nalgebra/src/base/construction.rs

1209 lines
43 KiB
Rust
Raw Normal View History

2020-11-19 23:18:42 +08:00
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
#[cfg(feature = "arbitrary")]
2019-03-23 21:29:07 +08:00
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
2018-02-02 19:26:35 +08:00
use num::{Bounded, One, Zero};
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use std::iter;
use std::mem;
use typenum::{self, Cmp, Greater};
2020-03-21 19:16:46 +08:00
use simba::scalar::{ClosedAdd, ClosedMul};
2019-03-23 21:29:07 +08:00
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vector, VectorN};
/// When "no_unsound_assume_init" is enabled, expands to `unimplemented!()` instead of `new_uninitialized_generic().assume_init()`.
/// Intended as a placeholder, each callsite should be refactored to use uninitialized memory soundly
#[macro_export]
macro_rules! unimplemented_or_uninitialized_generic {
($nrows:expr, $ncols:expr) => {{
#[cfg(feature="no_unsound_assume_init")] {
// Some of the call sites need the number of rows and columns from this to infer a type, so
// uninitialized memory is used to infer the type, as `N: Zero` isn't available at all callsites.
// This may technically still be UB even though the assume_init is dead code, but all callsites should be fixed before #556 is closed.
let typeinference_helper = crate::base::Matrix::new_uninitialized_generic($nrows, $ncols);
unimplemented!();
typeinference_helper.assume_init()
}
#[cfg(not(feature="no_unsound_assume_init"))] { crate::base::Matrix::new_uninitialized_generic($nrows, $ncols).assume_init() }
}}
}
2020-11-14 01:34:47 +08:00
/// # Generic constructors
/// This set of matrix and vector construction functions are all generic
/// with-regard to the matrix dimensions. They all expect to be given
/// the dimension as inputs.
///
/// These functions should only be used when working on dimension-generic code.
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
2020-04-06 00:49:48 +08:00
where
DefaultAllocator: Allocator<N, R, C>,
2018-02-02 19:26:35 +08:00
{
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
/// if `nrows != R::to_usize()` or `ncols != C::to_usize()`.
#[inline]
pub unsafe fn new_uninitialized_generic(nrows: R, ncols: C) -> mem::MaybeUninit<Self> {
Self::from_uninitialized_data(DefaultAllocator::allocate_uninitialized(nrows, ncols))
}
/// Creates a matrix with all its elements set to `elem`.
#[inline]
pub fn from_element_generic(nrows: R, ncols: C, elem: N) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
2018-02-02 19:26:16 +08:00
/// Creates a matrix with all its elements set to `elem`.
2018-02-02 19:26:35 +08:00
///
2018-02-02 19:26:16 +08:00
/// Same as `from_element_generic`.
#[inline]
pub fn repeat_generic(nrows: R, ncols: C, elem: N) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
/// Creates a matrix with all its elements set to 0.
#[inline]
pub fn zeros_generic(nrows: R, ncols: C) -> Self
2020-04-06 00:49:48 +08:00
where
N: Zero,
{
Self::from_element_generic(nrows, ncols, N::zero())
}
/// Creates a matrix with all its elements filled by an iterator.
#[inline]
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
2020-04-06 00:49:48 +08:00
where
I: IntoIterator<Item = N>,
{
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
}
/// Creates a matrix with its elements filled with the components provided by a slice in
/// row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
#[inline]
pub fn from_row_slice_generic(nrows: R, ncols: C, slice: &[N]) -> Self {
2018-02-02 19:26:35 +08:00
assert!(
slice.len() == nrows.value() * ncols.value(),
"Matrix init. error: the slice did not contain the right number of elements."
);
let mut res = unsafe { crate::unimplemented_or_uninitialized_generic!(nrows, ncols) };
let mut iter = slice.iter();
2018-02-02 19:26:35 +08:00
for i in 0..nrows.value() {
for j in 0..ncols.value() {
unsafe { *res.get_unchecked_mut((i, j)) = iter.next().unwrap().inlined_clone() }
}
}
res
}
/// Creates a matrix with its elements filled with the components provided by a slice. The
2018-07-07 23:37:15 +08:00
/// components must have the same layout as the matrix data storage (i.e. column-major).
