {
|
||||
pub name: StrRef,
|
||||
pub ty: ConcreteType,
|
||||
pub default_value: Option<SymbolValue>,
|
||||
pub is_vararg: bool,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
@ -43,14 +49,16 @@ pub enum ConcreteTypeEnum {
|
||||
TPrimitive(Primitive),
|
||||
TTuple {
|
||||
ty: Vec<ConcreteType>,
|
||||
},
|
||||
TList {
|
||||
ty: ConcreteType,
|
||||
is_vararg_ctx: bool,
|
||||
},
|
||||
TObj {
|
||||
obj_id: DefinitionId,
|
||||
fields: HashMap<StrRef, (ConcreteType, bool)>,
|
||||
params: HashMap<u32, ConcreteType>,
|
||||
params: IndexMap<TypeVarId, ConcreteType>,
|
||||
},
|
||||
TModule {
|
||||
module_id: DefinitionId,
|
||||
methods: HashMap<StrRef, (ConcreteType, bool)>,
|
||||
},
|
||||
TVirtual {
|
||||
ty: ConcreteType,
|
||||
@ -58,11 +66,10 @@ pub enum ConcreteTypeEnum {
|
||||
TFunc {
|
||||
args: Vec<ConcreteFuncArg>,
|
||||
ret: ConcreteType,
|
||||
vars: HashMap<u32, ConcreteType>,
|
||||
vars: HashMap<TypeVarId, ConcreteType>,
|
||||
},
|
||||
TConstant {
|
||||
value: SymbolValue,
|
||||
ty: ConcreteType,
|
||||
TLiteral {
|
||||
values: Vec<SymbolValue>,
|
||||
},
|
||||
}
|
||||
|
||||
@ -103,8 +110,16 @@ impl ConcreteTypeStore {
|
||||
.iter()
|
||||
.map(|arg| ConcreteFuncArg {
|
||||
name: arg.name,
|
||||
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
|
||||
ty: if arg.is_vararg {
|
||||
let tuple_ty = unifier
|
||||
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
|
||||
|
||||
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
|
||||
} else {
|
||||
self.from_unifier_type(unifier, primitives, arg.ty, cache)
|
||||
},
|
||||
default_value: arg.default_value.clone(),
|
||||
is_vararg: arg.is_vararg,
|
||||
})
|
||||
.collect(),
|
||||
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
|
||||
@ -159,14 +174,12 @@ impl ConcreteTypeStore {
|
||||
cache.insert(ty, None);
|
||||
let ty_enum = unifier.get_ty(ty);
|
||||
let result = match &*ty_enum {
|
||||
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
|
||||
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
|
||||
ty: ty
|
||||
.iter()
|
||||
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
|
||||
.collect(),
|
||||
},
|
||||
TypeEnum::TList { ty } => ConcreteTypeEnum::TList {
|
||||
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
|
||||
is_vararg_ctx: *is_vararg_ctx,
|
||||
},
|
||||
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
|
||||
obj_id: *obj_id,
|
||||
@ -196,16 +209,28 @@ impl ConcreteTypeStore {
|
||||
})
|
||||
.collect(),
|
||||
},
|
||||
TypeEnum::TModule { module_id, attributes } => ConcreteTypeEnum::TModule {
|
||||
module_id: *module_id,
|
||||
methods: attributes
|
||||
.iter()
|
||||
.filter_map(|(name, ty)| match &*unifier.get_ty(ty.0) {
|
||||
TypeEnum::TFunc(..) | TypeEnum::TObj { .. } => None,
|
||||
_ => Some((
|
||||
*name,
|
||||
(self.from_unifier_type(unifier, primitives, ty.0, cache), ty.1),
|
||||
)),
|
||||
})
|
||||
.collect(),
|
||||
},
|
||||
TypeEnum::TVirtual { ty } => ConcreteTypeEnum::TVirtual {
|
||||
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
|
||||
},
|
||||
TypeEnum::TFunc(signature) => {
|
||||
self.from_signature(unifier, primitives, signature, cache)
|
||||
}
|
||||
TypeEnum::TConstant { value, ty, .. } => ConcreteTypeEnum::TConstant {
|
||||
value: value.clone(),
|
||||
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
|
||||
},
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
ConcreteTypeEnum::TLiteral { values: values.clone() }
|
||||
}
|
||||
_ => unreachable!("{:?}", ty_enum.get_type_name()),
|
||||
};
|
||||
let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() {
|
||||
@ -231,7 +256,7 @@ impl ConcreteTypeStore {
|
||||
return if let Some(ty) = ty {
|
||||
*ty
|
||||
} else {
|
||||
*ty = Some(unifier.get_dummy_var().0);
|
||||
*ty = Some(unifier.get_dummy_var().ty);
|
||||
ty.unwrap()
|
||||
};
|
||||
}
|
||||
@ -253,15 +278,13 @@ impl ConcreteTypeStore {
|
||||
*cache.get_mut(&cty).unwrap() = Some(ty);
|
||||
return ty;
|
||||
}
|
||||
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
|
||||
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
|
||||
ty: ty
|
||||
.iter()
|
||||
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
|
||||
.collect(),
|
||||
is_vararg_ctx: *is_vararg_ctx,
|
||||
},
|
||||
ConcreteTypeEnum::TList { ty } => {
|
||||
TypeEnum::TList { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
|
||||
}
|
||||
ConcreteTypeEnum::TVirtual { ty } => {
|
||||
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
|
||||
}
|
||||
@ -273,9 +296,18 @@ impl ConcreteTypeStore {
|
||||
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
|
||||
})
|
||||
.collect::<HashMap<_, _>>(),
|
||||
params: params
|
||||
params: into_var_map(params.iter().map(|(&id, cty)| {
|
||||
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
|
||||
TypeVar { id, ty }
|
||||
})),
|
||||
},
|
||||
ConcreteTypeEnum::TModule { module_id, methods } => TypeEnum::TModule {
|
||||
module_id: *module_id,
|
||||
attributes: methods
|
||||
.iter()
|
||||
.map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
|
||||
.map(|(name, cty)| {
|
||||
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
|
||||
})
|
||||
.collect::<HashMap<_, _>>(),
|
||||
},
|
||||
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
|
||||
@ -285,18 +317,17 @@ impl ConcreteTypeStore {
|
||||
name: arg.name,
|
||||
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
|
||||
default_value: arg.default_value.clone(),
|
||||
is_vararg: false,
|
||||
})
|
||||
.collect(),
|
||||
ret: self.to_unifier_type(unifier, primitives, *ret, cache),
|
||||
vars: vars
|
||||
.iter()
|
||||
.map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
|
||||
.collect::<HashMap<_, _>>(),
|
||||
vars: into_var_map(vars.iter().map(|(&id, cty)| {
|
||||
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
|
||||
TypeVar { id, ty }
|
||||
})),
|
||||
}),
|
||||
ConcreteTypeEnum::TConstant { value, ty } => TypeEnum::TConstant {
|
||||
value: value.clone(),
|
||||
ty: self.to_unifier_type(unifier, primitives, *ty, cache),
|
||||
loc: None,
|
||||
ConcreteTypeEnum::TLiteral { values, .. } => {
|
||||
TypeEnum::TLiteral { values: values.clone(), loc: None }
|
||||
}
|
||||
};
|
||||
let result = unifier.add_ty(result);
|
||||
|
File diff suppressed because it is too large
Load Diff
193
nac3core/src/codegen/extern_fns.rs
Normal file
193
nac3core/src/codegen/extern_fns.rs
Normal file
@ -0,0 +1,193 @@
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::CodeGenContext;
|
||||
|
||||
/// Macro to generate extern function
|
||||
/// Both function return type and function parameter type are `FloatValue`
|
||||
///
|
||||
/// Arguments:
|
||||
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$extern_fn:literal`: Name of underlying extern function
|
||||
///
|
||||
/// Optional Arguments:
|
||||
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
|
||||
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
|
||||
/// These will be used unless other attributes are specified
|
||||
/// * `$(,$args:ident)*`: Operands of the extern function
|
||||
/// The data type of these operands will be set to `FloatValue`
|
||||
///
|
||||
macro_rules! generate_extern_fn {
|
||||
("unary", $fn_name:ident, $extern_fn:literal) => {
|
||||
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
|
||||
};
|
||||
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
|
||||
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
|
||||
};
|
||||
("binary", $fn_name:ident, $extern_fn:literal) => {
|
||||
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
|
||||
};
|
||||
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
|
||||
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
|
||||
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
|
||||
pub fn $fn_name<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>
|
||||
$(,$args: FloatValue<'ctx>)*,
|
||||
name: Option<&str>,
|
||||
) -> FloatValue<'ctx> {
|
||||
const FN_NAME: &str = $extern_fn;
|
||||
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
|
||||
|
||||
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
|
||||
let func = ctx.module.add_function(FN_NAME, fn_type, None);
|
||||
for attr in [$($attributes),*] {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
func
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
generate_extern_fn!("unary", call_tan, "tan");
|
||||
generate_extern_fn!("unary", call_asin, "asin");
|
||||
generate_extern_fn!("unary", call_acos, "acos");
|
||||
generate_extern_fn!("unary", call_atan, "atan");
|
||||
generate_extern_fn!("unary", call_sinh, "sinh");
|
||||
generate_extern_fn!("unary", call_cosh, "cosh");
|
||||
generate_extern_fn!("unary", call_tanh, "tanh");
|
||||
generate_extern_fn!("unary", call_asinh, "asinh");
|
||||
generate_extern_fn!("unary", call_acosh, "acosh");
|
||||
generate_extern_fn!("unary", call_atanh, "atanh");
|
||||
generate_extern_fn!("unary", call_expm1, "expm1");
|
||||
generate_extern_fn!(
|
||||
"unary",
|
||||
call_cbrt,
|
||||
"cbrt",
|
||||
"mustprogress",
|
||||
"nofree",
|
||||
"nosync",
|
||||
"nounwind",
|
||||
"readonly",
|
||||
"willreturn"
|
||||
);
|
||||
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
|
||||
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
|
||||
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
|
||||
|
||||
generate_extern_fn!("binary", call_atan2, "atan2");
|
||||
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
|
||||
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
|
||||
|
||||
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
|
||||
pub fn call_ldexp<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
arg: FloatValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> FloatValue<'ctx> {
|
||||
const FN_NAME: &str = "ldexp";
|
||||
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
debug_assert_eq!(arg.get_type(), llvm_f64);
|
||||
debug_assert_eq!(exp.get_type(), llvm_i32);
|
||||
|
||||
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
|
||||
let func = ctx.module.add_function(FN_NAME, fn_type, None);
|
||||
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
|
||||
func
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Macro to generate `np_linalg` and `sp_linalg` functions
|
||||
/// The function takes as input `NDArray` and returns ()
|
||||
///
|
||||
/// Arguments:
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$extern_fn:literal`: Name of underlying extern function
|
||||
/// * (2/3/4): Number of `NDArray` that function takes as input
|
||||
///
|
||||
/// Note:
|
||||
/// The operands and resulting `NDArray` are both passed as input to the funcion
|
||||
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
|
||||
/// The function changes the content of the output `NDArray` in-place
|
||||
macro_rules! generate_linalg_extern_fn {
|
||||
($fn_name:ident, $extern_fn:literal, 2) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal, 3) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal, 4) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
|
||||
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
|
||||
pub fn $fn_name<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>
|
||||
$(,$input_matrix: BasicValueEnum<'ctx>)*,
|
||||
name: Option<&str>,
|
||||
){
|
||||
const FN_NAME: &str = $extern_fn;
|
||||
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
|
||||
|
||||
let func = ctx.module.add_function(FN_NAME, fn_type, None);
|
||||
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
func
|
||||
});
|
||||
|
||||
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
|
||||
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
|
||||
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
|
||||
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);
|
@ -1,20 +1,27 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
targets::TargetMachine,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||
|
||||
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
|
||||
use crate::{
|
||||
codegen::{expr::*, stmt::*, bool_to_i1, bool_to_i8, CodeGenContext},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
};
|
||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||
|
||||
pub trait CodeGenerator {
|
||||
/// Return the module name for the code generator.
|
||||
fn get_name(&self) -> &str;
|
||||
|
||||
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
|
||||
///
|
||||
/// Prefer using [`CodeGenContext::get_size_type`] if [`CodeGenContext`] is available, as it is
|
||||
/// equivalent to this function in a more concise syntax.
|
||||
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
|
||||
|
||||
/// Generate function call and returns the function return value.
|
||||
@ -57,6 +64,7 @@ pub trait CodeGenerator {
|
||||
/// - fun: Function signature, definition ID and the substitution key.
|
||||
/// - params: Function parameters. Note that this does not include the object even if the
|
||||
/// function is a class method.
|
||||
///
|
||||
/// Note that this function should check if the function is generated in another thread (due to
|
||||
/// possible race condition), see the default implementation for an example.
|
||||
fn gen_func_instance<'ctx>(
|
||||
@ -92,6 +100,18 @@ pub trait CodeGenerator {
|
||||
gen_var(ctx, ty, name)
|
||||
}
|
||||
|
||||
/// Allocate memory for a variable and return a pointer pointing to it.
|
||||
/// The default implementation places the allocations at the start of the function.
|
||||
fn gen_array_var_alloc<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Result<ArraySliceValue<'ctx>, String> {
|
||||
gen_array_var(ctx, ty, size, name)
|
||||
}
|
||||
|
||||
/// Return a pointer pointing to the target of the expression.
|
||||
fn gen_store_target<'ctx>(
|
||||
&mut self,
|
||||
@ -111,11 +131,45 @@ pub trait CodeGenerator {
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign(self, ctx, target, value)
|
||||
gen_assign(self, ctx, target, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an assignment expression where LHS is a `"target_list"`.
|
||||
///
|
||||
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
|
||||
fn gen_assign_target_list<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
targets: &Vec<Expr<Option<Type>>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign_target_list(self, ctx, targets, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an item assignment.
|
||||
///
|
||||
/// i.e., `target[key] = value`
|
||||
fn gen_setitem<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
key: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_setitem(self, ctx, target, key, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for a while expression.
|
||||
@ -131,8 +185,8 @@ pub trait CodeGenerator {
|
||||
gen_while(self, ctx, stmt)
|
||||
}
|
||||
|
||||
/// Generate code for a while expression.
|
||||
/// Return true if the while loop must early return
|
||||
/// Generate code for a for expression.
|
||||
/// Return true if the for loop must early return
|
||||
fn gen_for(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
@ -198,7 +252,7 @@ pub trait CodeGenerator {
|
||||
fn bool_to_i1<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
bool_value: IntValue<'ctx>
|
||||
bool_value: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
bool_to_i1(&ctx.builder, bool_value)
|
||||
}
|
||||
@ -207,7 +261,7 @@ pub trait CodeGenerator {
|
||||
fn bool_to_i8<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
bool_value: IntValue<'ctx>
|
||||
bool_value: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
|
||||
}
|
||||
@ -220,20 +274,27 @@ pub struct DefaultCodeGenerator {
|
||||
|
||||
impl DefaultCodeGenerator {
|
||||
#[must_use]
|
||||
pub fn new(name: String, size_t: u32) -> DefaultCodeGenerator {
|
||||
assert!(matches!(size_t, 32 | 64));
|
||||
DefaultCodeGenerator { name, size_t }
|
||||
pub fn new(name: String, size_t: IntType<'_>) -> DefaultCodeGenerator {
|
||||
assert!(matches!(size_t.get_bit_width(), 32 | 64));
|
||||
DefaultCodeGenerator { name, size_t: size_t.get_bit_width() }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn with_target_machine(
|
||||
name: String,
|
||||
ctx: &Context,
|
||||
target_machine: &TargetMachine,
|
||||
) -> DefaultCodeGenerator {
|
||||
let llvm_usize = ctx.ptr_sized_int_type(&target_machine.get_target_data(), None);
|
||||
Self::new(name, llvm_usize)
|
||||
}
|
||||
}
|
||||
|
||||
impl CodeGenerator for DefaultCodeGenerator {
|
||||
|
||||
/// Returns the name for this [`CodeGenerator`].
