forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

201 Commits

Author SHA1 Message Date
David Mak 01edd5af67 [meta] Apply rustfmt changes 2024-11-29 15:43:34 +08:00
occheung 015714eee1 copy constructor -> clone 2024-11-28 18:52:53 +08:00
occheung 71dec251e3 ld/dwarf: remove reader resets
DWARF reader never had to reverse. Readers are already copied to achieve this effect.
Plus the position that it reverses to might be questionable.
2024-11-28 18:52:53 +08:00
occheung fce61f7b8c ld: fix dwarf sections offset calculations 2024-11-28 18:52:53 +08:00
abdul124 babc081dbd core/toplevel: update tests 2024-11-27 14:31:57 +08:00
abdul124 5337dbe23b core/toplevel: add python-like error messages for class definition 2024-11-27 14:31:57 +08:00
abdul124 f862c01412 core/toplevel: refactor composer 2024-11-27 14:31:53 +08:00
David Mak 0c9705f5f1 [meta] Apply clippy changes 2024-11-25 16:05:12 +08:00
David Mak 5f940f86d9 [artiq] Fix obtaining ndarray struct from NDArrayType 2024-11-25 15:01:39 +08:00
Sebastien Bourdeauducq 5651e00688 flake: add platformdirs artiq dependency 2024-11-22 20:30:30 +08:00
Sebastien Bourdeauducq f6745b987f bump sipyco and artiq used for profiling 2024-11-22 19:43:03 +08:00
mwojcik e0dedc6580 nac3artiq: support kernels sent by content 2024-11-22 19:38:52 +08:00
David Mak 28f574282c [core_derive] Ignore doctest in example
Causes linker errors for unknown reasons.
2024-11-22 00:00:05 +08:00
David Mak 144f0922db [core] coregen/types: Implement StructFields for NDArray
Also rename some fields to better align with their naming in numpy.
2024-11-21 14:27:00 +08:00
David Mak c58ce9c3a9 [core] codegen/types: Implement NDArray in terms of i8*
Better aligns with the future implementation of ndstrides.
2024-11-21 14:27:00 +08:00
David Mak f7e296da53 [core] irrt: Break IRRT into several impl files
Each IRRT file is now mapped to one Rust file.
2024-11-21 14:27:00 +08:00
David Mak b58c99369e [core] irrt: Update some IRRT implementation
- Change CSlice to use `void*` for better pointer compatibility
- Only include impl *.hpp files in irrt.cpp
- Refactor typedef to using declaration
- Add missing ``// namespace`
2024-11-21 14:26:58 +08:00
David Mak 1a535db558 [core] codegen: Add dtype to NDArrayType
We won't have this once NDArray is refactored to strided impl.
2024-11-20 15:35:57 +08:00
David Mak 1ba2e287a6 [core] codegen: Add Self::llvm_type to all type abstractions 2024-11-20 15:35:57 +08:00
lyken f95f979ad3 core/irrt: fix exception.hpp C++ castings 2024-11-20 15:35:57 +08:00
lyken 48e2148c0f core/toplevel/helper: add {extract,create}_ndims 2024-11-20 15:35:57 +08:00
David Mak 88e57f7120 [core_derive] Initial implementation 2024-11-20 15:35:55 +08:00
David Mak d7633c42bc [core] codegen/types: Implement StructField{,s}
Loosely based on FieldTraversal by lyken.
2024-11-19 13:46:25 +08:00
David Mak a4f53b6e6b [core] codegen: Refactor ProxyType and ProxyValue
Accepts generator+context object for generic type checking. Also
implements more default trait impl for easier delegation.
2024-11-19 13:46:25 +08:00
David Mak 9d9ead211e [core] Move Proxies to their own modules 2024-11-19 13:46:23 +08:00
David Mak 26a1b85206 [core] codegen/classes: Remove Underlying type
This is confusing and we want a better abstraction than this.
2024-11-19 13:45:55 +08:00
David Mak 2822074b2d [meta] Cleanup from upgrading Rust version
- Remove rust_2024_edition warnings, since it wouldn't be released for
another 3 months
- Fix new clippy warnings
2024-11-19 13:43:57 +08:00
David Mak fe67ed076c [meta] Update pre-commit configuration 2024-11-19 13:20:27 +08:00
David Mak 94e2414df0 [meta] Update cargo dependencies 2024-11-19 13:20:26 +08:00
Sebastien Bourdeauducq 2cee760404 turn rust_2024_compatibility lints into warnings 2024-11-16 13:41:49 +08:00
Sebastien Bourdeauducq 230982dc84 update dependencies 2024-11-16 12:40:11 +08:00
occheung 2bd3f63991 boolop: terminate both branches with *_end_bb 2024-11-16 12:06:20 +08:00
occheung b53266e9e6 artiq: use async RPC for attributes writeback 2024-11-12 12:04:01 +08:00
occheung 86eb22bbf3 artiq: main is always the last module 2024-11-12 12:03:38 +08:00
occheung beaa38047d artiq: suppress main module debug warning 2024-11-12 12:03:08 +08:00
occheung 705dc4ff1c artiq: lump return value into attributes writeback RPC 2024-11-12 12:02:35 +08:00
occheung 979209a526 binop: expand `not` operator as loglcal not 2024-11-08 17:12:01 +08:00
David Mak c3927d0ef6 [ast] Refactor lazy_static to LazyLock
It is available in Rust 1.80 and reduces a dependency.
2024-10-30 12:29:51 +08:00
David Mak 202a902cd0 [meta] Update dependencies 2024-10-30 12:29:51 +08:00
David Mak b6e2644391 [meta] Update cargo dependencies 2024-10-18 14:17:16 +08:00
David Mak 45cd01556b [meta] Apply cargo fmt 2024-10-18 14:16:42 +08:00
David Mak b6cd2a6993 [meta] Reorganize order of use declarations - Phase 3 2024-10-17 16:25:52 +08:00
David Mak a98f33e6d1 [meta] Reorganize order of use declarations - Phase 2
Some more rules:

