forked from M-Labs/nalgebra
quaternion trigonometry
This commit is contained in:
parent
aeff67ecbd
commit
edb08cd900
@ -47,6 +47,9 @@ quickcheck = { version = "0.8", optional = true }
|
||||
pest = { version = "2.0", optional = true }
|
||||
pest_derive = { version = "2.0", optional = true }
|
||||
|
||||
[patch.crates-io]
|
||||
alga = { git = "https://github.com/rustsim/alga", branch = "dev" }
|
||||
|
||||
[dev-dependencies]
|
||||
serde_json = "1.0"
|
||||
rand_xorshift = "0.1"
|
||||
|
@ -506,6 +506,255 @@ impl<N: Real> Quaternion<N> {
|
||||
pub fn normalize_mut(&mut self) -> N {
|
||||
self.coords.normalize_mut()
|
||||
}
|
||||
|
||||
/// Calculates square of a quaternion.
|
||||
#[inline]
|
||||
pub fn squared(&self) -> Self {
|
||||
self * self
|
||||
}
|
||||
|
||||
/// Divides quaternion into two.
|
||||
#[inline]
|
||||
pub fn half(&self) -> Self {
|
||||
self / ::convert(2.0f64)
|
||||
}
|
||||
|
||||
/// Calculates square root.
|
||||
#[inline]
|
||||
pub fn sqrt(&self) -> Self {
|
||||
self.powf(::convert(0.5))
|
||||
}
|
||||
|
||||
/// Check if the quaternion is pure.
|
||||
#[inline]
|
||||
pub fn is_pure(&self) -> bool {
|
||||
self.w == N::zero()
|
||||
}
|
||||
|
||||
/// Convert quaternion to pure quaternion.
|
||||
#[inline]
|
||||
pub fn pure(&self) -> Self {
|
||||
Self::from_imag(self.imag())
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic cosinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119);
|
||||
/// let result = input.cos();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn cos(&self) -> Self {
|
||||
let z = self.imag().magnitude();
|
||||
let w = -self.w.sin() * z.sinhc();
|
||||
Self::from_parts(self.w.cos() * z.cosh(), self.imag() * w)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arccosinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let result = input.cos().acos();
|
||||
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn acos(&self) -> Self {
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let identity = Self::identity();
|
||||
|
||||
let z = (self + (self.squared() - identity).sqrt()).ln();
|
||||
|
||||
-(u * z)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic sinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835);
|
||||
/// let result = input.sin();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn sin(&self) -> Self {
|
||||
let z = self.imag().magnitude();
|
||||
let w = self.w.cos() * z.sinhc();
|
||||
Self::from_parts(self.w.sin() * z.cosh(), self.imag() * w)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arcsinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let result = input.sin().asin();
|
||||
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn asin(&self) -> Self {
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let identity = Self::identity();
|
||||
|
||||
let z = ((u * self) + (identity - self.squared()).sqrt()).ln();
|
||||
|
||||
-(u * z)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic tangent.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743);
|
||||
/// let result = input.tan();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn tan(&self) -> Self {
|
||||
let s = self.sin();
|
||||
let c = self.cos();
|
||||
|
||||
let ci = c.try_inverse().unwrap();
|
||||
s * ci
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arctangent.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let result = input.tan().atan();
|
||||
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn atan(&self) -> Self {
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let num = u + self;
|
||||
let den = u - self;
|
||||
let fr = num * den.try_inverse().unwrap();
|
||||
let ln = fr.ln();
|
||||
(u.half()) * ln
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic sinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843);
|
||||
/// let result = input.sinh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn sinh(&self) -> Self {
|
||||
(self.exp() - (-self).exp()).half()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic arcsinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576);
|
||||
/// let result = input.asinh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn asinh(&self) -> Self {