|
||||
fn get_name(&self) -> &str {
|
||||
&self.name
|
||||
}
|
||||
|
||||
/// Returns an LLVM integer type representing `size_t`.
|
||||
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
|
||||
// it should be unsigned, but we don't really need unsigned and this could save us from
|
||||
// having to do a bit cast...
|
||||
|
@ -1,199 +0,0 @@
|
||||
typedef _BitInt(8) int8_t;
|
||||
typedef unsigned _BitInt(8) uint8_t;
|
||||
typedef _BitInt(32) int32_t;
|
||||
typedef unsigned _BitInt(32) uint32_t;
|
||||
typedef _BitInt(64) int64_t;
|
||||
typedef unsigned _BitInt(64) uint64_t;
|
||||
|
||||
# define MAX(a, b) (a > b ? a : b)
|
||||
# define MIN(a, b) (a > b ? b : a)
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
#define DEF_INT_EXP(T) T __nac3_int_exp_##T( \
|
||||
T base, \
|
||||
T exp \
|
||||
) { \
|
||||
T res = (T)1; \
|
||||
/* repeated squaring method */ \
|
||||
do { \
|
||||
if (exp & 1) res *= base; /* for n odd */ \
|
||||
exp >>= 1; \
|
||||
base *= base; \
|
||||
} while (exp); \
|
||||
return res; \
|
||||
} \
|
||||
|
||||
DEF_INT_EXP(int32_t)
|
||||
DEF_INT_EXP(int64_t)
|
||||
DEF_INT_EXP(uint32_t)
|
||||
DEF_INT_EXP(uint64_t)
|
||||
|
||||
|
||||
int32_t __nac3_slice_index_bound(int32_t i, const int32_t len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
int32_t __nac3_range_slice_len(const int32_t start, const int32_t end, const int32_t step) {
|
||||
int32_t diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
int32_t __nac3_list_slice_assign_var_size(
|
||||
int32_t dest_start,
|
||||
int32_t dest_end,
|
||||
int32_t dest_step,
|
||||
uint8_t *dest_arr,
|
||||
int32_t dest_arr_len,
|
||||
int32_t src_start,
|
||||
int32_t src_end,
|
||||
int32_t src_step,
|
||||
uint8_t *src_arr,
|
||||
int32_t src_arr_len,
|
||||
const int32_t size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const int32_t src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const int32_t dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
MAX(dest_start, dest_end) < MIN(src_start, src_end)
|
||||
|| MAX(src_start, src_end) < MIN(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t *tmp = __builtin_alloca(src_arr_len * size);
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
int32_t src_ind = src_start;
|
||||
int32_t dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
174
nac3core/src/codegen/irrt/list.rs
Normal file
174
nac3core/src/codegen/irrt/list.rs
Normal file
@ -0,0 +1,174 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::calculate_len_for_slice_range;
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
values::{ArrayLikeValue, ListValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// This function handles 'end' **inclusively**.
|
||||
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
|
||||
/// Negative index should be handled before entering this function
|
||||
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
assert_eq!(dest_idx.0.get_type(), llvm_i32);
|
||||
assert_eq!(dest_idx.1.get_type(), llvm_i32);
|
||||
assert_eq!(dest_idx.2.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.0.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.1.get_type(), llvm_i32);
|
||||
assert_eq!(src_idx.2.get_type(), llvm_i32);
|
||||
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
|
||||
let slice_assign_fun = {
|
||||
let ty_vec = vec![
|
||||
llvm_i32.into(), // dest start idx
|
||||
llvm_i32.into(), // dest end idx
|
||||
llvm_i32.into(), // dest step
|
||||
elem_ptr_type.into(), // dest arr ptr
|
||||
llvm_i32.into(), // dest arr len
|
||||
llvm_i32.into(), // src start idx
|
||||
llvm_i32.into(), // src end idx
|
||||
llvm_i32.into(), // src step
|
||||
elem_ptr_type.into(), // src arr ptr
|
||||
llvm_i32.into(), // src arr len
|
||||
llvm_i32.into(), // size
|
||||
];
|
||||
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
|
||||
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
|
||||
ctx.module.add_function(fun_symbol, fn_t, None)
|
||||
})
|
||||
};
|
||||
|
||||
let zero = llvm_i32.const_zero();
|
||||
let one = llvm_i32.const_int(1, false);
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
let dest_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len =
|
||||
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
let src_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len =
|
||||
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
// throw exception if not satisfied
|
||||
let src_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let dest_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let src_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
|
||||
let dest_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
|
||||
let src_eq_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
|
||||
.unwrap();
|
||||
let src_slt_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
|
||||
.unwrap();
|
||||
let dest_step_eq_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
dest_idx.2,
|
||||
dest_idx.2.get_type().const_int(1, false),
|
||||
"slice_dest_step_eq_one",
|
||||
)
|
||||
.unwrap();
|
||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let new_len = {
|
||||
let args = vec![
|
||||
dest_idx.0.into(), // dest start idx
|
||||
dest_idx.1.into(), // dest end idx
|
||||
dest_idx.2.into(), // dest step
|
||||
dest_arr_ptr.into(), // dest arr ptr
|
||||
dest_len.into(), // dest arr len
|
||||
src_idx.0.into(), // src start idx
|
||||
src_idx.1.into(), // src end idx
|
||||
src_idx.2.into(), // src step
|
||||
src_arr_ptr.into(), // src arr ptr
|
||||
src_len.into(), // src arr len
|
||||
{
|
||||
let s = match ty {
|
||||
BasicTypeEnum::FloatType(t) => t.size_of(),
|
||||
BasicTypeEnum::IntType(t) => t.size_of(),
|
||||
BasicTypeEnum::PointerType(t) => t.size_of(),
|
||||
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
|
||||
}
|
||||
.into(),
|
||||
];
|
||||
ctx.builder
|
||||
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// update length
|
||||
let need_update =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
|
||||
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let update_bb = ctx.ctx.append_basic_block(current, "update");
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let new_len =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
168
nac3core/src/codegen/irrt/math.rs
Normal file
168
nac3core/src/codegen/irrt/math.rs
Normal file
@ -0,0 +1,168 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
// repeated squaring method adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
base: IntValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
signed: bool,
|
||||
) -> IntValue<'ctx> {
|
||||
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
|
||||
(32, 32, true) => "__nac3_int_exp_int32_t",
|
||||
(64, 64, true) => "__nac3_int_exp_int64_t",
|
||||
(32, 32, false) => "__nac3_int_exp_uint32_t",
|
||||
(64, 64, false) => "__nac3_int_exp_uint64_t",
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
let base_type = base.get_type();
|
||||
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
|
||||
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
|
||||
ctx.module.add_function(symbol, fn_type, None)
|
||||
});
|
||||
// throw exception when exp < 0
|
||||
let ge_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SGE,
|
||||
exp,
|
||||
exp.get_type().const_zero(),
|
||||
"assert_int_pow_ge_0",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ge_zero,
|
||||
"0:ValueError",
|
||||
"integer power must be positive or zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
|
||||
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_isinf", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isinf")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
|
||||
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_isnan", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isnan")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gamma", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gamma")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gammaln", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gammaln")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
assert_eq!(v.get_type(), llvm_f64);
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_j0", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "j0")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
@ -1,19 +1,31 @@
|
||||
use crate::typecheck::typedef::Type;
|
||||
|
||||
use super::{CodeGenContext, CodeGenerator};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::BasicTypeEnum,
|
||||
values::{FloatValue, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate,
|
||||
values::{BasicValue, BasicValueEnum, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use nac3parser::ast::Expr;
|
||||
|
||||
use super::{CodeGenContext, CodeGenerator};
|
||||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||
pub use list::*;
|
||||
pub use math::*;
|
||||
pub use range::*;
|
||||
pub use slice::*;
|
||||
pub use string::*;
|
||||
|
||||
mod list;
|
||||
mod math;
|
||||
pub mod ndarray;
|
||||
mod range;
|
||||
mod slice;
|
||||
mod string;
|
||||
|
||||
#[must_use]
|
||||
pub fn load_irrt(ctx: &Context) -> Module {
|
||||
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
|
||||
let bitcode_buf = MemoryBuffer::create_from_memory_range(
|
||||
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
|
||||
"irrt_bitcode_buffer",
|
||||
@ -29,87 +41,43 @@ pub fn load_irrt(ctx: &Context) -> Module {
|
||||
let function = irrt_mod.get_function(symbol).unwrap();
|
||||
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
|
||||
}
|
||||
|
||||
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
|
||||
let exn_id_type = ctx.i32_type();
|
||||
let errors = &[
|
||||
("EXN_INDEX_ERROR", "0:IndexError"),
|
||||
("EXN_VALUE_ERROR", "0:ValueError"),
|
||||
("EXN_ASSERTION_ERROR", "0:AssertionError"),
|
||||
("EXN_TYPE_ERROR", "0:TypeError"),
|
||||
];
|
||||
for (irrt_name, symbol_name) in errors {
|
||||
let exn_id = symbol_resolver.get_string_id(symbol_name);
|
||||
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
|
||||
|
||||
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
|
||||
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
|
||||
});
|
||||
global.set_initializer(&exn_id);
|
||||
}
|
||||
|
||||
irrt_mod
|
||||
}
|
||||
|
||||
// repeated squaring method adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
pub fn integer_power<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
base: IntValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
signed: bool,
|
||||
) -> IntValue<'ctx> {
|
||||
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
|
||||
(32, 32, true) => "__nac3_int_exp_int32_t",
|
||||
(64, 64, true) => "__nac3_int_exp_int64_t",
|
||||
(32, 32, false) => "__nac3_int_exp_uint32_t",
|
||||
(64, 64, false) => "__nac3_int_exp_uint64_t",
|
||||
_ => unreachable!(),
|
||||
};
|
||||
let base_type = base.get_type();
|
||||
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
|
||||
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
|
||||
ctx.module.add_function(symbol, fn_type, None)
|
||||
});
|
||||
// throw exception when exp < 0
|
||||
let ge_zero = ctx.builder.build_int_compare(
|
||||
IntPredicate::SGE,
|
||||
exp,
|
||||
exp.get_type().const_zero(),
|
||||
"assert_int_pow_ge_0",
|
||||
);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ge_zero,
|
||||
"0:ValueError",
|
||||
"integer power must be positive or zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value()
|
||||
}
|
||||
|
||||
pub fn calculate_len_for_slice_range<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: IntValue<'ctx>,
|
||||
end: IntValue<'ctx>,
|
||||
step: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
const SYMBOL: &str = "__nac3_range_slice_len";
|
||||
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx.builder.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
step,
|
||||
step.get_type().const_zero(),
|
||||
"range_step_ne",
|
||||
);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
"0:ValueError",
|
||||
"step must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
|
||||
.try_as_basic_value()
|
||||
.left()
|
||||
.unwrap()
|
||||
.into_int_value()
|
||||
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
|
||||
///
|
||||
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
|
||||
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
|
||||
#[must_use]
|
||||
pub fn get_usize_dependent_function_name(ctx: &CodeGenContext<'_, '_>, name: &str) -> String {
|
||||
let mut name = name.to_owned();
|
||||
match ctx.get_size_type().get_bit_width() {
|
||||
32 => {}
|
||||
64 => name.push_str("64"),
|
||||
bit_width => {
|
||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||
}
|
||||
}
|
||||
name
|
||||
}
|
||||
|
||||
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
|
||||
@ -158,13 +126,13 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
step: &Option<Box<Expr<Option<Type>>>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
list: PointerValue<'ctx>,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let length = ctx.build_gep_and_load(list, &[zero, one], Some("length")).into_int_value();
|
||||
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32");
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
let zero = llvm_i32.const_zero();
|
||||
let one = llvm_i32.const_int(1, false);
|
||||
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
|
||||
Ok(Some(match (start, end, step) {
|
||||
(s, e, None) => (
|
||||
if let Some(s) = s.as_ref() {
|
||||
@ -173,7 +141,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
None => return Ok(None),
|
||||
}
|
||||
} else {
|
||||
int32.const_zero()
|
||||
llvm_i32.const_zero()
|
||||
},
|
||||
{
|
||||
let e = if let Some(s) = e.as_ref() {
|
||||
@ -184,7 +152,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
} else {
|
||||
length
|
||||
};
|
||||
ctx.builder.build_int_sub(e, one, "final_end")
|
||||
ctx.builder.build_int_sub(e, one, "final_end").unwrap()
|
||||
},
|
||||
one,
|
||||
),
|
||||
@ -192,15 +160,18 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
let step = if let Some(v) = generator.gen_expr(ctx, step)? {
|
||||
v.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?.into_int_value()
|
||||
} else {
|
||||
return Ok(None)
|
||||
return Ok(None);
|
||||
};
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx.builder.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
step,
|
||||
step.get_type().const_zero(),
|
||||
"range_step_ne",
|
||||
);
|
||||
let not_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
step,
|
||||
step.get_type().const_zero(),
|
||||
"range_step_ne",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
@ -209,340 +180,69 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1");
|
||||
let neg = ctx.builder.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg");
|
||||
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1").unwrap();
|
||||
let neg = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg")
|
||||
.unwrap();
|
||||
(
|
||||
match s {
|
||||
Some(s) => {
|
||||
let Some(s) = handle_slice_index_bound(s, ctx, generator, length)? else {
|
||||
return Ok(None)
|
||||
return Ok(None);
|
||||
};
|
||||
ctx.builder
|
||||
.build_select(
|
||||
ctx.builder.build_and(
|
||||
ctx.builder.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
s,
|
||||
length,
|
||||
"s_eq_len",
|
||||
),
|
||||
neg,
|
||||
"should_minus_one",
|
||||
),
|
||||
ctx.builder.build_int_sub(s, one, "s_min"),
|
||||
ctx.builder
|
||||
.build_and(
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
s,
|
||||
length,
|
||||
"s_eq_len",
|
||||
)
|
||||
.unwrap(),
|
||||
neg,
|
||||
"should_minus_one",
|
||||
)
|
||||
.unwrap(),
|
||||
ctx.builder.build_int_sub(s, one, "s_min").unwrap(),
|
||||
s,
|
||||
"final_start",
|
||||
)
|
||||
.into_int_value()
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
None => ctx.builder.build_select(neg, len_id, zero, "stt").into_int_value(),
|
||||
None => ctx
|
||||
.builder
|
||||
.build_select(neg, len_id, zero, "stt")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap(),
|
||||
},
|
||||
match e {
|
||||
Some(e) => {
|
||||
let Some(e) = handle_slice_index_bound(e, ctx, generator, length)? else {
|
||||
return Ok(None)
|
||||
return Ok(None);
|
||||
};
|
||||
ctx.builder
|
||||
.build_select(
|
||||
neg,
|
||||
ctx.builder.build_int_add(e, one, "end_add_one"),
|
||||
ctx.builder.build_int_sub(e, one, "end_sub_one"),
|
||||
ctx.builder.build_int_add(e, one, "end_add_one").unwrap(),
|
||||
ctx.builder.build_int_sub(e, one, "end_sub_one").unwrap(),
|
||||
"final_end",
|
||||
)
|
||||
.into_int_value()
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
None => ctx.builder.build_select(neg, zero, len_id, "end").into_int_value(),
|
||||
None => ctx
|
||||
.builder
|
||||
.build_select(neg, zero, len_id, "end")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap(),
|
||||
},
|
||||
step,
|
||||
)
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
/// this function allows index out of range, since python
|
||||
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
|
||||
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
|
||||
i: &Expr<Option<Type>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<IntValue<'ctx>>, String> {
|
||||
const SYMBOL: &str = "__nac3_slice_index_bound";
|
||||
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
|
||||
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(None)
|
||||
};
|
||||
Ok(Some(ctx
|
||||
.builder
|
||||
.build_call(func, &[i.into(), length.into()], "bounded_ind")
|
||||
.try_as_basic_value()
|
||||
.left()
|
||||
.unwrap()
|
||||
.into_int_value()))
|
||||
}
|
||||
|
||||
/// This function handles 'end' **inclusively**.