#[inline]
pub fn from_column_slice_generic(nrows: R, ncols: C, slice: &[N]) -> Self {
Self::from_iterator_generic(nrows, ncols, slice.iter().cloned())
}
/// Creates a matrix filled with the results of a function applied to each of its component
/// coordinates.
#[inline]
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
2020-04-06 00:49:48 +08:00
where
F: FnMut(usize, usize) -> N,
{
let mut res: Self = unsafe { crate::unimplemented_or_uninitialized_generic!(nrows, ncols) };
2018-06-16 18:57:57 +08:00
for j in 0..ncols.value() {
for i in 0..nrows.value() {
2018-12-03 04:00:08 +08:00
unsafe { *res.get_unchecked_mut((i, j)) = f(i, j) }
}
}
res
}
2018-05-04 17:22:24 +08:00
/// Creates a new identity matrix.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn identity_generic(nrows: R, ncols: C) -> Self
2020-04-06 00:49:48 +08:00
where
N: Zero + One,
{
Self::from_diagonal_element_generic(nrows, ncols, N::one())
}
/// Creates a new matrix with its diagonal filled with copies of `elt`.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self
2020-04-06 00:49:48 +08:00
where
N: Zero + One,
{
let mut res = Self::zeros_generic(nrows, ncols);
2019-03-23 21:29:07 +08:00
for i in 0..crate::min(nrows.value(), ncols.value()) {
unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
}
res
}
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal elements are
/// filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
#[inline]
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self
2020-04-06 00:49:48 +08:00
where
N: Zero,
{
let mut res = Self::zeros_generic(nrows, ncols);
2018-02-02 19:26:35 +08:00
assert!(
2019-03-23 21:29:07 +08:00
elts.len() <= crate::min(nrows.value(), ncols.value()),
2018-02-02 19:26:35 +08:00
"Too many diagonal elements provided."
);
for (i, elt) in elts.iter().enumerate() {
unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
}
res
}
2017-02-13 01:17:09 +08:00
/// Builds a new matrix from its rows.
///
/// Panics if not enough rows are provided (for statically-sized matrices), or if all rows do
/// not have the same dimensions.
///
/// # Example
/// ```
/// # use nalgebra::{RowVector3, Matrix3};
/// # use std::iter;
///
/// let m = Matrix3::from_rows(&[ RowVector3::new(1.0, 2.0, 3.0), RowVector3::new(4.0, 5.0, 6.0), RowVector3::new(7.0, 8.0, 9.0) ]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 2.0 && m.m13 == 3.0 &&
/// m.m21 == 4.0 && m.m22 == 5.0 && m.m23 == 6.0 &&
/// m.m31 == 7.0 && m.m32 == 8.0 && m.m33 == 9.0);
/// ```
#[inline]
pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self
2020-04-06 00:49:48 +08:00
where
SB: Storage<N, U1, C>,
{
2020-11-16 19:11:24 +08:00
assert!(!rows.is_empty(), "At least one row must be given.");
2020-10-26 21:07:52 +08:00
let nrows = R::try_to_usize().unwrap_or_else(|| rows.len());
let ncols = rows[0].len();
2018-02-02 19:26:35 +08:00
assert!(
rows.len() == nrows,
"Invalid number of rows provided to build this matrix."
);
if C::try_to_usize().is_none() {
2018-02-02 19:26:35 +08:00
assert!(
rows.iter().all(|r| r.len() == ncols),
"The provided rows must all have the same dimension."
);
}
2020-11-15 23:57:49 +08:00
// TODO: optimize that.
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
rows[i][(0, j)].inlined_clone()
2018-02-02 19:26:35 +08:00
})
}
2017-02-13 01:17:09 +08:00
/// Builds a new matrix from its columns.
///
/// Panics if not enough columns are provided (for statically-sized matrices), or if all
/// columns do not have the same dimensions.