|
||||
let identity = Self::identity();
|
||||
(self + (identity + self.squared()).sqrt()).ln()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic cosinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334);
|
||||
/// let result = input.cosh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn cosh(&self) -> Self {
|
||||
(self.exp() + (-self).exp()).half()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic arccosinus.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352);
|
||||
/// let result = input.acosh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn acosh(&self) -> Self {
|
||||
let identity = Self::identity();
|
||||
(self + (self + identity).sqrt() * (self - identity).sqrt()).ln()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic tangent.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844);
|
||||
/// let result = input.tanh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn tanh(&self) -> Self {
|
||||
let s = self.sinh();
|
||||
let c = self.cosh();
|
||||
|
||||
let ci = c.try_inverse().unwrap();
|
||||
s * ci
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic arctangent.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903);
|
||||
/// let result = input.atanh();
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn atanh(&self) -> Self {
|
||||
let identity = Self::identity();
|
||||
((identity + self).ln() - (identity - self).ln()).half()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real + AbsDiffEq<Epsilon = N>> AbsDiffEq for Quaternion<N> {
|
||||
@ -879,7 +1128,7 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
#[inline]
|
||||
pub fn ln(&self) -> Quaternion<N> {
|
||||
if let Some(v) = self.axis() {
|
||||
Quaternion::from_parts(N::zero(), v.into_inner() * self.angle())
|
||||
Quaternion::from_imag(v.into_inner() * self.angle())
|
||||
} else {
|
||||
Quaternion::zero()
|
||||
}
|
||||
@ -1073,3 +1322,4 @@ impl<N: Real + UlpsEq<Epsilon = N>> UlpsEq for UnitQuaternion<N> {
|
||||
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13,9 +13,7 @@ use alga::general::Real;
|
||||
|
||||
use base::dimension::U3;
|
||||
use base::storage::Storage;
|
||||
#[cfg(feature = "arbitrary")]
|
||||
use base::Vector3;
|
||||
use base::{Unit, Vector, Vector4, Matrix3};
|
||||
use base::{Unit, Vector, Vector3, Vector4, Matrix3};
|
||||
|
||||
use geometry::{Quaternion, Rotation3, UnitQuaternion};
|
||||
|
||||
@ -43,8 +41,13 @@ impl<N: Real> Quaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn new(w: N, i: N, j: N, k: N) -> Self {
|
||||
let v = Vector4::<N>::new(i, j, k, w);
|
||||
Self::from(v)
|
||||
Self::from(Vector4::new(i, j, k, w))
|
||||
}
|
||||
|
||||
/// Constructs a pure quaternion.
|
||||
#[inline]
|
||||
pub fn from_imag(vector: Vector3<N>) -> Self {
|
||||
Self::from_parts(N::zero(), vector)
|
||||
}
|
||||
|
||||
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
|
||||
@ -92,7 +95,7 @@ impl<N: Real> Quaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn identity() -> Self {
|
||||
Self::new(N::one(), N::zero(), N::zero(), N::zero())
|
||||
Self::from_parts(N::one(), Vector3::zero())
|
||||
}
|
||||
}
|
||||
|
||||
@ -106,7 +109,7 @@ impl<N: Real> One for Quaternion<N> {
|
||||
impl<N: Real> Zero for Quaternion<N> {
|
||||
#[inline]
|
||||
fn zero() -> Self {
|
||||
Self::new(N::zero(), N::zero(), N::zero(), N::zero())
|
||||
Self::from(Vector4::zero())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -579,7 +582,7 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self
|
||||
where SB: Storage<N, U3> {
|
||||
let two: N = ::convert(2.0f64);
|
||||
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp();
|
||||
let q = Quaternion::<N>::from_imag(axisangle / two).exp();
|
||||
Self::new_unchecked(q)
|
||||
}
|
||||
|
||||
@ -608,7 +611,7 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
|
||||
where SB: Storage<N, U3> {
|
||||
let two: N = ::convert(2.0f64);
|
||||
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp_eps(eps);
|
||||
let q = Quaternion::<N>::from_imag(axisangle / two).exp_eps(eps);
|
||||
Self::new_unchecked(q)
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user