|
||||
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
|
||||
/// Negative index should be handled before entering this function
|
||||
pub fn list_slice_assignment<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: PointerValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: PointerValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let size_ty = generator.get_size_type(ctx.ctx);
|
||||
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
|
||||
let slice_assign_fun = {
|
||||
let ty_vec = vec![
|
||||
int32.into(), // dest start idx
|
||||
int32.into(), // dest end idx
|
||||
int32.into(), // dest step
|
||||
elem_ptr_type.into(), // dest arr ptr
|
||||
int32.into(), // dest arr len
|
||||
int32.into(), // src start idx
|
||||
int32.into(), // src end idx
|
||||
int32.into(), // src step
|
||||
elem_ptr_type.into(), // src arr ptr
|
||||
int32.into(), // src arr len
|
||||
int32.into(), // size
|
||||
];
|
||||
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
|
||||
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
|
||||
ctx.module.add_function(fun_symbol, fn_t, None)
|
||||
})
|
||||
};
|
||||
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let dest_arr_ptr = ctx.build_gep_and_load(dest_arr, &[zero, zero], Some("dest.addr"));
|
||||
let dest_arr_ptr = ctx.builder.build_pointer_cast(
|
||||
dest_arr_ptr.into_pointer_value(),
|
||||
elem_ptr_type,
|
||||
"dest_arr_ptr_cast",
|
||||
);
|
||||
let dest_len = ctx.build_gep_and_load(dest_arr, &[zero, one], Some("dest.len")).into_int_value();
|
||||
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32");
|
||||
let src_arr_ptr = ctx.build_gep_and_load(src_arr, &[zero, zero], Some("src.addr"));
|
||||
let src_arr_ptr = ctx.builder.build_pointer_cast(
|
||||
src_arr_ptr.into_pointer_value(),
|
||||
elem_ptr_type,
|
||||
"src_arr_ptr_cast",
|
||||
);
|
||||
let src_len = ctx.build_gep_and_load(src_arr, &[zero, one], Some("src.len")).into_int_value();
|
||||
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32");
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
// throw exception if not satisfied
|
||||
let src_end = ctx.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
src_idx.2,
|
||||
zero,
|
||||
"is_neg",
|
||||
),
|
||||
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one"),
|
||||
ctx.builder.build_int_add(src_idx.1, one, "e_add_one"),
|
||||
"final_e",
|
||||
)
|
||||
.into_int_value();
|
||||
let dest_end = ctx.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
dest_idx.2,
|
||||
zero,
|
||||
"is_neg",
|
||||
),
|
||||
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one"),
|
||||
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one"),
|
||||
"final_e",
|
||||
)
|
||||
.into_int_value();
|
||||
let src_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
|
||||
let dest_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
|
||||
let src_eq_dest = ctx.builder.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
src_slice_len,
|
||||
dest_slice_len,
|
||||
"slice_src_eq_dest",
|
||||
);
|
||||
let src_slt_dest = ctx.builder.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
src_slice_len,
|
||||
dest_slice_len,
|
||||
"slice_src_slt_dest",
|
||||
);
|
||||
let dest_step_eq_one = ctx.builder.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
dest_idx.2,
|
||||
dest_idx.2.get_type().const_int(1, false),
|
||||
"slice_dest_step_eq_one",
|
||||
);
|
||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1");
|
||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond");
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let new_len = {
|
||||
let args = vec![
|
||||
dest_idx.0.into(), // dest start idx
|
||||
dest_idx.1.into(), // dest end idx
|
||||
dest_idx.2.into(), // dest step
|
||||
dest_arr_ptr.into(), // dest arr ptr
|
||||
dest_len.into(), // dest arr len
|
||||
src_idx.0.into(), // src start idx
|
||||
src_idx.1.into(), // src end idx
|
||||
src_idx.2.into(), // src step
|
||||
src_arr_ptr.into(), // src arr ptr
|
||||
src_len.into(), // src arr len
|
||||
{
|
||||
let s = match ty {
|
||||
BasicTypeEnum::FloatType(t) => t.size_of(),
|
||||
BasicTypeEnum::IntType(t) => t.size_of(),
|
||||
BasicTypeEnum::PointerType(t) => t.size_of(),
|
||||
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size")
|
||||
}
|
||||
.into(),
|
||||
];
|
||||
ctx.builder
|
||||
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value()
|
||||
};
|
||||
// update length
|
||||
let need_update =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update");
|
||||
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let update_bb = ctx.ctx.append_basic_block(current, "update");
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb);
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let dest_len_ptr = unsafe { ctx.builder.build_gep(dest_arr, &[zero, one], "dest_len_ptr") };
|
||||
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len");
|
||||
ctx.builder.build_store(dest_len_ptr, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb);
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
||||
|
||||
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isinf<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isinf", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isinf")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isnan<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isnan", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isnan")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gamma<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gamma", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gamma")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_float_value()
|
||||
}
|
||||
|
||||
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gammaln<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gammaln", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gammaln")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_float_value()
|
||||
}
|
||||
|
||||
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_j0<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_j0", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "j0")
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_float_value()
|
||||
}
|
||||
|
72
nac3core/src/codegen/irrt/ndarray/array.rs
Normal file
72
nac3core/src/codegen/irrt/ndarray/array.rs
Normal file
@ -0,0 +1,72 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::IntValue};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
|
||||
///
|
||||
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
|
||||
/// there is any issue with the resultant `shape`.
|
||||
///
|
||||
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
|
||||
/// initialized to all `-1`s.
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
assert_eq!(ndims.get_type(), llvm_usize);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_set_and_validate_list_shape");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
|
||||
///
|
||||
/// Copies the contents stored in `list` into `ndarray`.
|
||||
///
|
||||
/// The `ndarray` must fulfill the following preconditions:
|
||||
///
|
||||
/// - `ndarray.itemsize`: Must be initialized.
|
||||
/// - `ndarray.ndims`: Must be initialized.
|
||||
/// - `ndarray.shape`: Must be initialized.
|
||||
/// - `ndarray.data`: Must be allocated and contiguous.
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
list: ListValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_array_write_list_to_array");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[list.as_base_value().into(), ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
295
nac3core/src/codegen/irrt/ndarray/basic.rs
Normal file
295
nac3core/src/codegen/irrt/ndarray/basic.rs
Normal file
@ -0,0 +1,295 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::{create_and_call_function, infer_and_call_function},
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::ProxyType,
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
|
||||
///
|
||||
/// Assets that `shape` does not contain negative dimensions.
|
||||
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_shape_no_negative");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[
|
||||
(llvm_usize.into(), shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
|
||||
///
|
||||
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
|
||||
/// an `ndarray`.
|
||||
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name =
|
||||
get_usize_dependent_function_name(ctx, "__nac3_ndarray_util_assert_output_shape_same");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[
|
||||
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
|
||||
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
|
||||
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_size`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
|
||||
/// `ndarray`, corresponding to the value of `ndarray.size`.
|
||||
pub fn call_nac3_ndarray_size<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_size");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("size"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_nbytes`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
|
||||
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
|
||||
pub fn call_nac3_ndarray_nbytes<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_nbytes");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("nbytes"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_len`.
|
||||
///
|
||||
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
|
||||
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
|
||||
pub fn call_nac3_ndarray_len<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_len");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_usize.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("len"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
|
||||
///
|
||||
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
|
||||
pub fn call_nac3_ndarray_is_c_contiguous<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_is_c_contiguous");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_i1.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
Some("is_c_contiguous"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
|
||||
///
|
||||
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
|
||||
pub fn call_nac3_ndarray_get_nth_pelement<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
index: IntValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
assert_eq!(index.get_type(), llvm_usize);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_nth_pelement");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_pi8.into()),
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
|
||||
Some("pelement"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
|
||||
///
|
||||
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
|
||||
///
|
||||
/// Returns a [`PointerValue`] to the element indexed by `indices`.
|
||||
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_get_pelement_by_indices");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(llvm_pi8.into()),
|
||||
&[
|
||||
(llvm_ndarray.into(), ndarray.as_base_value().into()),
|
||||
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
Some("pelement"),
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
|
||||
///
|
||||
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
|
||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let llvm_ndarray = ndarray.get_type().as_base_type();
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_copy_data`.
|
||||
///
|
||||
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
|
||||
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
|
||||
/// `dst_ndarray`.
|
||||
pub fn call_nac3_ndarray_copy_data<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_copy_data");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
81
nac3core/src/codegen/irrt/ndarray/broadcast.rs
Normal file
81
nac3core/src/codegen/irrt/ndarray/broadcast.rs
Normal file
@ -0,0 +1,81 @@
|
||||
use inkwell::values::IntValue;
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::{ndarray::ShapeEntryType, ProxyType},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
|
||||
TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_broadcast_to`.
|
||||
///
|
||||
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
|
||||
///
|
||||
/// `dst_ndarray` must meet the following preconditions:
|
||||
///
|
||||
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
|
||||
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
|
||||
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
|
||||
pub fn call_nac3_ndarray_broadcast_to<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_to");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
|
||||
///
|
||||
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
|
||||
/// writing the result to `dst_shape`.
|
||||
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
num_shape_entries: IntValue<'ctx>,
|
||||
shape_entries: ArraySliceValue<'ctx>,
|
||||
dst_ndims: IntValue<'ctx>,
|
||||
dst_shape: &Shape,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
|
||||
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
|
||||
{
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(num_shape_entries.get_type(), llvm_usize);
|
||||
assert!(ShapeEntryType::is_type(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
shape_entries.base_ptr(ctx, generator).get_type()
|
||||
)
|
||||
.is_ok());
|
||||
assert_eq!(dst_ndims.get_type(), llvm_usize);
|
||||
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_broadcast_shapes");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
num_shape_entries.into(),
|
||||
shape_entries.base_ptr(ctx, generator).into(),
|
||||
dst_ndims.into(),
|
||||
dst_shape.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
34
nac3core/src/codegen/irrt/ndarray/indexing.rs
Normal file
34
nac3core/src/codegen/irrt/ndarray/indexing.rs
Normal file
@ -0,0 +1,34 @@
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_index`.
|
||||
///
|
||||
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
|
||||
/// operation `dst_ndarray = src_ndarray[indices]`.
|
||||
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_index");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
indices.size(ctx, generator).into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
src_ndarray.as_base_value().into(),
|
||||
dst_ndarray.as_base_value().into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
81
nac3core/src/codegen/irrt/ndarray/iter.rs
Normal file
81
nac3core/src/codegen/irrt/ndarray/iter.rs
Normal file
@ -0,0 +1,81 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::{create_and_call_function, infer_and_call_function},
|
||||
irrt::get_usize_dependent_function_name,
|
||||
types::ProxyType,
|
||||
values::{
|
||||
ndarray::{NDArrayValue, NDIterValue},
|
||||
ProxyValue, TypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_nditer_initialize`.
|
||||
///
|
||||
/// Initializes the `iter` object.
|
||||
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
iter: NDIterValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_initialize");
|
||||
|
||||
create_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
|
||||
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
|
||||
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_nditer_initialize_has_element`.
|
||||
///
|
||||
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
|
||||
/// object.
|
||||
pub fn call_nac3_nditer_has_element<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
iter: NDIterValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_has_element");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
Some(ctx.ctx.bool_type().into()),
|
||||
&[iter.as_base_value().into()],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_nditer_next`.
|
||||
///
|
||||
/// Moves `iter` to point to the next element.
|
||||
pub fn call_nac3_nditer_next<'ctx>(ctx: &CodeGenContext<'ctx, '_>, iter: NDIterValue<'ctx>) {
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_nditer_next");
|
||||
|
||||
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
|
||||
}
|
65
nac3core/src/codegen/irrt/ndarray/matmul.rs
Normal file
65
nac3core/src/codegen/irrt/ndarray/matmul.rs
Normal file
@ -0,0 +1,65 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::IntValue};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
|
||||
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
|
||||
///
|
||||
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
|
||||
/// `a @ b`.
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
final_ndims: IntValue<'ctx>,
|
||||
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
assert_eq!(
|
||||
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
|
||||
llvm_usize.into()
|
||||
);
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
a_shape.size(ctx, generator).into(),
|
||||
a_shape.base_ptr(ctx, generator).into(),
|
||||
b_shape.size(ctx, generator).into(),
|
||||
b_shape.base_ptr(ctx, generator).into(),
|
||||
final_ndims.into(),
|
||||
new_a_shape.base_ptr(ctx, generator).into(),
|
||||
new_b_shape.base_ptr(ctx, generator).into(),
|
||||
dst_shape.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
17
nac3core/src/codegen/irrt/ndarray/mod.rs
Normal file
17
nac3core/src/codegen/irrt/ndarray/mod.rs
Normal file
@ -0,0 +1,17 @@
|
||||
pub use array::*;
|
||||
pub use basic::*;
|
||||
pub use broadcast::*;
|
||||
pub use indexing::*;
|
||||
pub use iter::*;
|
||||
pub use matmul::*;
|
||||
pub use reshape::*;
|
||||
pub use transpose::*;
|
||||
|
||||
mod array;
|
||||
mod basic;
|
||||
mod broadcast;
|
||||
mod indexing;
|
||||
mod iter;
|
||||
mod matmul;
|
||||
mod reshape;
|
||||
mod transpose;
|
39
nac3core/src/codegen/irrt/ndarray/reshape.rs
Normal file
39
nac3core/src/codegen/irrt/ndarray/reshape.rs
Normal file
@ -0,0 +1,39 @@
|
||||
use inkwell::values::IntValue;
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ArrayLikeValue, ArraySliceValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
|
||||
///
|
||||
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
|
||||
/// assertion if multiple dimensions are unknown (`-1`).
|
||||
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
new_ndims: IntValue<'ctx>,
|
||||
new_shape: ArraySliceValue<'ctx>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert_eq!(size.get_type(), llvm_usize);
|
||||
assert_eq!(new_ndims.get_type(), llvm_usize);
|
||||
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
|
||||
|
||||
let name = get_usize_dependent_function_name(
|
||||
ctx,
|
||||
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
||||
);
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
48
nac3core/src/codegen/irrt/ndarray/transpose.rs
Normal file
48
nac3core/src/codegen/irrt/ndarray/transpose.rs
Normal file
@ -0,0 +1,48 @@
|
||||
use inkwell::{values::IntValue, AddressSpace};
|
||||
|
||||
use crate::codegen::{
|
||||
expr::infer_and_call_function,
|
||||
irrt::get_usize_dependent_function_name,
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_transpose`.
|
||||
///
|
||||
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
|
||||
///
|
||||
/// `dst_ndarray` must fulfill the following preconditions:
|
||||
///
|
||||
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
|
||||
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
|
||||
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
|
||||
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayValue<'ctx>,
|
||||
dst_ndarray: NDArrayValue<'ctx>,
|
||||
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
|
||||
) {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
|
||||
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
|
||||
|
||||
let name = get_usize_dependent_function_name(ctx, "__nac3_ndarray_transpose");
|
||||
infer_and_call_function(
|
||||
ctx,
|
||||
&name,
|
||||
None,
|
||||
&[
|
||||
src_ndarray.as_base_value().into(),
|
||||
dst_ndarray.as_base_value().into(),
|
||||
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
|
||||
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
|
||||
axes.base_ptr(ctx, generator)
|
||||
})
|
||||
.into(),
|
||||
],
|
||||
None,
|
||||
None,
|
||||
);
|
||||
}
|
56
nac3core/src/codegen/irrt/range.rs
Normal file
56
nac3core/src/codegen/irrt/range.rs
Normal file
@ -0,0 +1,56 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
/// Invokes the `__nac3_range_slice_len` in IRRT.