///
/// # Example
/// ```
/// # use nalgebra::{Vector3, Matrix3};
/// # use std::iter;
///
/// let m = Matrix3::from_columns(&[ Vector3::new(1.0, 2.0, 3.0), Vector3::new(4.0, 5.0, 6.0), Vector3::new(7.0, 8.0, 9.0) ]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 4.0 && m.m13 == 7.0 &&
/// m.m21 == 2.0 && m.m22 == 5.0 && m.m23 == 8.0 &&
/// m.m31 == 3.0 && m.m32 == 6.0 && m.m33 == 9.0);
/// ```
#[inline]
pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self
2020-04-06 00:49:48 +08:00
where
SB: Storage<N, R>,
{
2020-11-16 19:11:24 +08:00
assert!(!columns.is_empty(), "At least one column must be given.");
2020-11-16 22:17:10 +08:00
let ncols = C::try_to_usize().unwrap_or_else(|| columns.len());
let nrows = columns[0].len();
2018-02-02 19:26:35 +08:00
assert!(
columns.len() == ncols,
"Invalid number of columns provided to build this matrix."
);
if R::try_to_usize().is_none() {
2018-02-02 19:26:35 +08:00
assert!(
columns.iter().all(|r| r.len() == nrows),
"The columns provided must all have the same dimension."
);
}
2020-11-15 23:57:49 +08:00
// TODO: optimize that.
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
columns[j][i].inlined_clone()
2018-02-02 19:26:35 +08:00
})
}
/// Creates a matrix filled with random values.
#[inline]
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand")]
pub fn new_random_generic(nrows: R, ncols: C) -> Self
2020-04-06 00:49:48 +08:00
where
Standard: Distribution<N>,
{
let mut rng = rand::thread_rng();
Self::from_fn_generic(nrows, ncols, |_, _| rng.gen())
}
/// Creates a matrix filled with random values from the given distribution.
#[inline]
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand-no-std")]
2018-05-23 05:58:14 +08:00
pub fn from_distribution_generic<Distr: Distribution<N> + ?Sized, G: Rng + ?Sized>(
nrows: R,
ncols: C,
2018-11-07 02:24:20 +08:00
distribution: &Distr,
rng: &mut G,
2020-04-06 00:49:48 +08:00
) -> Self {
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
}
/// Creates a matrix backed by a given `Vec`.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{Dynamic, DMatrix, Matrix, U1};
///
/// let vec = vec![0, 1, 2, 3, 4, 5];
/// let vec_ptr = vec.as_ptr();
///
/// let matrix = Matrix::from_vec_generic(Dynamic::new(vec.len()), U1, vec);
/// let matrix_storage_ptr = matrix.data.as_vec().as_ptr();
///
/// // `matrix` is backed by exactly the same `Vec` as it was constructed from.
/// assert_eq!(matrix_storage_ptr, vec_ptr);
/// ```
#[inline]
2020-11-19 23:18:42 +08:00
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn from_vec_generic(nrows: R, ncols: C, data: Vec<N>) -> Self {
Self::from_iterator_generic(nrows, ncols, data)
}
}
impl<N, D: Dim> MatrixN<N, D>
2018-02-02 19:26:35 +08:00
where
N: Scalar,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, D, D>,
{
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
///
/// # Example
/// ```
/// # use nalgebra::{Vector3, DVector, Matrix3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix3::from_diagonal(&Vector3::new(1.0, 2.0, 3.0));
/// // The two additional arguments represent the matrix dimensions.
2018-12-09 19:22:10 +08:00
/// let dm = DMatrix::from_diagonal(&DVector::from_row_slice(&[1.0, 2.0, 3.0]));
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
/// m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 3.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
/// dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 3.0);
/// ```
#[inline]
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self
2020-04-06 00:49:48 +08:00
where
N: Zero,
{
let (dim, _) = diag.data.shape();
let mut res = Self::zeros_generic(dim, dim);
2018-02-02 19:26:35 +08:00
for i in 0..diag.len() {
unsafe {
*res.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone();
2018-02-02 19:26:35 +08:00
}
}
res
}
}
/*
*
* Generate constructors with varying number of arguments, depending on the object type.
*
*/
macro_rules! impl_constructors(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
2020-11-14 01:34:47 +08:00
/// Creates a new uninitialized matrix or vector.
#[inline]
pub unsafe fn new_uninitialized($($args: usize),*) -> mem::MaybeUninit<Self> {
2020-11-14 01:34:47 +08:00
Self::new_uninitialized_generic($($gargs),*)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector with all its elements set to `elem`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::from_element(2.0);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_element(3, 2.0);
/// let m = Matrix2x3::from_element(2.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_element(2, 3, 2.0);
///
/// assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
/// assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
/// assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
/// m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
/// assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
/// dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
/// ```
#[inline]
pub fn from_element($($args: usize,)* elem: N) -> Self {
Self::from_element_generic($($gargs, )* elem)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector with all its elements set to `elem`.
