nalgebra/src/geometry/quaternion_construction.rs

858 lines
30 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
2019-03-23 21:29:07 +08:00
use crate::base::dimension::U4;
#[cfg(feature = "arbitrary")]
2019-03-23 21:29:07 +08:00
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
2018-05-23 05:58:14 +08:00
use quickcheck::{Arbitrary, Gen};
2018-02-02 19:26:35 +08:00
use num::{One, Zero};
2018-07-20 05:56:07 +08:00
use rand::distributions::{Distribution, OpenClosed01, Standard};
2018-05-23 05:58:14 +08:00
use rand::Rng;
2020-03-21 19:16:46 +08:00
use simba::scalar::RealField;
use simba::simd::{SimdBool, SimdValue};
2019-03-23 21:29:07 +08:00
use crate::base::dimension::U3;
use crate::base::storage::Storage;
2020-03-21 19:16:46 +08:00
use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4};
use crate::{Scalar, SimdRealField};
2019-03-23 21:29:07 +08:00
use crate::geometry::{Quaternion, Rotation3, UnitQuaternion};
impl<N: Scalar> Quaternion<N> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]
#[deprecated(note = "Use `::from` instead.")]
pub fn from_vector(vector: Vector4<N>) -> Self {
Self { coords: vector }
}
/// Creates a new quaternion from its individual components. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the
/// order `(w, i, j, k)`.
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector4};
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
/// ```
#[inline]
pub fn new(w: N, i: N, j: N, k: N) -> Self {
2019-02-27 10:12:30 +08:00
Self::from(Vector4::new(i, j, k, w))
}
}
2019-02-27 10:12:30 +08:00
impl<N: SimdRealField> Quaternion<N> {
2019-02-27 10:12:30 +08:00
/// Constructs a pure quaternion.
#[inline]
pub fn from_imag(vector: Vector3<N>) -> Self {
Self::from_parts(N::zero(), vector)
}
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is [ vector, scalar ].
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector3, Vector4};
/// let w = 1.0;
/// let ijk = Vector3::new(2.0, 3.0, 4.0);
/// let q = Quaternion::from_parts(w, ijk);
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
/// ```
#[inline]
2020-11-15 23:57:49 +08:00
// TODO: take a reference to `vector`?
pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self
where
SB: Storage<N, U3>,
{
Self::new(scalar, vector[0], vector[1], vector[2])
}
/// Constructs a real quaternion.
#[inline]
pub fn from_real(r: N) -> Self {
Self::from_parts(r, Vector3::zero())
}
/// The quaternion multiplicative identity.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::identity();
/// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
///
/// assert_eq!(q * q2, q2);
/// assert_eq!(q2 * q, q2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::from_real(N::one())
}
}
2020-11-15 23:57:49 +08:00
// TODO: merge with the previous block.
impl<N: SimdRealField> Quaternion<N>
where
N::Element: SimdRealField,
{
2020-03-21 19:16:46 +08:00
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
2020-11-15 23:57:49 +08:00
// TODO: take a reference to `axis`?
2020-03-21 19:16:46 +08:00
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
where
SB: Storage<N, U3>,
{
2020-03-21 19:16:46 +08:00
let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * crate::convert(2.0f64));
rot.into_inner() * scale
}
}
impl<N: SimdRealField> One for Quaternion<N>
where
N::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N: SimdRealField> Zero for Quaternion<N>
where
N::Element: SimdRealField,
{
#[inline]
fn zero() -> Self {
2019-02-27 10:12:30 +08:00
Self::from(Vector4::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.coords.is_zero()
}
}
2020-03-21 19:16:46 +08:00
impl<N: SimdRealField> Distribution<Quaternion<N>> for Standard
where
Standard: Distribution<N>,
2018-05-23 05:58:14 +08:00
{
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<N> {
Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
2020-03-21 19:16:46 +08:00
impl<N: SimdRealField + Arbitrary> Arbitrary for Quaternion<N>
where
Owned<N, U4>: Send,
2018-02-02 19:26:35 +08:00
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
Self::new(
2018-02-02 19:26:35 +08:00
N::arbitrary(g),
N::arbitrary(g),
N::arbitrary(g),
N::arbitrary(g),
)
}
}
impl<N: SimdRealField> UnitQuaternion<N>
where
N::Element: SimdRealField,
{
/// The rotation identity.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Point3};
/// let q = UnitQuaternion::identity();
/// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
/// let v = Vector3::new_random();
/// let p = Point3::from(v);
///
/// assert_eq!(q * q2, q2);
/// assert_eq!(q2 * q, q2);
/// assert_eq!(q * v, v);
/// assert_eq!(q * p, p);
/// ```
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(Quaternion::identity())
}
/// Creates a new quaternion from a unit vector (the rotation axis) and an angle
/// (the rotation angle).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axis = Vector3::y_axis();
/// let angle = f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_axis_angle(&axis, angle);
///
/// assert_eq!(q.axis().unwrap(), axis);
/// assert_eq!(q.angle(), angle);
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
where
SB: Storage<N, U3>,
{
let (sang, cang) = (angle / crate::convert(2.0f64)).simd_sin_cos();
let q = Quaternion::from_parts(cang, axis.as_ref() * sang);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn from_quaternion(q: Quaternion<N>) -> Self {
Self::new_normalize(q)
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitQuaternion;
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
let (sr, cr) = (roll * crate::convert(0.5f64)).simd_sin_cos();
let (sp, cp) = (pitch * crate::convert(0.5f64)).simd_sin_cos();
let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos();
let q = Quaternion::new(
2018-02-02 19:26:35 +08:00
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy,
);
Self::new_unchecked(q)
}
/// Builds an unit quaternion from a rotation matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, UnitQuaternion, Vector3};
/// let axis = Vector3::y_axis();
/// let angle = 0.1;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let q = UnitQuaternion::from_rotation_matrix(&rot);
/// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
/// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
/// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_rotation_matrix(rotmat: &Rotation3<N>) -> Self {
2017-02-13 01:17:09 +08:00
// Robust matrix to quaternion transformation.