|
||||
///
|
||||
/// - `start`: The `i32` start value for the slice.
|
||||
/// - `end`: The `i32` end value for the slice.
|
||||
/// - `step`: The `i32` step value for the slice.
|
||||
///
|
||||
/// Returns an `i32` value of the length of the slice.
|
||||
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: IntValue<'ctx>,
|
||||
end: IntValue<'ctx>,
|
||||
step: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
const SYMBOL: &str = "__nac3_range_slice_len";
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
||||
assert_eq!(start.get_type(), llvm_i32);
|
||||
assert_eq!(end.get_type(), llvm_i32);
|
||||
assert_eq!(step.get_type(), llvm_i32);
|
||||
|
||||
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
"0:ValueError",
|
||||
"step must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
ctx.builder
|
||||
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
39
nac3core/src/codegen/irrt/slice.rs
Normal file
39
nac3core/src/codegen/irrt/slice.rs
Normal file
@ -0,0 +1,39 @@
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
|
||||
use itertools::Either;
|
||||
|
||||
use nac3parser::ast::Expr;
|
||||
|
||||
use crate::{
|
||||
codegen::{CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// this function allows index out of range, since python
|
||||
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
|
||||
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
|
||||
i: &Expr<Option<Type>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<IntValue<'ctx>>, String> {
|
||||
const SYMBOL: &str = "__nac3_slice_index_bound";
|
||||
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
|
||||
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
Ok(Some(
|
||||
ctx.builder
|
||||
.build_call(func, &[i.into(), length.into()], "bounded_ind")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap(),
|
||||
))
|
||||
}
|
45
nac3core/src/codegen/irrt/string.rs
Normal file
45
nac3core/src/codegen/irrt/string.rs
Normal file
@ -0,0 +1,45 @@
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
|
||||
use itertools::Either;
|
||||
|
||||
use super::get_usize_dependent_function_name;
|
||||
use crate::codegen::CodeGenContext;
|
||||
|
||||
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
|
||||
pub fn call_string_eq<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
str1_ptr: PointerValue<'ctx>,
|
||||
str1_len: IntValue<'ctx>,
|
||||
str2_ptr: PointerValue<'ctx>,
|
||||
str2_len: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let func_name = get_usize_dependent_function_name(ctx, "nac3_str_eq");
|
||||
|
||||
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
&func_name,
|
||||
llvm_i1.fn_type(
|
||||
&[
|
||||
str1_ptr.get_type().into(),
|
||||
str1_len.get_type().into(),
|
||||
str2_ptr.get_type().into(),
|
||||
str2_len.get_type().into(),
|
||||
],
|
||||
false,
|
||||
),
|
||||
None,
|
||||
)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
func,
|
||||
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
|
||||
"str_eq_call",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
381
nac3core/src/codegen/llvm_intrinsics.rs
Normal file
381
nac3core/src/codegen/llvm_intrinsics.rs
Normal file
@ -0,0 +1,381 @@
|
||||
use inkwell::{
|
||||
intrinsics::Intrinsic,
|
||||
types::AnyTypeEnum::IntType,
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::CodeGenContext;
|
||||
|
||||
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.va_start";
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.va_end";
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_stacksave<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
const FN_NAME: &str = "llvm.stacksave";
|
||||
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[]))
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_pointer_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Invokes the
|
||||
/// [`llvm.stackrestore`](https://llvm.org/docs/LangRef.html#llvm-stackrestore-intrinsic) intrinsic.
|
||||
///
|
||||
/// - `ptr`: The pointer storing the address to restore the stack to.
|
||||
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.stackrestore";
|
||||
|
||||
/*
|
||||
SEE https://github.com/TheDan64/inkwell/issues/496
|
||||
|
||||
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
|
||||
```ignore
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
|
||||
.unwrap();
|
||||
```
|
||||
|
||||
Temp workaround by manually declaring the intrinsic with the correct function name instead.
|
||||
*/
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
|
||||
///
|
||||
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
|
||||
/// * `src` - The pointer to the source. Must be a pointer to an integer type.
|
||||
/// * `len` - The number of bytes to copy.
|
||||
/// * `is_volatile` - Whether the `memcpy` operation should be `volatile`.
|
||||
pub fn call_memcpy<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dest: PointerValue<'ctx>,
|
||||
src: PointerValue<'ctx>,
|
||||
len: IntValue<'ctx>,
|
||||
is_volatile: IntValue<'ctx>,
|
||||
) {
|
||||
const FN_NAME: &str = "llvm.memcpy";
|
||||
|
||||
debug_assert!(dest.get_type().get_element_type().is_int_type());
|
||||
debug_assert!(src.get_type().get_element_type().is_int_type());
|
||||
debug_assert_eq!(
|
||||
dest.get_type().get_element_type().into_int_type().get_bit_width(),
|
||||
src.get_type().get_element_type().into_int_type().get_bit_width(),
|
||||
);
|
||||
debug_assert!(matches!(len.get_type().get_bit_width(), 32 | 64));
|
||||
debug_assert_eq!(is_volatile.get_type().get_bit_width(), 1);
|
||||
|
||||
let llvm_dest_t = dest.get_type();
|
||||
let llvm_src_t = src.get_type();
|
||||
let llvm_len_t = len.get_type();
|
||||
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| {
|
||||
intrinsic.get_declaration(
|
||||
&ctx.module,
|
||||
&[llvm_dest_t.into(), llvm_src_t.into(), llvm_len_t.into()],
|
||||
)
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[dest.into(), src.into(), len.into(), is_volatile.into()], "")
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the `llvm.memcpy` intrinsic.
|
||||
///
|
||||
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
|
||||
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
|
||||
pub fn call_memcpy_generic<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dest: PointerValue<'ctx>,
|
||||
src: PointerValue<'ctx>,
|
||||
len: IntValue<'ctx>,
|
||||
is_volatile: IntValue<'ctx>,
|
||||
) {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
|
||||
let dest_elem_t = dest.get_type().get_element_type();
|
||||
let src_elem_t = src.get_type().get_element_type();
|
||||
|
||||
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
dest
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(dest, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
src
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(src, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
call_memcpy(ctx, dest, src, len, is_volatile);
|
||||
}
|
||||
|
||||
/// Invokes the `llvm.memcpy` intrinsic.
|
||||
///
|
||||
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
|
||||
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
|
||||
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
|
||||
/// copy).
|
||||
pub fn call_memcpy_generic_array<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dest: PointerValue<'ctx>,
|
||||
src: PointerValue<'ctx>,
|
||||
len: IntValue<'ctx>,
|
||||
is_volatile: IntValue<'ctx>,
|
||||
) {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
|
||||
|
||||
let dest_elem_t = dest.get_type().get_element_type();
|
||||
let src_elem_t = src.get_type().get_element_type();
|
||||
|
||||
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
dest
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(dest, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
|
||||
src
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bit_cast(src, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
|
||||
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
|
||||
|
||||
call_memcpy(ctx, dest, src, len, is_volatile);
|
||||
}
|
||||
|
||||
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
|
||||
///
|
||||
/// Arguments:
|
||||
/// * `$ctx:ident`: Reference to the current Code Generation Context
|
||||
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
|
||||
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
|
||||
/// Use `BasicValueEnum::into_int_value` for Integer return type and
|
||||
/// `BasicValueEnum::into_float_value` for Float return type
|
||||
/// * `$llvm_ty:ident`: Type of first operand
|
||||
/// * `,($val:ident)*`: Comma separated list of operands
|
||||
macro_rules! generate_llvm_intrinsic_fn_body {
|
||||
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
|
||||
const FN_NAME: &str = concat!("llvm.", $llvm_name);
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
|
||||
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
|
||||
}};
|
||||
}
|
||||
|
||||
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
|
||||
///
|
||||
/// Arguments:
|
||||
/// * `float/int`: Indicates the return and argument type of the function
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
|
||||
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
|
||||
/// * `$val:ident`: The operand for unary operations
|
||||
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
|
||||
macro_rules! generate_llvm_intrinsic_fn {
|
||||
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
|
||||
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
|
||||
pub fn $fn_name<'ctx> (
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
$val: FloatValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> FloatValue<'ctx> {
|
||||
let llvm_ty = $val.get_type();
|
||||
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
|
||||
}
|
||||
};
|
||||
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
|
||||
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
|
||||
pub fn $fn_name<'ctx> (
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
$val1: FloatValue<'ctx>,
|
||||
$val2: FloatValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> FloatValue<'ctx> {
|
||||
debug_assert_eq!($val1.get_type(), $val2.get_type());
|
||||
let llvm_ty = $val1.get_type();
|
||||
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
|
||||
}
|
||||
};
|
||||
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
|
||||
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
|
||||
pub fn $fn_name<'ctx> (
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
$val1: IntValue<'ctx>,
|
||||
$val2: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> IntValue<'ctx> {
|
||||
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
|
||||
let llvm_ty = $val1.get_type();
|
||||
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
|
||||
///
|
||||
/// * `src` - The value for which the absolute value is to be returned.
|
||||
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
|
||||
pub fn call_int_abs<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src: IntValue<'ctx>,
|
||||
is_int_min_poison: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> IntValue<'ctx> {
|
||||
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
|
||||
debug_assert!(is_int_min_poison.is_const());
|
||||
|
||||
let src_type = src.get_type();
|
||||
generate_llvm_intrinsic_fn_body!(
|
||||
ctx,
|
||||
name,
|
||||
"abs",
|
||||
BasicValueEnum::into_int_value,
|
||||
src_type,
|
||||
src,
|
||||
is_int_min_poison
|
||||
)
|
||||
}
|
||||
|
||||
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
|
||||
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
|
||||
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
|
||||
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
|
||||
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
|
||||
|
||||
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
|
||||
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
|
||||
|
||||
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
|
||||
pub fn call_float_powi<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
val: FloatValue<'ctx>,
|
||||
power: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> FloatValue<'ctx> {
|
||||
const FN_NAME: &str = "llvm.powi";
|
||||
|
||||
let llvm_val_t = val.get_type();
|
||||
let llvm_power_t = power.get_type();
|
||||
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| {
|
||||
intrinsic.get_declaration(&ctx.module, &[llvm_val_t.into(), llvm_power_t.into()])
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
|
||||
pub fn call_int_ctpop<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
src: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> IntValue<'ctx> {
|
||||
const FN_NAME: &str = "llvm.ctpop";
|
||||
|
||||
let llvm_src_t = src.get_type();
|
||||
|
||||
let intrinsic_fn = Intrinsic::find(FN_NAME)
|
||||
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
|
||||
.unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
File diff suppressed because it is too large
Load Diff
413
nac3core/src/codegen/numpy.rs
Normal file
413
nac3core/src/codegen/numpy.rs
Normal file
@ -0,0 +1,413 @@
|
||||
use inkwell::{
|
||||
values::{BasicValue, BasicValueEnum, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use super::{
|
||||
macros::codegen_unreachable,
|
||||
stmt::gen_for_callback,
|
||||
types::ndarray::{NDArrayType, NDIterType},
|
||||
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
helper::{arraylike_flatten_element_type, extract_ndims},
|
||||
numpy::unpack_ndarray_var_tys,
|
||||
DefinitionId,
|
||||
},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
/// Generates LLVM IR for `ndarray.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
|
||||
.construct_numpy_empty(generator, context, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.zeros`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
|
||||
.construct_numpy_zeros(generator, context, dtype, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.ones`.
|
||||
pub fn gen_ndarray_ones<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, ndims)
|
||||
.construct_numpy_ones(generator, context, dtype, &shape, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.full`.
|
||||
pub fn gen_ndarray_full<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
let fill_value_ty = fun.0.args[1].ty;
|
||||
let fill_value_arg =
|
||||
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
|
||||
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
|
||||
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, ndims).construct_numpy_full(
|
||||
generator,
|
||||
context,
|
||||
&shape,
|
||||
fill_value_arg,
|
||||
None,
|
||||
);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
pub fn gen_ndarray_array<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let obj_ty = fun.0.args[0].ty;
|
||||
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
|
||||
|
||||
let copy_arg = if let Some(arg) =
|
||||
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
|
||||
{
|
||||
let copy_ty = fun.0.args[1].ty;
|
||||
arg.1.clone().to_basic_value_enum(context, generator, copy_ty)?
|
||||
} else {
|
||||
context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[1].default_value.as_ref().unwrap(),
|
||||
fun.0.args[1].ty,
|
||||
)
|
||||
};
|
||||
|
||||
// The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
|
||||
// the `ndims` of the function return type.
|
||||
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
let ndims = extract_ndims(&context.unifier, ndims);
|
||||
|
||||
let copy = generator.bool_to_i1(context, copy_arg.into_int_value());
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, context, fun.0.ret)
|
||||
.construct_numpy_array(generator, context, (obj_ty, obj_arg), copy, None)
|
||||
.atleast_nd(generator, context, ndims);
|
||||
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.eye`.
|
||||
pub fn gen_ndarray_eye<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let nrows_ty = fun.0.args[0].ty;
|
||||
let nrows_arg = args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)?;
|
||||
|
||||
let ncols_ty = fun.0.args[1].ty;
|
||||
let ncols_arg = if let Some(arg) =
|
||||
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
|
||||
{
|
||||
arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)
|
||||
} else {
|
||||
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
|
||||
}?;
|
||||
|
||||
let offset_ty = fun.0.args[2].ty;
|
||||
let offset_arg = if let Some(arg) =
|
||||
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
||||
{
|
||||
arg.1.clone().to_basic_value_enum(context, generator, offset_ty)
|
||||
} else {
|
||||
Ok(context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[2].default_value.as_ref().unwrap(),
|
||||
offset_ty,
|
||||
))
|
||||
}?;
|
||||
|
||||
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
|
||||
let llvm_usize = context.get_size_type();
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
|
||||
let nrows = context
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(nrows_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let ncols = context
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(ncols_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let offset = context
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(offset_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, 2)
|
||||
.construct_numpy_eye(generator, context, dtype, nrows, ncols, offset, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.identity`.
|
||||
pub fn gen_ndarray_identity<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let n_ty = fun.0.args[0].ty;
|
||||
let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?;
|
||||
|
||||
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
|
||||
|
||||
let llvm_usize = context.get_size_type();
|
||||
let llvm_dtype = context.get_llvm_type(generator, dtype);
|
||||
|
||||
let n = context
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(n_arg.into_int_value(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let ndarray = NDArrayType::new(context, llvm_dtype, 2)
|
||||
.construct_numpy_identity(generator, context, dtype, n, None);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.copy`.
|
||||
pub fn gen_ndarray_copy<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
_fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_some());
|
||||
assert!(args.is_empty());
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let this_arg =
|
||||
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
|
||||
|
||||
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
|
||||
.map_value(this_arg.into_pointer_value(), None);
|
||||
let ndarray = this.make_copy(generator, context);
|
||||
Ok(ndarray.as_base_value())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.fill`.
|
||||
pub fn gen_ndarray_fill<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<(), String> {
|
||||
assert!(obj.is_some());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let this_arg =
|
||||
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
|
||||
let value_ty = fun.0.args[0].ty;
|
||||
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
|
||||
|
||||
let this = NDArrayType::from_unifier_type(generator, context, this_ty)
|
||||
.map_value(this_arg.into_pointer_value(), None);
|
||||
this.fill(generator, context, value_arg);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.dot`.
|
||||
/// Calculate inner product of two vectors or literals
|
||||
/// For matrix multiplication use `np_matmul`
|
||||
///
|
||||
/// The input `NDArray` are flattened and treated as 1D
|
||||
/// The operation is equivalent to `np.dot(arr1.ravel(), arr2.ravel())`
|
||||
pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(x1_ty, x1): (Type, BasicValueEnum<'ctx>),
|
||||
(x2_ty, x2): (Type, BasicValueEnum<'ctx>),
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
const FN_NAME: &str = "ndarray_dot";
|
||||
|
||||
match (x1, x2) {
|
||||
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
|
||||
let a = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(n1, None);
|
||||
let b = NDArrayType::from_unifier_type(generator, ctx, x2_ty).map_value(n2, None);
|
||||
|
||||
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
|
||||
assert_eq!(a.get_type().ndims(), 1);
|
||||
assert_eq!(b.get_type().ndims(), 1);
|
||||
let common_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
|
||||
|
||||
// Check shapes.
|
||||
let a_size = a.size(ctx);
|
||||
let b_size = b.size(ctx);
|
||||
let same_shape =
|
||||
ctx.builder.build_int_compare(IntPredicate::EQ, a_size, b_size, "").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
same_shape,
|
||||
"0:ValueError",
|
||||
"shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)",
|
||||
[Some(a_size), Some(b_size), None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, common_dtype);
|
||||
|
||||
let result = ctx.builder.build_alloca(dtype_llvm, "np_dot_result").unwrap();
|
||||
ctx.builder.build_store(result, dtype_llvm.const_zero()).unwrap();
|
||||
|
||||
// Do dot product.