///
/// Same as `.from_element`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::repeat(2.0);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::repeat(3, 2.0);
/// let m = Matrix2x3::repeat(2.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::repeat(2, 3, 2.0);
///
/// assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
/// assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
/// assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
/// m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
/// assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
/// dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
/// ```
#[inline]
pub fn repeat($($args: usize,)* elem: N) -> Self {
Self::repeat_generic($($gargs, )* elem)
}
2018-02-02 19:26:16 +08:00
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector with all its elements set to `0`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::<f32>::zeros();
/// // The argument represents the vector dimension.
/// let dv = DVector::<f32>::zeros(3);
/// let m = Matrix2x3::<f32>::zeros();
/// // The two arguments represent the matrix dimensions.
/// let dm = DMatrix::<f32>::zeros(2, 3);
///
/// assert!(v.x == 0.0 && v.y == 0.0 && v.z == 0.0);
/// assert!(dv[0] == 0.0 && dv[1] == 0.0 && dv[2] == 0.0);
/// assert!(m.m11 == 0.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 0.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 0.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 0.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn zeros($($args: usize),*) -> Self
where N: Zero {
Self::zeros_generic($($gargs),*)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector with all its elements filled by an iterator.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_iterator((0..3).into_iter());
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_iterator(3, (0..3).into_iter());
/// let m = Matrix2x3::from_iterator((0..6).into_iter());
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_iterator(2, 3, (0..6).into_iter());
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_iterator<I>($($args: usize,)* iter: I) -> Self
where I: IntoIterator<Item = N> {
Self::from_iterator_generic($($gargs, )* iter)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector filled with the results of a function applied to each of its
/// component coordinates.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_fn(|i, _| i);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_fn(3, |i, _| i);
/// let m = Matrix2x3::from_fn(|i, j| i * 3 + j);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_fn(2, 3, |i, j| i * 3 + j);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
/// m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
/// dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_fn<F>($($args: usize,)* f: F) -> Self
where F: FnMut(usize, usize) -> N {
Self::from_fn_generic($($gargs, )* f)
}
2020-11-14 01:34:47 +08:00
/// Creates an identity matrix. If the matrix is not square, the largest square
/// submatrix (starting at the first row and column) is set to the identity while all
/// other entries are set to zero.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix2x3::<f32>::identity();
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::<f32>::identity(2, 3);
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 1.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 1.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn identity($($args: usize,)*) -> Self
where N: Zero + One {
Self::identity_generic($($gargs),* )
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix filled with its diagonal filled with `elt` and all other
/// components set to zero.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix2x3::from_diagonal_element(5.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_diagonal_element(2, 3, 5.0);
///
/// assert!(m.m11 == 5.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 5.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 5.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 5.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn from_diagonal_element($($args: usize,)* elt: N) -> Self
where N: Zero + One {
Self::from_diagonal_element_generic($($gargs, )* elt)
}
2020-11-14 01:34:47 +08:00
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal
/// elements are filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix3::from_partial_diagonal(&[1.0, 2.0]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_partial_diagonal(3, 3, &[1.0, 2.0]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
/// m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 0.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
/// dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 0.0);
/// ```
#[inline]
pub fn from_partial_diagonal($($args: usize,)* elts: &[N]) -> Self
where N: Zero {
Self::from_partial_diagonal_generic($($gargs, )* elts)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix or vector filled with random values from the given distribution.
#[inline]
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand-no-std")]
2020-11-14 01:34:47 +08:00
pub fn from_distribution<Distr: Distribution<N> + ?Sized, G: Rng + ?Sized>(
$($args: usize,)*
distribution: &Distr,
rng: &mut G,
) -> Self {
Self::from_distribution_generic($($gargs, )* distribution, rng)
}
2020-11-14 01:34:47 +08:00
/// Creates a matrix filled with random values.