// See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
2017-02-13 01:17:09 +08:00
let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
let quarter: N = crate::convert(0.25);
2017-02-13 01:17:09 +08:00
let res = tr.simd_gt(N::zero()).if_else3(
|| {
let denom = (tr + N::one()).simd_sqrt() * crate::convert(2.0);
Quaternion::new(
quarter * denom,
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
)
},
(
|| rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]),
|| {
let denom = (N::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
quarter * denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
)
},
),
(
|| rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]),
|| {
let denom = (N::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
quarter * denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
)
},
),
|| {
let denom = (N::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
quarter * denom,
)
},
);
2017-02-13 01:17:09 +08:00
Self::new_unchecked(res)
}
/// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix3<N>) -> Self
where
N: RealField,
{
Rotation3::from_matrix(m).into()
}
/// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix3<N>, eps: N, max_iter: usize, guess: Self) -> Self
where
N: RealField,
{
let guess = Rotation3::from(guess);
Rotation3::from_matrix_eps(m, eps, max_iter, guess).into()
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the
/// rotation desired is not unique.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
/// assert_relative_eq!(q * a, b);
/// assert_relative_eq!(q.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self>
2018-02-02 19:26:35 +08:00
where
N: RealField,
2018-02-02 19:26:35 +08:00
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
s: N,
) -> Option<Self>
where
N: RealField,
2018-02-02 19:26:35 +08:00
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
2020-11-15 23:57:49 +08:00
// TODO: code duplication with Rotation.
2018-02-02 19:26:35 +08:00
if let (Some(na), Some(nb)) = (
Unit::try_new(a.clone_owned(), N::zero()),
Unit::try_new(b.clone_owned(), N::zero()),
) {
Self::scaled_rotation_between_axis(&na, &nb, s)
2018-02-02 19:26:35 +08:00
} else {
Some(Self::identity())
}
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
/// assert_relative_eq!(q * a, b);
/// assert_relative_eq!(q.inverse() * b, a);
/// ```
#[inline]
2018-02-02 19:26:35 +08:00
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<N, U3, SB>>,
b: &Unit<Vector<N, U3, SC>>,
) -> Option<Self>
where
N: RealField,
2018-02-02 19:26:35 +08:00
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::scaled_rotation_between_axis(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<N, U3, SB>>,
nb: &Unit<Vector<N, U3, SC>>,
s: N,
) -> Option<Self>
where
N: RealField,
2018-02-02 19:26:35 +08:00
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
2020-11-15 23:57:49 +08:00
// TODO: code duplication with Rotation.
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
let cos = na.dot(&nb);
2018-09-24 12:48:42 +08:00
// The cosinus may be out of [-1, 1] because of inaccuracies.
if cos <= -N::one() {
2020-10-11 17:01:20 +08:00
None
2018-02-02 19:26:35 +08:00
} else if cos >= N::one() {
2020-10-11 17:01:20 +08:00
Some(Self::identity())
2018-02-02 19:26:35 +08:00
} else {
2020-10-11 17:01:20 +08:00
Some(Self::from_axis_angle(&axis, cos.acos() * s))
}
2018-02-02 19:26:35 +08:00
} else if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
2020-10-11 17:01:20 +08:00
None
2018-02-02 19:26:35 +08:00
} else {
// Zero
Some(Self::identity())
}
}
/// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the `z` axis to the direction `dir`.
///
/// # Arguments
/// * dir - The look direction. It does not need to be normalized.
/// * up - The vertical direction. It does not need to be normalized.
/// The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity
/// is not checked.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::face_towards(&dir, &up);
/// assert_relative_eq!(q * Vector3::z(), dir.normalize());
/// ```
#[inline]
pub fn face_towards<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::from_rotation_matrix(&Rotation3::face_towards(dir, up))
}
/// Deprecated: Use [UnitQuaternion::face_towards] instead.
2020-03-21 19:16:46 +08:00
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frames<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::face_towards(dir, up)
}
/// Builds a right-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **negative** `z` axis.