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("np_dot"),
|
||||
|generator, ctx| {
|
||||
let a_iter = NDIterType::new(ctx).construct(generator, ctx, a);
|
||||
let b_iter = NDIterType::new(ctx).construct(generator, ctx, b);
|
||||
Ok((a_iter, b_iter))
|
||||
},
|
||||
|_, ctx, (a_iter, _b_iter)| {
|
||||
// Only a_iter drives the condition, b_iter should have the same status.
|
||||
Ok(a_iter.has_element(ctx))
|
||||
},
|
||||
|_, ctx, _hooks, (a_iter, b_iter)| {
|
||||
let a_scalar = a_iter.get_scalar(ctx);
|
||||
let b_scalar = b_iter.get_scalar(ctx);
|
||||
|
||||
let old_result = ctx.builder.build_load(result, "").unwrap();
|
||||
let new_result: BasicValueEnum<'ctx> = match old_result {
|
||||
BasicValueEnum::IntValue(old_result) => {
|
||||
let a_scalar = a_scalar.into_int_value();
|
||||
let b_scalar = b_scalar.into_int_value();
|
||||
let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap();
|
||||
ctx.builder.build_int_add(old_result, x, "").unwrap().into()
|
||||
}
|
||||
|
||||
BasicValueEnum::FloatValue(old_result) => {
|
||||
let a_scalar = a_scalar.into_float_value();
|
||||
let b_scalar = b_scalar.into_float_value();
|
||||
let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap();
|
||||
ctx.builder.build_float_add(old_result, x, "").unwrap().into()
|
||||
}
|
||||
|
||||
_ => {
|
||||
panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype));
|
||||
}
|
||||
};
|
||||
|
||||
ctx.builder.build_store(result, new_result).unwrap();
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, (a_iter, b_iter)| {
|
||||
a_iter.next(ctx);
|
||||
b_iter.next(ctx);
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx.builder.build_load(result, "").unwrap())
|
||||
}
|
||||
|
||||
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
|
||||
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
|
||||
}
|
||||
|
||||
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
|
||||
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
|
||||
}
|
||||
|
||||
_ => codegen_unreachable!(
|
||||
ctx,
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
),
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,34 +1,41 @@
|
||||
use crate::{
|
||||
codegen::{
|
||||
concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenLLVMOptions,
|
||||
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
},
|
||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||
toplevel::{
|
||||
composer::TopLevelComposer, DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
|
||||
},
|
||||
typecheck::{
|
||||
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
|
||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::Arc,
|
||||
};
|
||||
|
||||
use indexmap::IndexMap;
|
||||
use indoc::indoc;
|
||||
use inkwell::{
|
||||
targets::{InitializationConfig, Target},
|
||||
OptimizationLevel
|
||||
OptimizationLevel,
|
||||
};
|
||||
use nac3parser::{
|
||||
ast::{fold::Fold, StrRef},
|
||||
ast::{fold::Fold, FileName, StrRef},
|
||||
parser::parse_program,
|
||||
};
|
||||
use parking_lot::RwLock;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::{
|
||||
concrete_type::ConcreteTypeStore,
|
||||
types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
|
||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
|
||||
DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
};
|
||||
use crate::{
|
||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||
toplevel::{
|
||||
composer::{ComposerConfig, TopLevelComposer},
|
||||
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
|
||||
},
|
||||
typecheck::{
|
||||
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
|
||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
|
||||
struct Resolver {
|
||||
id_to_type: HashMap<StrRef, Type>,
|
||||
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
|
||||
class_names: HashMap<StrRef, Type>,
|
||||
}
|
||||
|
||||
impl Resolver {
|
||||
@ -52,13 +59,14 @@ impl SymbolResolver for Resolver {
|
||||
_: &PrimitiveStore,
|
||||
str: StrRef,
|
||||
) -> Result<Type, String> {
|
||||
self.id_to_type.get(&str).cloned().ok_or_else(|| format!("cannot find symbol `{}`", str))
|
||||
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`"))
|
||||
}
|
||||
|
||||
fn get_symbol_value<'ctx, 'a>(
|
||||
fn get_symbol_value<'ctx>(
|
||||
&self,
|
||||
_: StrRef,
|
||||
_: &mut CodeGenContext<'ctx, 'a>,
|
||||
_: &mut CodeGenContext<'ctx, '_>,
|
||||
_: &mut dyn CodeGenerator,
|
||||
) -> Option<ValueEnum<'ctx>> {
|
||||
unimplemented!()
|
||||
}
|
||||
@ -67,10 +75,8 @@ impl SymbolResolver for Resolver {
|
||||
self.id_to_def
|
||||
.read()
|
||||
.get(&id)
|
||||
.cloned()
|
||||
.ok_or_else(|| HashSet::from([
|
||||
format!("cannot find symbol `{}`", id),
|
||||
]))
|
||||
.copied()
|
||||
.ok_or_else(|| HashSet::from([format!("cannot find symbol `{id}`")]))
|
||||
}
|
||||
|
||||
fn get_string_id(&self, _: &str) -> i32 {
|
||||
@ -89,28 +95,37 @@ fn test_primitives() {
|
||||
d = a if c == 1 else 0
|
||||
return d
|
||||
"};
|
||||
let statements = parse_program(source, Default::default()).unwrap();
|
||||
let statements = parse_program(source, FileName::default()).unwrap();
|
||||
|
||||
let composer: TopLevelComposer = Default::default();
|
||||
let context = inkwell::context::Context::create();
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
unifier.top_level = Some(top_level.clone());
|
||||
|
||||
let resolver = Arc::new(Resolver {
|
||||
id_to_type: HashMap::new(),
|
||||
id_to_def: RwLock::new(HashMap::new()),
|
||||
class_names: Default::default(),
|
||||
}) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
let resolver =
|
||||
Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
|
||||
as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
|
||||
let signature = FunSignature {
|
||||
args: vec![
|
||||
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
|
||||
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
|
||||
FuncArg {
|
||||
name: "a".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "b".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
],
|
||||
ret: primitives.int32,
|
||||
vars: HashMap::new(),
|
||||
vars: VarMap::new(),
|
||||
};
|
||||
|
||||
let mut store = ConcreteTypeStore::new();
|
||||
@ -125,12 +140,13 @@ fn test_primitives() {
|
||||
};
|
||||
let mut virtual_checks = Vec::new();
|
||||
let mut calls = HashMap::new();
|
||||
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].iter().cloned().collect();
|
||||
let mut identifiers: HashMap<_, _> =
|
||||
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||
let mut inferencer = Inferencer {
|
||||
top_level: &top_level,
|
||||
function_data: &mut function_data,
|
||||
unifier: &mut unifier,
|
||||
variable_mapping: Default::default(),
|
||||
variable_mapping: HashMap::default(),
|
||||
primitives: &primitives,
|
||||
virtual_checks: &mut virtual_checks,
|
||||
calls: &mut calls,
|
||||
@ -154,7 +170,7 @@ fn test_primitives() {
|
||||
});
|
||||
|
||||
let task = CodeGenTask {
|
||||
subst: Default::default(),
|
||||
subst: Vec::default(),
|
||||
symbol_name: "testing".into(),
|
||||
body: Arc::new(statements),
|
||||
unifier_index: 0,
|
||||
@ -186,6 +202,8 @@ fn test_primitives() {
|
||||
let expected = indoc! {"
|
||||
; ModuleID = 'test'
|
||||
source_filename = \"test\"
|
||||
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
|
||||
target triple = \"x86_64-unknown-linux-gnu\"
|
||||
|
||||
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
|
||||
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
|
||||
@ -225,12 +243,7 @@ fn test_primitives() {
|
||||
opt_level: OptimizationLevel::Default,
|
||||
target: CodeGenTargetMachineOptions::from_host_triple(),
|
||||
};
|
||||
let (registry, handles) = WorkerRegistry::create_workers(
|
||||
threads,
|
||||
top_level,
|
||||
&llvm_options,
|
||||
&f
|
||||
);
|
||||
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
|
||||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
}
|
||||
@ -241,23 +254,29 @@ fn test_simple_call() {
|
||||
a = foo(a)
|
||||
return a * 2
|
||||
"};
|
||||
let statements_1 = parse_program(source_1, Default::default()).unwrap();
|
||||
let statements_1 = parse_program(source_1, FileName::default()).unwrap();
|
||||
|
||||
let source_2 = indoc! { "
|
||||
return a + 1
|
||||
"};
|
||||
let statements_2 = parse_program(source_2, Default::default()).unwrap();
|
||||
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
|
||||
|
||||
let composer: TopLevelComposer = Default::default();
|
||||
let context = inkwell::context::Context::create();
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
unifier.top_level = Some(top_level.clone());
|
||||
|
||||
let signature = FunSignature {
|
||||
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
|
||||
args: vec![FuncArg {
|
||||
name: "a".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: primitives.int32,
|
||||
vars: HashMap::new(),
|
||||
vars: VarMap::new(),
|
||||
};
|
||||
let fun_ty = unifier.add_ty(TypeEnum::TFunc(signature.clone()));
|
||||
let mut store = ConcreteTypeStore::new();
|
||||
@ -278,11 +297,7 @@ fn test_simple_call() {
|
||||
loc: None,
|
||||
})));
|
||||
|
||||
let resolver = Resolver {
|
||||
id_to_type: HashMap::new(),
|
||||
id_to_def: RwLock::new(HashMap::new()),
|
||||
class_names: Default::default(),
|
||||
};
|
||||
let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
|
||||
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
|
||||
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
|
||||
@ -294,7 +309,7 @@ fn test_simple_call() {
|
||||
unreachable!()
|
||||
}
|
||||
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
|
||||
let threads = vec![DefaultCodeGenerator::new("test".into(), context.i64_type()).into()];
|
||||
let mut function_data = FunctionData {
|
||||
resolver: resolver.clone(),
|
||||
bound_variables: Vec::new(),
|
||||
@ -302,12 +317,13 @@ fn test_simple_call() {
|
||||
};
|
||||
let mut virtual_checks = Vec::new();
|
||||
let mut calls = HashMap::new();
|
||||
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].iter().cloned().collect();
|
||||
let mut identifiers: HashMap<_, _> =
|
||||
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||
let mut inferencer = Inferencer {
|
||||
top_level: &top_level,
|
||||
function_data: &mut function_data,
|
||||
unifier: &mut unifier,
|
||||
variable_mapping: Default::default(),
|
||||
variable_mapping: HashMap::default(),
|
||||
primitives: &primitives,
|
||||
virtual_checks: &mut virtual_checks,
|
||||
calls: &mut calls,
|
||||
@ -336,11 +352,11 @@ fn test_simple_call() {
|
||||
&mut *top_level.definitions.read()[foo_id].write()
|
||||
{
|
||||
instance_to_stmt.insert(
|
||||
"".to_string(),
|
||||
String::new(),
|
||||
FunInstance {
|
||||
body: Arc::new(statements_2),
|
||||
calls: Arc::new(inferencer.calls.clone()),
|
||||
subst: Default::default(),
|
||||
subst: IndexMap::default(),
|
||||
unifier_id: 0,
|
||||
},
|
||||
);
|
||||
@ -356,7 +372,7 @@ fn test_simple_call() {
|
||||
});
|
||||
|
||||
let task = CodeGenTask {
|
||||
subst: Default::default(),
|
||||
subst: Vec::default(),
|
||||
symbol_name: "testing".to_string(),
|
||||
body: Arc::new(statements_1),
|
||||
calls: Arc::new(calls1),
|
||||
@ -370,6 +386,8 @@ fn test_simple_call() {
|
||||
let expected = indoc! {"
|
||||
; ModuleID = 'test'
|
||||
source_filename = \"test\"
|
||||
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
|
||||
target triple = \"x86_64-unknown-linux-gnu\"
|
||||
|
||||
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
|
||||
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
|
||||
@ -415,12 +433,39 @@ fn test_simple_call() {
|
||||
opt_level: OptimizationLevel::Default,
|
||||
target: CodeGenTargetMachineOptions::from_host_triple(),
|
||||
};
|
||||
let (registry, handles) = WorkerRegistry::create_workers(
|
||||
threads,
|
||||
top_level,
|
||||
&llvm_options,
|
||||
&f
|
||||
);
|
||||
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
|
||||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_list_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_list = ListType::new_with_generator(&generator, &ctx, llvm_i32.into());
|
||||
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_range_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
|
||||
let llvm_range = RangeType::new(&ctx);
|
||||
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), ctx.i64_type());
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new_with_generator(&generator, &ctx, llvm_i32.into(), 2);
|
||||
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
372
nac3core/src/codegen/types/list.rs
Normal file
372
nac3core/src/codegen/types/list.rs
Normal file
@ -0,0 +1,372 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
types::structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
values::{ListValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Proxy type for a `list` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ListType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
item: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ListStructFields<'ctx> {
|
||||
/// Array pointer to content.
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub items: StructField<'ctx, PointerValue<'ctx>>,
|
||||
|
||||
/// Number of items in the array.
|
||||
#[value_type(usize)]
|
||||
pub len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListStructFields<'ctx> {
|
||||
#[must_use]
|
||||
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
ListStructFields {
|
||||
items: StructField::create(
|
||||
&mut counter,
|
||||
"items",
|
||||
item.ptr_type(AddressSpace::default()),
|
||||
),
|
||||
len: StructField::create(&mut counter, "len", llvm_usize),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ListType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
let fields = ListStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"list",
|
||||
&[(fields.items.name(), &|ty| {
|
||||
if ty.is_pointer_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected T* for `list.items`, got {ty}"))
|
||||
}
|
||||
})],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
|
||||
ListStructFields::new_typed(item, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`ListType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
|
||||
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `List`.
|
||||
#[must_use]
|
||||
fn llvm_type(
|
||||
ctx: &'ctx Context,
|
||||
element_type: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let element_type = element_type.map_or(llvm_usize.into(), |ty| ty.as_basic_type_enum());
|
||||
|
||||
let field_tys =
|
||||
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
element_type: Option<BasicTypeEnum<'ctx>>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
|
||||
|
||||
Self { ty: llvm_list, item: element_type, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, element_type: &impl BasicType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, Some(element_type.as_basic_type_enum()), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
element_type: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, Some(element_type.as_basic_type_enum()), generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`] with an unknown element type.
|
||||
#[must_use]
|
||||
pub fn new_untyped(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, None, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ListType`] with an unknown element type.
|
||||
#[must_use]
|
||||
pub fn new_untyped_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, None, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`ListType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
// Check unifier type and extract `item_type`
|
||||
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
|
||||
TypeEnum::TObj { obj_id, params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
iter_type_vars(params).next().unwrap().ty
|
||||
}
|
||||
|
||||
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
|
||||
};
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
|
||||
None
|
||||
} else {
|
||||
Some(ctx.get_llvm_type(generator, elem_type))
|
||||
};
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_elem_type, llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`ListType`] from a [`PointerType`].