#[inline]
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand")]
2020-11-14 01:34:47 +08:00
pub fn new_random($($args: usize),*) -> Self
where Standard: Distribution<N> {
Self::new_random_generic($($gargs),*)
}
}
);
2020-11-14 01:34:47 +08:00
/// # Constructors of statically-sized vectors or statically-sized matrices
impl<N: Scalar, R: DimName, C: DimName> MatrixMN<N, R, C>
where
DefaultAllocator: Allocator<N, R, C>,
{
2020-11-15 23:57:49 +08:00
// TODO: this is not very pretty. We could find a better call syntax.
2020-11-14 01:34:47 +08:00
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
}
2020-11-14 01:34:47 +08:00
/// # Constructors of matrices with a dynamic number of columns
impl<N: Scalar, R: DimName> MatrixMN<N, R, Dynamic>
where
DefaultAllocator: Allocator<N, R, Dynamic>,
{
impl_constructors!(R, Dynamic;
=> R: DimName;
R::name(), Dynamic::new(ncols);
ncols);
2020-11-14 01:34:47 +08:00
}
2020-11-14 01:34:47 +08:00
/// # Constructors of dynamic vectors and matrices with a dynamic number of rows
impl<N: Scalar, C: DimName> MatrixMN<N, Dynamic, C>
where
DefaultAllocator: Allocator<N, Dynamic, C>,
{
impl_constructors!(Dynamic, C;
=> C: DimName;
Dynamic::new(nrows), C::name();
nrows);
2020-11-14 01:34:47 +08:00
}
2020-11-14 01:34:47 +08:00
/// # Constructors of fully dynamic matrices
impl<N: Scalar> MatrixMN<N, Dynamic, Dynamic>
where
DefaultAllocator: Allocator<N, Dynamic, Dynamic>,
{
impl_constructors!(Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
2020-11-14 01:34:47 +08:00
}
/*
*
* Constructors that don't necessarily require all dimensions
2020-11-14 01:34:47 +08:00
* to be specified when one dimension is already known.
*
*/
macro_rules! impl_constructors_from_data(
($data: ident; $($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where DefaultAllocator: Allocator<N $(, $Dims)*> {
/// Creates a matrix with its elements filled with the components provided by a slice
/// in row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_row_slice(&[0, 1, 2]);
/// // The additional argument represents the vector dimension.
2018-12-09 19:22:10 +08:00
/// let dv = DVector::from_row_slice(&[0, 1, 2]);
/// let m = Matrix2x3::from_row_slice(&[0, 1, 2, 3, 4, 5]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_row_slice(2, 3, &[0, 1, 2, 3, 4, 5]);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
/// m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
/// dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_row_slice($($args: usize,)* $data: &[N]) -> Self {
Self::from_row_slice_generic($($gargs, )* $data)
}
/// Creates a matrix with its elements filled with the components provided by a slice
/// in column-major order.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_column_slice(&[0, 1, 2]);
/// // The additional argument represents the vector dimension.
2018-12-09 19:22:10 +08:00
/// let dv = DVector::from_column_slice(&[0, 1, 2]);
/// let m = Matrix2x3::from_column_slice(&[0, 1, 2, 3, 4, 5]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_column_slice(2, 3, &[0, 1, 2, 3, 4, 5]);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_column_slice($($args: usize,)* $data: &[N]) -> Self {
Self::from_column_slice_generic($($gargs, )* $data)
}
/// Creates a matrix backed by a given `Vec`.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{DMatrix, Matrix2x3};
///
/// let m = Matrix2x3::from_vec(vec![0, 1, 2, 3, 4, 5]);
///
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
///
///
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_vec(2, 3, vec![0, 1, 2, 3, 4, 5]);
///
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
2020-11-19 23:18:42 +08:00
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn from_vec($($args: usize,)* $data: Vec<N>) -> Self {
Self::from_vec_generic($($gargs, )* $data)
}
}
}
);
2020-11-15 23:57:49 +08:00
// TODO: this is not very pretty. We could find a better call syntax.
impl_constructors_from_data!(data; R, C; // Arguments for Matrix<N, ..., S>
2020-03-21 19:16:46 +08:00
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
impl_constructors_from_data!(data; R, Dynamic;
2020-03-21 19:16:46 +08:00
=> R: DimName;
R::name(), Dynamic::new(data.len() / R::dim());
);
impl_constructors_from_data!(data; Dynamic, C;
2020-03-21 19:16:46 +08:00
=> C: DimName;
Dynamic::new(data.len() / C::dim()), C::name();
);
impl_constructors_from_data!(data; Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
/*
*
* Zero, One, Rand traits.