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir The view direction. It does not need to be normalized.
/// * up - A vector approximately aligned with required the vertical axis. It does not need
/// to be normalized. The only requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::look_at_rh(&dir, &up);
/// assert_relative_eq!(q * dir.normalize(), -Vector3::z());
/// ```
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::face_towards(&-dir, up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **positive** `z` axis.
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir The view direction. It does not need to be normalized.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::look_at_lh(&dir, &up);
/// assert_relative_eq!(q * dir.normalize(), Vector3::z());
/// ```
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::face_towards(dir, up).inverse()
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::new(axisangle);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self
where
SB: Storage<N, U3>,
{
2019-03-23 21:29:07 +08:00
let two: N = crate::convert(2.0f64);
2019-02-27 10:12:30 +08:00
let q = Quaternion::<N>::from_imag(axisangle / two).exp();
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // An almost zero vector yields an identity.
/// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
/// ```
#[inline]
pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
where
SB: Storage<N, U3>,
{
2019-03-23 21:29:07 +08:00
let two: N = crate::convert(2.0f64);
2019-02-27 10:12:30 +08:00
let q = Quaternion::<N>::from_imag(axisangle / two).exp_eps(eps);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
/// Same as `Self::new(axisangle)`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_scaled_axis(axisangle);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_scaled_axis<SB>(axisangle: Vector<N, U3, SB>) -> Self
where
SB: Storage<N, U3>,
{
Self::new(axisangle)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
/// Same as `Self::new_eps(axisangle, eps)`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // An almost zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_scaled_axis_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
where
SB: Storage<N, U3>,
{
Self::new_eps(axisangle, eps)
}
/// Create the mean unit quaternion from a data structure implementing IntoIterator
/// returning unit quaternions.
///
/// The method will panic if the iterator does not return any quaternions.
///
/// Algorithm from: Oshman, Yaakov, and Avishy Carmi. "Attitude estimation from vector
/// observations using a genetic-algorithm-embedded quaternion particle filter." Journal of
/// Guidance, Control, and Dynamics 29.4 (2006): 879-891.
2020-03-21 19:16:46 +08:00
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion};
/// let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0);
/// let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0);
/// let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0);
///
/// let quat_vec = vec![q1, q2, q3];
2019-09-04 19:04:15 +08:00
/// let q_mean = UnitQuaternion::mean_of(quat_vec);
///
/// let euler_angles_mean = q_mean.euler_angles();
/// assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)
/// ```
#[inline]
pub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Self
where
N: RealField,
{
let quaternions_matrix: Matrix4<N> = unit_quaternions
.into_iter()
.map(|q| q.as_vector() * q.as_vector().transpose())
.sum();
assert!(!quaternions_matrix.is_zero());
2020-03-21 19:16:46 +08:00
let eigen_matrix = quaternions_matrix
.try_symmetric_eigen(N::RealField::default_epsilon(), 10)
.expect("Quaternions matrix could not be diagonalized. This behavior should not be possible.");
let max_eigenvalue_index = eigen_matrix
.eigenvalues
.iter()
.position(|v| *v == eigen_matrix.eigenvalues.max())
.unwrap();
let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index);
UnitQuaternion::from_quaternion(Quaternion::new(
max_eigenvector[0],
max_eigenvector[1],
max_eigenvector[2],
max_eigenvector[3],
))
}
}
impl<N: SimdRealField> One for UnitQuaternion<N>
where
N::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N: SimdRealField> Distribution<UnitQuaternion<N>> for Standard
where
N::Element: SimdRealField,
OpenClosed01: Distribution<N>,
2018-05-23 05:58:14 +08:00
{
/// Generate a uniformly distributed random rotation quaternion.
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<N> {
// Ken Shoemake's Subgroup Algorithm
// Uniform random rotations.
// In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992.
let x0 = rng.sample(OpenClosed01);
let x1 = rng.sample(OpenClosed01);
let x2 = rng.sample(OpenClosed01);
let theta1 = N::simd_two_pi() * x1;
let theta2 = N::simd_two_pi() * x2;
let s1 = theta1.simd_sin();
let c1 = theta1.simd_cos();
let s2 = theta2.simd_sin();
let c2 = theta2.simd_cos();
let r1 = (N::one() - x0).simd_sqrt();
let r2 = x0.simd_sqrt();
Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
impl<N: RealField + Arbitrary> Arbitrary for UnitQuaternion<N>
2018-02-02 19:26:35 +08:00
where
Owned<N, U4>: Send,
Owned<N, U3>: Send,
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let axisangle = Vector3::arbitrary(g);
Self::from_scaled_axis(axisangle)
}
}
#[cfg(test)]
mod tests {
extern crate rand_xorshift;
use super::*;
use rand::SeedableRng;
#[test]
fn random_unit_quats_are_unit() {
let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]);
for _ in 0..1000 {
let x = rng.gen::<UnitQuaternion<f32>>();
assert!(relative_eq!(x.into_inner().norm(), 1.0))
}
}
}