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
let ctx = ptr_ty.get_context();
|
||||
|
||||
// We are just searching for the index off a field - Slot an arbitrary element type in.
|
||||
let item_field_idx =
|
||||
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
|
||||
let item = unsafe {
|
||||
ptr_ty
|
||||
.get_element_type()
|
||||
.into_struct_type()
|
||||
.get_field_type_at_index_unchecked(item_field_idx)
|
||||
.into_pointer_type()
|
||||
.get_element_type()
|
||||
};
|
||||
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
|
||||
panic!(
|
||||
"Expected BasicTypeEnum for list element type, got {}",
|
||||
ptr_ty.get_element_type().print_to_string()
|
||||
)
|
||||
});
|
||||
|
||||
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `list` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Returns the element type of this `list` type.
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
|
||||
self.item
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
|
||||
///
|
||||
/// The returned list will contain:
|
||||
///
|
||||
/// - `data`: Allocated with `len` number of elements.
|
||||
/// - `len`: Initialized to the value of `len` passed to this function.
|
||||
#[must_use]
|
||||
pub fn construct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
|
||||
|
||||
// Generate a runtime assertion if allocating a non-empty list with unknown element type
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
|
||||
let len_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
len_eqz,
|
||||
"0:AssertionError",
|
||||
"Cannot allocate a non-empty list with unknown element type",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
let plist = self.alloca_var(generator, ctx, name);
|
||||
plist.store_size(ctx, len);
|
||||
|
||||
let item = self.item.unwrap_or(self.llvm_usize.into());
|
||||
plist.create_data(ctx, item, None);
|
||||
|
||||
plist
|
||||
}
|
||||
|
||||
/// Convenience function for creating a list with zero elements.
|
||||
///
|
||||
/// This function is preferred over [`ListType::construct`] if the length is known to always be
|
||||
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
|
||||
/// list is being allocated.
|
||||
///
|
||||
/// The returned list will contain:
|
||||
///
|
||||
/// - `data`: Initialized to `(T*) 0`.
|
||||
/// - `len`: Initialized to `0`.
|
||||
#[must_use]
|
||||
pub fn construct_empty<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let plist = self.alloca_var(generator, ctx, name);
|
||||
|
||||
plist.store_size(ctx, self.llvm_usize.const_zero());
|
||||
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
|
||||
|
||||
plist
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ListValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ListValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ListType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
125
nac3core/src/codegen/types/mod.rs
Normal file
125
nac3core/src/codegen/types/mod.rs
Normal file
@ -0,0 +1,125 @@
|
||||
//! This module contains abstraction over all intrinsic composite types of NAC3.
|
||||
//!
|
||||
//! # `raw_alloca` vs `alloca` vs `construct`
|
||||
//!
|
||||
//! There are three ways of creating a new object instance using the abstractions provided by this
|
||||
//! module.
|
||||
//!
|
||||
//! - `raw_alloca`: Allocates the object on the stack, returning an instance of
|
||||
//! [`impl BasicValue`][inkwell::values::BasicValue]. This is similar to a `malloc` expression in
|
||||
//! C++ but the object is allocated on the stack.
|
||||
//! - `alloca`: Similar to `raw_alloca`, but also wraps the allocated object with
|
||||
//! [`<Self as ProxyType<'ctx>>::Value`][ProxyValue], and returns the wrapped object. The returned
|
||||
//! object will not initialize any value or fields. This is similar to a type-safe `malloc`
|
||||
//! expression in C++ but the object is allocated on the stack.
|
||||
//! - `construct`: Similar to `alloca`, but performs some initialization on the value or fields of
|
||||
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated
|
||||
//! on the stack.
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::BasicType,
|
||||
values::{IntValue, PointerValue},
|
||||
};
|
||||
|
||||
use super::{
|
||||
values::{ArraySliceValue, ProxyValue},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
pub use list::*;
|
||||
pub use range::*;
|
||||
pub use tuple::*;
|
||||
|
||||
mod list;
|
||||
pub mod ndarray;
|
||||
mod range;
|
||||
pub mod structure;
|
||||
mod tuple;
|
||||
pub mod utils;
|
||||
|
||||
/// A LLVM type that is used to represent a corresponding type in NAC3.
|
||||
pub trait ProxyType<'ctx>: Into<Self::Base> {
|
||||
/// The LLVM type of which values of this type possess. This is usually a
|
||||
/// [LLVM pointer type][PointerType] for any non-primitive types.
|
||||
type Base: BasicType<'ctx>;
|
||||
|
||||
/// The type of values represented by this type.
|
||||
type Value: ProxyValue<'ctx, Type = Self>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String>;
|
||||
|
||||
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String>;
|
||||
|
||||
/// Returns the type that should be used in `alloca` IR statements.
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx>;
|
||||
|
||||
/// Creates a new value of this type by invoking `alloca` at the current builder location,
|
||||
/// returning a [`PointerValue`] instance representing the allocated value.
|
||||
fn raw_alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder
|
||||
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
|
||||
/// returning a [`PointerValue`] instance representing the allocated value.
|
||||
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
|
||||
}
|
||||
|
||||
/// Creates a new array value of this type by invoking `alloca` at the current builder location,
|
||||
/// returning an [`ArraySliceValue`] encapsulating the resulting array.
|
||||
fn array_alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
ArraySliceValue::from_ptr_val(
|
||||
ctx.builder
|
||||
.build_array_alloca(
|
||||
self.alloca_type().as_basic_type_enum(),
|
||||
size,
|
||||
name.unwrap_or_default(),
|
||||
)
|
||||
.unwrap(),
|
||||
size,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
|
||||
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
|
||||
fn array_alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
generator
|
||||
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Returns the [base type][Self::Base] of this proxy.
|
||||
fn as_base_type(&self) -> Self::Base;
|
||||
}
|
240
nac3core/src/codegen/types/ndarray/array.rs
Normal file
240
nac3core/src/codegen/types/ndarray/array.rs
Normal file
@ -0,0 +1,240 @@
|
||||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, IntValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt,
|
||||
stmt::gen_if_else_expr_callback,
|
||||
types::{ndarray::NDArrayType, ListType, ProxyType},
|
||||
values::{
|
||||
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
|
||||
TypedArrayLikeAdapter, TypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
|
||||
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list_ty: Type,
|
||||
) -> (BasicTypeEnum<'ctx>, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
|
||||
|
||||
(ctx.get_llvm_type(generator, dtype), ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Implementation of `np_array(<list>, copy=True)`
|
||||
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
assert!(self.ndims >= ndims_int);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let list_value = list.as_i8_list(ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = self.llvm_usize.const_int(ndims_int, false);
|
||||
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
|
||||
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
|
||||
let shape = TypedArrayLikeAdapter::from(
|
||||
shape,
|
||||
|_, _, val| val.into_int_value(),
|
||||
|_, _, val| val.into(),
|
||||
);
|
||||
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, &shape,
|
||||
);
|
||||
|
||||
let ndarray =
|
||||
Self::new(ctx, dtype, ndims_int).construct_uninitialized(generator, ctx, name);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
|
||||
// Copy all contents from the list.
|
||||
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(ctx, list_value, ndarray);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=None)`
|
||||
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
assert_eq!(ndims, 1);
|
||||
assert!(self.ndims >= ndims);
|
||||
assert_eq!(dtype, self.dtype);
|
||||
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray = Self::new(ctx, dtype, 1).construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Set data
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
|
||||
.unwrap();
|
||||
ndarray.store_data(ctx, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.shape();
|
||||
let list_len = list.load_size(ctx, None);
|
||||
unsafe {
|
||||
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
|
||||
}
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<list>, copy=copy)`
|
||||
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(list_ty, list): (Type, ListValue<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
|
||||
generator,
|
||||
ctx,
|
||||
(list_ty, list),
|
||||
name,
|
||||
);
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
NDArrayType::new(ctx, dtype, ndims).map_value(ndarray, None)
|
||||
}
|
||||
|
||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
||||
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(ndarray.get_type().dtype, self.dtype);
|
||||
assert!(self.ndims >= ndarray.get_type().ndims);
|
||||
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
|
||||
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.as_base_value()))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
ndarray.get_type().map_value(ndarray_val, name)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like
|
||||
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
|
||||
///
|
||||
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
|
||||
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
|
||||
/// with the exact number of dimensions is needed.
|
||||
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(object_ty, object): (Type, BasicValueEnum<'ctx>),
|
||||
copy: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
match &*ctx.unifier.get_ty_immutable(object_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
|
||||
.map_value(object.into_pointer_value(), None);
|
||||
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
|
||||
}
|
||||
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
188
nac3core/src/codegen/types/ndarray/broadcast.rs
Normal file
188
nac3core/src/codegen/types/ndarray/broadcast.rs
Normal file
@ -0,0 +1,188 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
},
|
||||
values::{ndarray::ShapeEntryValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ShapeEntryType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ShapeEntryStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ShapeEntryType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDArray",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> ShapeEntryStructFields<'ctx> {
|
||||
ShapeEntryStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`ShapeEntryStructFields::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ShapeEntryType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ShapeEntryType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ShapeEntryValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ShapeEntryValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ShapeEntryType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
258
nac3core/src/codegen/types/ndarray/contiguous.rs
Normal file
258
nac3core/src/codegen/types/ndarray/contiguous.rs
Normal file
@ -0,0 +1,258 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
types::{
|
||||
structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
ProxyType,
|
||||
},
|
||||
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::numpy::unpack_ndarray_var_tys,
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ContiguousNDArrayType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct ContiguousNDArrayStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
|
||||
#[must_use]
|
||||
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
ContiguousNDArrayStructFields {
|
||||
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
|
||||
shape: StructField::create(
|
||||
&mut counter,
|
||||
"shape",
|
||||
llvm_usize.ptr_type(AddressSpace::default()),
|
||||
),
|
||||
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ContiguousNDArrayType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"ContiguousNDArray",
|
||||
&[(fields.data.name(), &|ty| {
|
||||
if ty.is_pointer_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
|
||||
}
|
||||
})],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> ContiguousNDArrayStructFields<'ctx> {
|
||||
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDArrayType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
|
||||
Self::fields(self.item, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
|
||||
#[must_use]
|
||||
fn llvm_type(
|
||||
ctx: &'ctx Context,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
|
||||
|
||||
Self { ty: llvm_cndarray, item, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ContiguousNDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, item: &impl BasicType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, item.as_basic_type_enum(), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`ContiguousNDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, item, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_dtype, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
item: BasicTypeEnum<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, item, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
|
||||
/// type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
|
||||
/// type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ContiguousNDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.item,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = ContiguousNDArrayValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
236
nac3core/src/codegen/types/ndarray/factory.rs
Normal file
236
nac3core/src/codegen/types/ndarray/factory.rs
Normal file
@ -0,0 +1,236 @@
|
||||
use inkwell::{
|
||||
values::{BasicValueEnum, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use super::NDArrayType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the one value in `np.ones()` of a `dtype`.
|
||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Create an ndarray like
|
||||
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
|
||||
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
// Validate `shape`
|
||||
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
|
||||
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
|
||||
unsafe { ndarray.create_data(generator, ctx) };
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
|
||||
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
|
||||
ndarray.fill(generator, ctx, fill_value);
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
|
||||
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
|
||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
|
||||
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
|
||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
nrows: IntValue<'ctx>,
|
||||
ncols: IntValue<'ctx>,
|
||||
offset: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(
|
||||
ctx.get_llvm_type(generator, dtype),
|
||||
self.dtype,
|
||||
"Expected LLVM dtype={} but got {}",
|
||||
self.dtype.print_to_string(),
|
||||
ctx.get_llvm_type(generator, dtype).print_to_string(),
|
||||
);
|
||||
assert_eq!(nrows.get_type(), self.llvm_usize);
|
||||
assert_eq!(ncols.get_type(), self.llvm_usize);
|
||||
assert_eq!(offset.get_type(), self.llvm_usize);
|
||||
|
||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||
|
||||
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
|
||||
|
||||
// Create data and make the matrix like look np.eye()
|
||||
unsafe {
|
||||
ndarray.create_data(generator, ctx);
|
||||
}
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _, nditer| {
|
||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||
// and this loop would not execute.
|
||||
|
||||
let indices = nditer.get_indices();
|
||||
|
||||
let row_i = unsafe {
|
||||
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
|
||||
};
|
||||
let col_i = unsafe {
|
||||
indices.get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&self.llvm_usize.const_int(1, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
let be_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
|
||||
col_i,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
|
||||
|
||||
let p = nditer.get_pointer(ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like
|
||||
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
|
||||
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
size: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let offset = self.llvm_usize.const_zero();
|
||||
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
|
||||
}
|
||||
}
|
216
nac3core/src/codegen/types/ndarray/indexing.rs
Normal file
216
nac3core/src/codegen/types/ndarray/indexing.rs
Normal file
@ -0,0 +1,216 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::{NDIndexValue, RustNDIndex},
|
||||
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDIndexType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDIndexStructFields<'ctx> {
|
||||
#[value_type(i8_type())]
|
||||
pub type_: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIndexType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!(
|
||||
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
|
||||
));
|
||||
};
|
||||
|
||||
let fields = NDIndexStructFields::new(ctx, llvm_usize);
|
||||
|
||||
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> NDIndexStructFields<'ctx> {
|
||||
NDIndexStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
|
||||
Self::fields(self.ty.get_context(), self.llvm_usize)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_ndindex, llvm_usize }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
|
||||
#[must_use]
|
||||
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_ndindices: &[RustNDIndex<'ctx>],
|
||||
) -> ArraySliceValue<'ctx> {
|
||||
// Allocate the LLVM ndindices.
|
||||
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
|
||||
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
|
||||
|
||||
// Initialize all of them.
|
||||
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
||||
let pndindex = unsafe {
|
||||
ndindices.ptr_offset_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
in_ndindex.write_to_ndindex(
|
||||
generator,
|
||||
ctx,
|
||||
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
|
||||
);
|
||||
}
|
||||
|
||||
ndindices
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDIndexValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDIndexType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
183
nac3core/src/codegen/types/ndarray/map.rs
Normal file
183
nac3core/src/codegen/types/ndarray/map.rs
Normal file
@ -0,0 +1,183 @@
|
||||
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
stmt::gen_for_callback,
|
||||
types::{
|
||||
ndarray::{NDArrayType, NDIterType},
|
||||
ProxyType,
|
||||
},
|
||||
values::{
|
||||
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
|
||||
ArrayLikeValue, ProxyValue,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
|
||||
/// elementwise.
|
||||
///
|
||||
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
|
||||
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
|
||||
/// result of the elementwise operation.
|
||||
///
|
||||
/// `out` specifies whether the result should be a new ndarray or to be written an existing
|
||||
/// ndarray.
|
||||
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarrays: &[NDArrayValue<'ctx>],
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Broadcast inputs
|
||||
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
|
||||
|
||||
let out_ndarray = match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray = NDArrayType::new(ctx, dtype, broadcast_result.ndims)
|
||||
.construct_uninitialized(generator, ctx, None);
|
||||
result_ndarray.copy_shape_from_array(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_result.shape.base_ptr(ctx, generator),
|
||||
);
|
||||
unsafe {
|
||||
result_ndarray.create_data(generator, ctx);
|
||||
}
|
||||
result_ndarray
|
||||
}
|
||||
|
||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||
// Use an existing ndarray.
|
||||
|
||||
// Check that its shape is compatible with the broadcast shape.
|
||||
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
|
||||
result_ndarray
|
||||
}
|
||||
};
|
||||
|
||||
// Map element-wise and store results into `mapped_ndarray`.