*
*/
impl<N, R: DimName, C: DimName> Zero for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + ClosedAdd,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn zero() -> Self {
Self::from_element(N::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.iter().all(|e| e.is_zero())
}
}
impl<N, D: DimName> One for MatrixN<N, D>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N, R: DimName, C: DimName> Bounded for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Bounded,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn max_value() -> Self {
Self::from_element(N::max_value())
}
#[inline]
fn min_value() -> Self {
Self::from_element(N::min_value())
}
}
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand-no-std")]
impl<N: Scalar, R: Dim, C: Dim> Distribution<MatrixMN<N, R, C>> for Standard
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, R, C>,
2018-05-23 05:58:14 +08:00
Standard: Distribution<N>,
2018-02-02 19:26:35 +08:00
{
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> MatrixMN<N, R, C> {
2021-03-01 00:52:14 +08:00
let nrows = R::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10));
let ncols = C::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10));
2018-05-23 05:58:14 +08:00
MatrixMN::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| rng.gen())
}
}
#[cfg(feature = "arbitrary")]
impl<N, R, C> Arbitrary for MatrixMN<N, R, C>
2018-02-02 19:26:35 +08:00
where
R: Dim,
C: Dim,
N: Scalar + Arbitrary + Send,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R, C>,
Owned<N, R, C>: Clone + Send,
{
#[inline]
2021-03-01 00:52:14 +08:00
fn arbitrary(g: &mut Gen) -> Self {
let nrows = R::try_to_usize().unwrap_or(usize::arbitrary(g) % 10);
let ncols = C::try_to_usize().unwrap_or(usize::arbitrary(g) % 10);
2018-02-02 19:26:35 +08:00
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| {
N::arbitrary(g)
})
}
}
// TODO(specialization): faster impls possible for D≤4 (see rand_distr::{UnitCircle, UnitSphere})
2021-03-02 19:25:12 +08:00
#[cfg(feature = "rand")]
impl<N: crate::RealField, D: DimName> Distribution<Unit<VectorN<N, D>>> for Standard
where
DefaultAllocator: Allocator<N, D>,
2021-03-02 19:25:12 +08:00
rand_distr::StandardNormal: Distribution<N>,
{
/// Generate a uniformly distributed random unit vector.
#[inline]
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Unit<VectorN<N, D>> {
2018-07-20 22:10:12 +08:00
Unit::new_normalize(VectorN::from_distribution_generic(
D::name(),
U1,
2021-03-02 19:25:12 +08:00
&rand_distr::StandardNormal,
2018-07-20 22:10:12 +08:00
rng,
))
}
}
/*
*
* Constructors for small matrices and vectors.
*
*/
macro_rules! componentwise_constructors_impl(
($($R: ty, $C: ty, $($args: ident:($irow: expr,$icol: expr)),*);* $(;)*) => {$(
impl<N> MatrixMN<N, $R, $C>
where N: Scalar,
DefaultAllocator: Allocator<N, $R, $C> {
/// Initializes this matrix from its components.
#[inline]
pub fn new($($args: N),*) -> Self {
unsafe {
#[cfg(feature="no_unsound_assume_init")]
let mut res: Self = unimplemented!();
#[cfg(not(feature="no_unsound_assume_init"))]
let mut res = Self::new_uninitialized().assume_init();
2018-12-03 04:00:08 +08:00
$( *res.get_unchecked_mut(($irow, $icol)) = $args; )*
res
}
}
}
)*}
);
componentwise_constructors_impl!(
/*
* Square matrices 1 .. 6.
*/
U2, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1);
U3, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2);
U4, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3);
U5, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4);
U6, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4), m56:(4,5),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3), m65:(5,4), m66:(5,5);
/*
* Rectangular matrices with 2 rows.
*/
U2, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2);
U2, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3);
U2, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4);
U2, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5);
/*
* Rectangular matrices with 3 rows.
*/
U3, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1);
U3, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3);
U3, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4);
U3, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5);
/*
* Rectangular matrices with 4 rows.
*/
U4, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1);
U4, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2);
U4, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4);
U4, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5);
/*
* Rectangular matrices with 5 rows.