|
||||
let nditer = NDIterType::new(ctx).construct(generator, ctx, out_ndarray);
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("broadcast_starmap"),
|
||||
|generator, ctx| {
|
||||
// Create NDIters for all broadcasted input ndarrays.
|
||||
let other_nditers = broadcast_result
|
||||
.ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| NDIterType::new(ctx).construct(generator, ctx, *ndarray))
|
||||
.collect_vec();
|
||||
Ok((nditer, other_nditers))
|
||||
},
|
||||
|_, ctx, (out_nditer, _in_nditers)| {
|
||||
// We can simply use `out_nditer`'s `has_element()`.
|
||||
// `in_nditers`' `has_element()`s should return the same value.
|
||||
Ok(out_nditer.has_element(ctx))
|
||||
},
|
||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||
// and write to `out_ndarray`.
|
||||
let in_scalars =
|
||||
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
|
||||
|
||||
let result = mapping(generator, ctx, &in_scalars)?;
|
||||
|
||||
let p = out_nditer.get_pointer(ctx);
|
||||
ctx.builder.build_store(p, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, (out_nditer, in_nditers)| {
|
||||
// Advance all iterators
|
||||
out_nditer.next(ctx);
|
||||
in_nditers.iter().for_each(|nditer| nditer.next(ctx));
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(out_ndarray)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
|
||||
/// scalar.
|
||||
///
|
||||
/// This function is very helpful when implementing NumPy functions that takes on either scalars
|
||||
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
|
||||
/// or a scalar if all its inputs are all scalars.
|
||||
///
|
||||
/// For example ,this function can be used to implement `np.add`, which has the following
|
||||
/// behaviors:
|
||||
///
|
||||
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
|
||||
/// converted into an ndarray and broadcasted.
|
||||
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
|
||||
/// ndarray; there is broadcasting.
|
||||
///
|
||||
/// ## Details:
|
||||
///
|
||||
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
|
||||
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||
///
|
||||
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
|
||||
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
|
||||
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: &[ScalarOrNDArray<'ctx>],
|
||||
ret_dtype: BasicTypeEnum<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Check if all inputs are Scalars
|
||||
let all_scalars: Option<Vec<_>> =
|
||||
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
|
||||
|
||||
if let Some(scalars) = all_scalars {
|
||||
let scalars = scalars.iter().copied().collect_vec();
|
||||
let value = mapping(generator, ctx, &scalars)?;
|
||||
|
||||
Ok(ScalarOrNDArray::Scalar(value))
|
||||
} else {
|
||||
// Promote all input to ndarrays and map through them.
|
||||
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||
let ndarray = NDArrayType::new_broadcast(
|
||||
ctx,
|
||||
ret_dtype,
|
||||
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
|
||||
)
|
||||
.broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&inputs,
|
||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||
mapping,
|
||||
)?;
|
||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||
}
|
||||
}
|
||||
}
|
486
nac3core/src/codegen/types/ndarray/mod.rs
Normal file
486
nac3core/src/codegen/types/ndarray/mod.rs
Normal file
@ -0,0 +1,486 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{BasicValue, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::{
|
||||
structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
ProxyType,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{
|
||||
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
},
|
||||
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
pub use broadcast::*;
|
||||
pub use contiguous::*;
|
||||
pub use indexing::*;
|
||||
pub use nditer::*;
|
||||
|
||||
mod array;
|
||||
mod broadcast;
|
||||
mod contiguous;
|
||||
pub mod factory;
|
||||
mod indexing;
|
||||
mod map;
|
||||
mod nditer;
|
||||
|
||||
/// Proxy type for a `ndarray` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDArrayType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDArrayStructFields<'ctx> {
|
||||
/// The size of each `NDArray` element in bytes.
|
||||
#[value_type(usize)]
|
||||
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// Number of dimensions in the array.
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// Pointer to an array containing the shape of the `NDArray`.
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// Pointer to an array indicating the number of bytes between each element at a dimension
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub strides: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// Pointer to an array containing the array data
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
||||
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDArray",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(
|
||||
ctx: impl AsContextRef<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> NDArrayStructFields<'ctx> {
|
||||
NDArrayStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDArrayType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>, ndims: u64) -> Self {
|
||||
Self::new_impl(ctx.ctx, dtype, ndims, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, dtype, ndims, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
|
||||
/// `ndarray` operands.
|
||||
#[must_use]
|
||||
pub fn new_broadcast(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
inputs: &[NDArrayType<'ctx>],
|
||||
) -> Self {
|
||||
assert!(!inputs.is_empty());
|
||||
|
||||
Self::new_impl(
|
||||
ctx.ctx,
|
||||
dtype,
|
||||
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
|
||||
ctx.get_size_type(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
|
||||
/// `ndarray` operands.
|
||||
#[must_use]
|
||||
pub fn new_broadcast_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
inputs: &[NDArrayType<'ctx>],
|
||||
) -> Self {
|
||||
assert!(!inputs.is_empty());
|
||||
|
||||
Self::new_impl(
|
||||
ctx,
|
||||
dtype,
|
||||
inputs.iter().map(NDArrayType::ndims).max().unwrap(),
|
||||
generator.get_size_type(ctx),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
|
||||
#[must_use]
|
||||
pub fn new_unsized(ctx: &CodeGenContext<'ctx, '_>, dtype: BasicTypeEnum<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, dtype, 0, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
|
||||
#[must_use]
|
||||
pub fn new_unsized_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, dtype, 0, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
|
||||
Self::new_impl(ctx.ctx, llvm_dtype, ndims, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
ndims: u64,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Returns the element type of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
|
||||
self.dtype
|
||||
}
|
||||
|
||||
/// Returns the number of dimensions of this `ndarray` type.
|
||||
#[must_use]
|
||||
pub fn ndims(&self) -> u64 {
|
||||
self.ndims
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
|
||||
///
|
||||
/// - `data`: uninitialized.
|
||||
/// - `itemsize`: set to the size of `self.dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
|
||||
/// values.
|
||||
#[must_use]
|
||||
fn construct_impl<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndarray = self.alloca_var(generator, ctx, name);
|
||||
|
||||
let itemsize = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
|
||||
.unwrap();
|
||||
ndarray.store_itemsize(ctx, itemsize);
|
||||
|
||||
ndarray.store_ndims(ctx, ndims);
|
||||
|
||||
ndarray.create_shape(ctx, self.llvm_usize, ndims);
|
||||
ndarray.create_strides(ctx, self.llvm_usize, ndims);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
|
||||
/// instance.
|
||||
///
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: uninitialized.
|
||||
/// - `itemsize`: set to the size of `dtype`.
|
||||
/// - `ndims`: set to the value of `self.ndims`.
|
||||
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
|
||||
/// values.
|
||||
#[must_use]
|
||||
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let ndims = self.llvm_usize.const_int(self.ndims, false);
|
||||
|
||||
self.construct_impl(generator, ctx, ndims, name)
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
|
||||
#[must_use]
|
||||
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &[u64],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Write shape
|
||||
let ndarray_shape = ndarray.shape();
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
let dim = llvm_usize.const_int(*dim, false);
|
||||
unsafe {
|
||||
ndarray_shape.set_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
dim,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
|
||||
#[must_use]
|
||||
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: &[IntValue<'ctx>],
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
assert_eq!(shape.len() as u64, self.ndims);
|
||||
|
||||
let ndarray = Self::new(ctx, self.dtype, shape.len() as u64)
|
||||
.construct_uninitialized(generator, ctx, name);
|
||||
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Write shape
|
||||
let ndarray_shape = ndarray.shape();
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
assert_eq!(
|
||||
dim.get_type(),
|
||||
llvm_usize,
|
||||
"Expected {} but got {}",
|
||||
llvm_usize.print_to_string(),
|
||||
dim.get_type().print_to_string()
|
||||
);
|
||||
unsafe {
|
||||
ndarray_shape.set_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
*dim,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an unsized ndarray to contain `value`.
|
||||
#[must_use]
|
||||
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: &impl BasicValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> NDArrayValue<'ctx> {
|
||||
let value = value.as_basic_value_enum();
|
||||
|
||||
assert_eq!(value.get_type(), self.dtype);
|
||||
assert_eq!(self.ndims, 0);
|
||||
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
|
||||
ctx.builder.build_store(data, value).unwrap();
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray =
|
||||
Self::new_unsized(ctx, value.get_type()).construct_uninitialized(generator, ctx, name);
|
||||
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`NDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.dtype,
|
||||
self.ndims,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDArrayValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDArrayType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
244
nac3core/src/codegen/types/ndarray/nditer.rs
Normal file
244
nac3core/src/codegen/types/ndarray/nditer.rs
Normal file
@ -0,0 +1,244 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::codegen::{
|
||||
irrt,
|
||||
types::structure::{check_struct_type_matches_fields, StructField, StructFields},
|
||||
values::{
|
||||
ndarray::{NDArrayValue, NDIterValue},
|
||||
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAdapter,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct NDIterType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDIterStructFields<'ctx> {
|
||||
#[value_type(usize)]
|
||||
pub ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub strides: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
pub indices: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub nth: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
pub element: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub size: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIterType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `nditer` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `NDIter` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
Self::fields(ctx, llvm_usize),
|
||||
llvm_ndarray_ty,
|
||||
"NDIter",
|
||||
&[],
|
||||
)
|
||||
}
|
||||
|
||||
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
|
||||
#[must_use]
|
||||
fn fields(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> NDIterStructFields<'ctx> {
|
||||
NDIterStructFields::new(ctx, llvm_usize)
|
||||
}
|
||||
|
||||
/// See [`NDIterType::fields`].
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDIterStructFields<'ctx> {
|
||||
Self::fields(ctx, self.llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of an `NDIter`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys =
|
||||
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_nditer = Self::llvm_type(ctx, llvm_usize);
|
||||
|
||||
Self { ty: llvm_nditer, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDIter`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`NDIter`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`NDIterType`] from a [`PointerType`] representing an `NDIter`.
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the type of the `size` field of this `nditer` type.
|
||||
#[must_use]
|
||||
pub fn size_type(&self) -> IntType<'ctx> {
|
||||
self.llvm_usize
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocate an [`NDIter`] that iterates through the given `ndarray`.
|
||||
#[must_use]
|
||||
pub fn construct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let nditer = self.raw_alloca_var(generator, ctx, None);
|
||||
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
|
||||
|
||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||
let indices =
|
||||
generator.gen_array_var_alloc(ctx, self.llvm_usize.into(), ndims, None).unwrap();
|
||||
let indices =
|
||||
TypedArrayLikeAdapter::from(indices, |_, _, v| v.into_int_value(), |_, _, v| v.into());
|
||||
|
||||
let nditer = self.map_value(nditer, ndarray, indices.as_slice_value(ctx, generator), None);
|
||||
|
||||
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, &indices);
|
||||
|
||||
nditer
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
parent: NDArrayValue<'ctx>,
|
||||
indices: ArraySliceValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
parent,
|
||||
indices,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for NDIterType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = NDIterValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<NDIterType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: NDIterType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
155
nac3core/src/codegen/types/range.rs
Normal file
155
nac3core/src/codegen/types/range.rs
Normal file
@ -0,0 +1,155 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::codegen::{
|
||||
values::{ProxyValue, RangeValue},
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
/// Proxy type for a `range` type in LLVM.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct RangeType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> RangeType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
|
||||
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
|
||||
let llvm_range_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
|
||||
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
|
||||
};
|
||||
if llvm_range_ty.len() != 3 {
|
||||
return Err(format!(
|
||||
"Expected 3 elements for `range` type, got {}",
|
||||
llvm_range_ty.len()
|
||||
));
|
||||
}
|
||||
|
||||
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
|
||||
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
|
||||
return Err(format!(
|
||||
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
|
||||
));
|
||||
};
|
||||
if llvm_range_elem_ty.get_bit_width() != 32 {
|
||||
return Err(format!(
|
||||
"Expected 32-bit int type for `range` element type, got {}",
|
||||
llvm_range_elem_ty.get_bit_width()
|
||||
));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
|
||||
// typedef int32_t Range[3];
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`RangeType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &'ctx Context) -> Self {
|
||||
let llvm_range = Self::llvm_type(ctx);
|
||||
|
||||
RangeType::from_type(llvm_range)
|
||||
}
|
||||
|
||||
/// Creates an [`RangeType`] from a [`PointerType`].
|
||||
#[must_use]
|
||||
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty).is_ok());
|
||||
|
||||
RangeType { ty: ptr_ty }
|
||||
}
|
||||
|
||||
/// Returns the type of all fields of this `range` type.
|
||||
#[must_use]
|
||||
pub fn value_type(&self) -> IntType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(self.raw_alloca(ctx, name), name)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`RangeValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = RangeValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
_: &G,
|
||||
_: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty)
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: RangeType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
270
nac3core/src/codegen/types/structure.rs
Normal file
270
nac3core/src/codegen/types/structure.rs
Normal file
@ -0,0 +1,270 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::AsContextRef,
|
||||
types::{BasicTypeEnum, IntType, StructType},
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::CodeGenContext;
|
||||
|
||||
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
|
||||
///
|
||||
/// # Usage
|
||||
///
|
||||
/// For example, for a simple C-slice LLVM structure:
|
||||
///
|
||||
/// ```ignore
|
||||
/// struct CSliceFields<'ctx> {
|
||||
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
/// len: StructField<'ctx, IntValue<'ctx>>
|
||||
/// }
|
||||
/// ```
|
||||
pub trait StructFields<'ctx>: Eq + Copy {
|
||||
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
|
||||
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
|
||||
|
||||
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
|
||||
/// the type definition.
|
||||
#[must_use]
|
||||
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
|
||||
|
||||
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
|
||||
/// in the type definition.
|
||||
#[must_use]
|
||||
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
|
||||
self.to_vec().into_iter()
|
||||
}
|
||||
|
||||
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
|
||||
/// the type definition.
|
||||
#[must_use]
|
||||
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
self.to_vec()
|
||||
}
|
||||
|
||||
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
|
||||
/// in the type definition.
|
||||
#[must_use]
|
||||
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
self.into_vec().into_iter()
|
||||
}
|
||||
|
||||
/// Returns the field index of a field in this structure.
|
||||
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
|
||||
where
|
||||
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
let field_name = name(self).name;
|
||||
self.index_of_field_name(field_name).unwrap()
|
||||
}
|
||||
|
||||
/// Returns the field index of a field with the given name in this structure.
|
||||
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
|
||||
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
|
||||
}
|
||||
}
|
||||
|
||||
/// A single field of an LLVM structure.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct StructField<'ctx, Value>
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
/// The index of this field within the structure.
|
||||
index: u32,
|
||||
|
||||
/// The name of this field.
|
||||
name: &'static str,
|
||||
|
||||
/// The type of this field.
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
|
||||
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
|
||||
_value_ty: PhantomData<Value>,
|
||||
}
|
||||
|
||||
impl<'ctx, Value> StructField<'ctx, Value>
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
/// Creates an instance of [`StructField`].
|
||||
///
|
||||
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
|
||||
/// index.
|
||||
/// * `name` - Name of the field.
|
||||
/// * `ty` - The type of this field.
|
||||
pub fn create(
|
||||
idx_counter: &mut FieldIndexCounter,
|
||||
name: &'static str,
|
||||
ty: impl Into<BasicTypeEnum<'ctx>>,
|
||||
) -> Self {
|
||||
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`StructField`] with a given index.
|
||||
///
|
||||
/// * `index` - The index of this field within its enclosing structure.
|
||||
/// * `name` - Name of the field.
|
||||
/// * `ty` - The type of this field.
|
||||
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
|
||||
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
|
||||
}
|
||||
|
||||
/// Returns the name of this field.
|
||||
#[must_use]
|
||||
pub fn name(&self) -> &'static str {
|
||||
self.name
|
||||
}
|
||||
|
||||
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
|
||||
/// {idx...}, i32 {self.index}`.
|
||||
pub fn ptr_by_array_gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
idx: &[IntValue<'ctx>],
|
||||
) -> PointerValue<'ctx> {
|
||||
unsafe {
|
||||
ctx.builder.build_in_bounds_gep(
|
||||
pobj,
|
||||
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
|
||||
"",
|
||||
)
|
||||
}
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
|
||||
/// `getelementptr i32 0, i32 {self.index}`.
|
||||
pub fn ptr_by_gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder
|
||||
.build_struct_gep(
|
||||
pobj,
|
||||
self.index,
|
||||
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Gets the value of this field for a given `obj`.
|
||||
#[must_use]
|
||||
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
|
||||
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
|
||||
}
|
||||
|
||||
/// Sets the value of this field for a given `obj`.
|
||||
pub fn set_for_value(&self, obj: StructValue<'ctx>, value: Value) {
|
||||
obj.set_field_at_index(self.index, value);
|
||||
}
|
||||
|
||||
/// Gets the value of this field for a pointer-to-structure.
|
||||
pub fn get(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) -> Value {
|
||||
ctx.builder
|
||||
.build_load(
|
||||
self.ptr_by_gep(ctx, pobj, obj_name),
|
||||
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
|
||||
)
|
||||
.map_err(|_| ())
|
||||
.and_then(|value| Value::try_from(value))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Sets the value of this field for a pointer-to-structure.
|
||||
pub fn set(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
pobj: PointerValue<'ctx>,
|
||||
value: Value,
|
||||
obj_name: Option<&'ctx str>,
|
||||
) {
|
||||
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
|
||||
where
|
||||
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
|
||||
{
|
||||
fn from(value: StructField<'ctx, Value>) -> Self {
|
||||
(value.name, value.ty)
|
||||
}
|
||||
}
|
||||
|
||||
/// A counter that tracks the next index of a field using a monotonically increasing counter.
|
||||
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct FieldIndexCounter(u32);
|
||||
|
||||
impl FieldIndexCounter {
|
||||
/// Increments the number stored by this counter, returning the previous value.
|
||||
///
|
||||
/// Functionally equivalent to `i++` in C-based languages.
|
||||
pub fn increment(&mut self) -> u32 {
|
||||
let v = self.0;
|
||||
self.0 += 1;
|
||||
v
|
||||
}
|
||||
}
|
||||
|
||||
type FieldTypeVerifier<'ctx> = dyn Fn(BasicTypeEnum<'ctx>) -> Result<(), String>;
|
||||
|
||||
/// Checks whether [`llvm_ty`][StructType] contains the fields described by the given
|
||||
/// [`StructFields`] instance.
|
||||
///
|
||||
/// By default, this function will compare the type of each field in `expected_fields` against
|
||||
/// `llvm_ty`. To override this behavior for individual fields, pass in overrides to
|
||||
/// `custom_verifiers`, which will use the specified verifier when a field with the matching field
|
||||
/// name is being checked.
|
||||
pub(super) fn check_struct_type_matches_fields<'ctx>(
|
||||
expected_fields: impl StructFields<'ctx>,
|
||||
llvm_ty: StructType<'ctx>,
|
||||
ty_name: &'static str,
|
||||
custom_verifiers: &[(&str, &FieldTypeVerifier<'ctx>)],
|
||||
) -> Result<(), String> {
|
||||
let expected_fields = expected_fields.to_vec();
|
||||
|
||||
if llvm_ty.count_fields() != u32::try_from(expected_fields.len()).unwrap() {
|
||||
return Err(format!(
|
||||
"Expected {} fields in `{ty_name}`, got {}",
|
||||
expected_fields.len(),
|
||||
llvm_ty.count_fields(),
|
||||
));
|
||||
}
|
||||
|
||||
expected_fields
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, (field_name, expected_ty))| {
|
||||
(field_name, expected_ty, llvm_ty.get_field_type_at_index(i as u32).unwrap())
|
||||
})
|
||||
.try_for_each(|(field_name, expected_ty, actual_ty)| {
|
||||
if let Some((_, verifier)) =
|
||||
custom_verifiers.iter().find(|verifier| verifier.0 == field_name)
|
||||
{
|
||||
verifier(actual_ty)
|
||||
} else if expected_ty == actual_ty {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected {expected_ty} for `{ty_name}.{field_name}`, got {actual_ty}"))
|
||||
}
|
||||
})?;
|
||||
|
||||
Ok(())
|
||||
}
|
201
nac3core/src/codegen/types/tuple.rs
Normal file
201
nac3core/src/codegen/types/tuple.rs
Normal file
@ -0,0 +1,201 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType, StructType},
|
||||
values::BasicValueEnum,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::ProxyType;
|
||||
use crate::{
|
||||
codegen::{
|
||||
values::{ProxyValue, TupleValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||
pub struct TupleType<'ctx> {
|
||||
ty: StructType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> TupleType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents any tuple type, returning [Err] if it does not.
|
||||
pub fn is_representable(_value: StructType<'ctx>) -> Result<(), String> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a tuple.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, tys: &[BasicTypeEnum<'ctx>]) -> StructType<'ctx> {
|
||||
ctx.struct_type(tys, false)
|
||||
}
|
||||
|
||||
fn new_impl(
|
||||
ctx: &'ctx Context,
|
||||
tys: &[BasicTypeEnum<'ctx>],
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_tuple = Self::llvm_type(ctx, tys);
|
||||
|
||||
Self { ty: llvm_tuple, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, tys: &[impl BasicType<'ctx>]) -> Self {
|
||||
Self::new_impl(
|
||||
ctx.ctx,
|
||||
&tys.iter().map(BasicType::as_basic_type_enum).collect_vec(),
|
||||
ctx.get_size_type(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates an instance of [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn new_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
tys: &[BasicTypeEnum<'ctx>],
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, tys, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`TupleType`] from a [unifier type][Type].
|
||||
#[must_use]
|
||||
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
) -> Self {
|
||||
let llvm_usize = ctx.get_size_type();
|
||||
|
||||
// Sanity check on object type.
|
||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty_immutable(ty) else {
|
||||
panic!("Expected type to be a TypeEnum::TTuple, got {}", ctx.unifier.stringify(ty));
|
||||
};
|
||||
|
||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||
Self { ty: Self::llvm_type(ctx.ctx, &llvm_tys), llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an [`TupleType`] from a [`StructType`].
|
||||
#[must_use]
|
||||
pub fn from_type(struct_ty: StructType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
debug_assert!(Self::is_representable(struct_ty).is_ok());
|
||||
|
||||
TupleType { ty: struct_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Returns the number of elements present in this [`TupleType`].
|
||||
#[must_use]
|
||||
pub fn num_elements(&self) -> u32 {
|
||||
self.ty.count_fields()
|
||||
}
|
||||
|
||||
/// Returns the type of the tuple element at the given `index`, or [`None`] if `index` is out of
|
||||
/// range.
|
||||
#[must_use]
|
||||
pub fn type_at_index(&self, index: u32) -> Option<BasicTypeEnum<'ctx>> {
|
||||
if index < self.num_elements() {
|
||||
Some(unsafe { self.type_at_index_unchecked(index) })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the type of the tuple element at the given `index`.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The caller must ensure that the index is valid.
|
||||
#[must_use]
|
||||
pub unsafe fn type_at_index_unchecked(&self, index: u32) -> BasicTypeEnum<'ctx> {
|
||||
self.ty.get_field_type_at_index_unchecked(index)
|
||||
}
|
||||
|
||||
/// Constructs a [`TupleValue`] from this type by zero-initializing the tuple value.
|
||||
#[must_use]
|
||||
pub fn construct(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
self.map_value(Self::llvm_type(ctx.ctx, &self.ty.get_field_types()).const_zero(), name)
|
||||
}
|
||||
|
||||
/// Constructs a [`TupleValue`] from `objects`. The resulting tuple preserves the order of
|
||||
/// objects.
|
||||
#[must_use]
|
||||
pub fn construct_from_objects<I: IntoIterator<Item = BasicValueEnum<'ctx>>>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
objects: I,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
let values = objects.into_iter().collect_vec();
|
||||
|
||||
assert_eq!(values.len(), self.num_elements() as usize);
|
||||
assert!(values
|
||||
.iter()
|
||||
.enumerate()
|
||||
.all(|(i, v)| { v.get_type() == unsafe { self.type_at_index_unchecked(i as u32) } }));
|
||||
|
||||
let mut value = self.construct(ctx, name);
|
||||
for (i, val) in values.into_iter().enumerate() {
|
||||
value.store_element(ctx, i as u32, val);
|
||||
}
|
||||
|
||||
value
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ListValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_struct_value(value, self.llvm_usize, name)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for TupleType<'ctx> {
|
||||
type Base = StructType<'ctx>;
|
||||
type Value = TupleValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::StructType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected struct type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty)
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<TupleType<'ctx>> for StructType<'ctx> {
|
||||
fn from(value: TupleType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
3
nac3core/src/codegen/types/utils/mod.rs
Normal file
3
nac3core/src/codegen/types/utils/mod.rs
Normal file
@ -0,0 +1,3 @@
|
||||
pub use slice::*;
|
||||
|
||||
mod slice;
|
257
nac3core/src/codegen/types/utils/slice.rs
Normal file
257
nac3core/src/codegen/types/utils/slice.rs
Normal file
@ -0,0 +1,257 @@
|
||||
use inkwell::{
|
||||
context::{AsContextRef, Context, ContextRef},
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
|
||||
values::IntValue,
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
use crate::codegen::{
|
||||
types::{
|
||||
structure::{
|
||||
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
|
||||
},
|
||||
ProxyType,
|
||||
},
|
||||
values::{utils::SliceValue, ProxyValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct SliceType<'ctx> {
|
||||
ty: PointerType<'ctx>,
|
||||
int_ty: IntType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceFields<'ctx> {
|
||||
#[value_type(bool_type())]
|
||||
pub start_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub start: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(bool_type())]
|
||||
pub stop_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub stop: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(bool_type())]
|
||||
pub step_defined: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
pub step: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx> SliceFields<'ctx> {
|
||||
/// Creates a new instance of [`SliceFields`] with a custom integer type for its range values.
|
||||
#[must_use]
|
||||
pub fn new_sized(ctx: &impl AsContextRef<'ctx>, int_ty: IntType<'ctx>) -> Self {
|
||||
let ctx = unsafe { ContextRef::new(ctx.as_ctx_ref()) };
|
||||
let mut counter = FieldIndexCounter::default();
|
||||
|
||||
SliceFields {
|
||||
start_defined: StructField::create(&mut counter, "start_defined", ctx.bool_type()),
|
||||
start: StructField::create(&mut counter, "start", int_ty),
|
||||
stop_defined: StructField::create(&mut counter, "stop_defined", ctx.bool_type()),
|
||||
stop: StructField::create(&mut counter, "stop", int_ty),
|
||||
step_defined: StructField::create(&mut counter, "step_defined", ctx.bool_type()),
|
||||
step: StructField::create(&mut counter, "step", int_ty),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> SliceType<'ctx> {
|
||||
/// Checks whether `llvm_ty` represents a `slice` type, returning [Err] if it does not.
|
||||
pub fn is_representable(
|
||||
llvm_ty: PointerType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let ctx = llvm_ty.get_context();
|
||||
|
||||
let fields = SliceFields::new(ctx, llvm_usize);
|
||||
|
||||
let llvm_ty = llvm_ty.get_element_type();
|
||||
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
|
||||
return Err(format!("Expected struct type for `Slice` type, got {llvm_ty}"));
|
||||
};
|
||||
|
||||
check_struct_type_matches_fields(
|
||||
fields,
|
||||
llvm_ty,
|
||||
"Slice",
|
||||
&[
|
||||
(fields.start.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.start`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
(fields.stop.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.stop`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
(fields.step.name(), &|ty| {
|
||||
if ty.is_int_type() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(format!("Expected int type for `Slice.step`, got {ty}"))
|
||||
}
|
||||
}),
|
||||
],
|
||||
)
|
||||
}
|
||||
|
||||
// TODO: Move this into e.g. StructProxyType
|
||||
#[must_use]
|
||||
pub fn get_fields(&self) -> SliceFields<'ctx> {
|
||||
SliceFields::new_sized(&self.int_ty.get_context(), self.int_ty)
|
||||
}
|
||||
|
||||
/// Creates an LLVM type corresponding to the expected structure of a `Slice`.
|
||||
#[must_use]
|
||||
fn llvm_type(ctx: &'ctx Context, int_ty: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let field_tys = SliceFields::new_sized(&int_ty.get_context(), int_ty)
|
||||
.into_iter()
|
||||
.map(|field| field.1)
|
||||
.collect_vec();
|
||||
|
||||
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn new_impl(ctx: &'ctx Context, int_ty: IntType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||
let llvm_ty = Self::llvm_type(ctx, int_ty);
|
||||
|
||||
Self { ty: llvm_ty, int_ty, llvm_usize }
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `int_ty` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new(ctx: &CodeGenContext<'ctx, '_>, int_ty: IntType<'ctx>) -> Self {
|
||||
Self::new_impl(ctx.ctx, int_ty, ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new_usize(ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
Self::new_impl(ctx.ctx, ctx.get_size_type(), ctx.get_size_type())
|
||||
}
|
||||
|
||||
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
|
||||
#[must_use]
|
||||
pub fn new_usize_with_generator<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Self {
|
||||
Self::new_impl(ctx, generator.get_size_type(ctx), generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
/// Creates an [`SliceType`] from a [`PointerType`] representing a `slice`.
|
||||
#[must_use]
|
||||
pub fn from_type(
|
||||
ptr_ty: PointerType<'ctx>,
|
||||
int_ty: IntType<'ctx>,
|
||||
llvm_usize: IntType<'ctx>,
|
||||
) -> Self {
|
||||
debug_assert!(Self::is_representable(ptr_ty, int_ty).is_ok());
|
||||
|
||||
Self { ty: ptr_ty, int_ty, llvm_usize }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn element_type(&self) -> IntType<'ctx> {
|
||||
self.int_ty
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca`].
|
||||
#[must_use]
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca(ctx, name),
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
|
||||
///
|
||||
/// See [`ProxyType::raw_alloca_var`].
|
||||
#[must_use]
|
||||
pub fn alloca_var<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
self.raw_alloca_var(generator, ctx, name),
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
|
||||
/// Converts an existing value into a [`ContiguousNDArrayValue`].
|
||||
#[must_use]
|
||||
pub fn map_value(
|
||||
&self,
|
||||
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
|
||||
name: Option<&'ctx str>,
|
||||
) -> <Self as ProxyType<'ctx>>::Value {
|
||||
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
|
||||
value,
|
||||
self.int_ty,
|
||||
self.llvm_usize,
|
||||
name,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ProxyType<'ctx> for SliceType<'ctx> {
|
||||
type Base = PointerType<'ctx>;
|
||||
type Value = SliceValue<'ctx>;
|
||||
|
||||
fn is_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: impl BasicType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
|
||||
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
|
||||
} else {
|
||||
Err(format!("Expected pointer type, got {llvm_ty:?}"))
|
||||
}
|
||||
}
|
||||
|
||||
fn is_representable<G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
llvm_ty: Self::Base,
|
||||
) -> Result<(), String> {
|
||||
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
|
||||
}
|
||||
|
||||
fn alloca_type(&self) -> impl BasicType<'ctx> {
|
||||
self.as_base_type().get_element_type().into_struct_type()
|
||||
}
|
||||
|
||||
fn as_base_type(&self) -> Self::Base {
|
||||
self.ty
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> From<SliceType<'ctx>> for PointerType<'ctx> {
|
||||
fn from(value: SliceType<'ctx>) -> Self {
|
||||
value.as_base_type()
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user