*/
U5, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1),
m51:(4,0), m52:(4,1);
U5, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2),
m51:(4,0), m52:(4,1), m53:(4,2);
U5, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3);
U5, U6, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4), m16:(0,5),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4), m26:(1,5),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4), m36:(2,5),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4), m46:(3,5),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4), m56:(4,5);
/*
* Rectangular matrices with 6 rows.
*/
U6, U2, m11:(0,0), m12:(0,1),
m21:(1,0), m22:(1,1),
m31:(2,0), m32:(2,1),
m41:(3,0), m42:(3,1),
m51:(4,0), m52:(4,1),
m61:(5,0), m62:(5,1);
U6, U3, m11:(0,0), m12:(0,1), m13:(0,2),
m21:(1,0), m22:(1,1), m23:(1,2),
m31:(2,0), m32:(2,1), m33:(2,2),
m41:(3,0), m42:(3,1), m43:(3,2),
m51:(4,0), m52:(4,1), m53:(4,2),
m61:(5,0), m62:(5,1), m63:(5,2);
U6, U4, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3);
U6, U5, m11:(0,0), m12:(0,1), m13:(0,2), m14:(0,3), m15:(0,4),
m21:(1,0), m22:(1,1), m23:(1,2), m24:(1,3), m25:(1,4),
m31:(2,0), m32:(2,1), m33:(2,2), m34:(2,3), m35:(2,4),
m41:(3,0), m42:(3,1), m43:(3,2), m44:(3,3), m45:(3,4),
m51:(4,0), m52:(4,1), m53:(4,2), m54:(4,3), m55:(4,4),
m61:(5,0), m62:(5,1), m63:(5,2), m64:(5,3), m65:(5,4);
/*
* Row vectors 1 .. 6.
*/
U1, U1, x:(0,0);
U1, U2, x:(0,0), y:(0,1);
U1, U3, x:(0,0), y:(0,1), z:(0,2);
U1, U4, x:(0,0), y:(0,1), z:(0,2), w:(0,3);
U1, U5, x:(0,0), y:(0,1), z:(0,2), w:(0,3), a:(0,4);
U1, U6, x:(0,0), y:(0,1), z:(0,2), w:(0,3), a:(0,4), b:(0,5);
/*
* Column vectors 1 .. 6.
*/
U2, U1, x:(0,0), y:(1,0);
U3, U1, x:(0,0), y:(1,0), z:(2,0);
U4, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0);
U5, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0), a:(4,0);
U6, U1, x:(0,0), y:(1,0), z:(2,0), w:(3,0), a:(4,0), b:(5,0);
);
/*
*
* Axis constructors.
*
*/
impl<N, R: DimName> VectorN<N, R>
2018-02-02 19:26:35 +08:00
where
N: Scalar + Zero + One,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R>,
{
/// The column vector with `val` as its i-th component.
#[inline]
pub fn ith(i: usize, val: N) -> Self {
let mut res = Self::zeros();
res[i] = val;
res
}
/// The column unit vector with `N::one()` as its i-th component.
#[inline]
pub fn ith_axis(i: usize) -> Unit<Self> {
Unit::new_unchecked(Self::ith(i, N::one()))
}
/// The column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U0, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(0) = N::one();
}
res
}
/// The column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U1, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(1) = N::one();
}
res
}
/// The column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U2, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(2) = N::one();
}
res
}
/// The column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U3, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(3) = N::one();
}
res
}
/// The column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U4, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(4) = N::one();
}
res
}
/// The column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b() -> Self
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U5, Output = Greater>,
{
2017-08-14 01:52:57 +08:00
let mut res = Self::zeros();
2018-02-02 19:26:35 +08:00
unsafe {
*res.vget_unchecked_mut(5) = N::one();
}
res
}
/// The unit column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U0, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::x())
}
/// The unit column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U1, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::y())
}
/// The unit column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U2, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::z())
}
/// The unit column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U3, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::w())
}
/// The unit column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U4, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::a())
}
/// The unit column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b_axis() -> Unit<Self>
2020-04-06 00:49:48 +08:00
where
R::Value: Cmp<typenum::U5, Output = Greater>,
{
2018-02-02 19:26:35 +08:00
Unit::new_unchecked(Self::b())
}
}