- For module-level imports, prefer no prefix > super > crate.
- Use crate instead of super if super refers to the crate-level module
2024-10-17 15:57:33 +08:00
David Mak 5839badadd [standalone] Update globals.py with type-inferred global var 2024-10-07 20:44:08 +08:00
David Mak 56c845aac4 [standalone] Add support for registering globals without type decl 2024-10-07 20:44:06 +08:00
David Mak 65a12d9ab3 [core] Refactor registration of top-level variables 2024-10-07 17:05:48 +08:00
David Mak 9c6685fa8f [core] typecheck/function_check: Fix lookup of defined ids in scope 2024-10-07 16:51:37 +08:00
David Mak 2bb788e4bb [core] codegen/expr: Materialize implicit globals
Required for when globals are read without the use of a global
declaration.
2024-10-07 13:13:20 +08:00
David Mak 42a2f243b5 [core] typecheck: Disallow redeclaration of var shadowing global 2024-10-07 13:11:00 +08:00
David Mak 3ce2eddcdc [core] typecheck/type_inferencer: Infer whether variables are global 2024-10-07 13:10:46 +08:00
David Mak 51bf126a32 [core] typecheck/type_inferencer: Differentiate global symbols
Required for analyzing use of global symbols before global declaration.
2024-10-07 12:25:00 +08:00
David Mak 1a197c67f6 [core] toplevel/composer: Reduce lock scope while analyzing function 2024-10-05 15:53:20 +08:00
David Mak 581b2f7bb2 [standalone] Add demo for global variables 2024-10-04 13:24:30 +08:00
David Mak 746329ec5d [standalone] Implement symbol resolution for globals 2024-10-04 13:24:30 +08:00
David Mak e60e8e837f [core] Add support for global statements 2024-10-04 13:24:27 +08:00
David Mak 9fdbe9695d [core] Add generator to SymbolResolver::get_symbol_value
Needed in a future commit.
2024-10-04 13:20:29 +08:00
David Mak 8065e73598 [core] toplevel/composer: Add type analysis for global variables 2024-10-04 13:20:29 +08:00
David Mak 192290889b [core] Add IdentifierInfo
Keeps track of whether an identifier refers to a global or local
variable.
2024-10-04 13:20:24 +08:00
David Mak 1407553a2f [core] Implement parsing of global variables
Globals are now parsed into symbol resolver and top level definitions.
2024-10-04 13:18:29 +08:00
David Mak c7697606e1 [core] Add TopLevelDef::Variable 2024-10-04 13:09:25 +08:00
David Mak 88d0ccbf69 [standalone] Explicit panic when encountering a compilation error
Otherwise scripts will continue to execute.
2024-10-04 13:00:16 +08:00
David Mak a43b59539c [meta] Move variables declarations closer to where they are first used 2024-10-04 13:00:16 +08:00
David Mak fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00
David Mak 7f6c9a25ac [meta] Update Cargo dependencies 2024-10-04 12:52:01 +08:00
Sébastien Bourdeauducq 6c8382219f msys2: get python via numpy dependencies 2024-09-30 14:27:30 +08:00
Sebastien Bourdeauducq 9274a7b96b flake: update nixpkgs 2024-09-30 14:22:40 +08:00
Sébastien Bourdeauducq d1c0fe2900 cargo: update dependencies 2024-09-30 14:14:43 +08:00
mwojcik f2c047ba57 artiq: support async rpcs
Co-authored-by: mwojcik <mw@m-labs.hk>
Co-committed-by: mwojcik <mw@m-labs.hk>
2024-09-13 12:12:13 +08:00
David Mak 5e2e77a500 [meta] Bump inkwell to v0.5 2024-09-13 11:11:14 +08:00
David Mak f3cc4702b9 [meta] Update dependencies 2024-09-13 11:11:14 +08:00
David Mak 3e92c491f5 [standalone] Add tests creating ndarrays with tuple dims 2024-09-11 15:52:43 +08:00
lyken 7f629f1579 core: fix comment in unify_call 2024-09-11 15:46:19 +08:00
lyken 5640a793e2 core: allow np_full to take tuple shapes 2024-09-11 15:46:19 +08:00
David Mak abbaa506ad [standalone] Remove redundant recreation of TargetMachine 2024-09-09 14:27:10 +08:00
David Mak f3dc02d646 [meta] Apply cargo fmt 2024-09-09 14:24:52 +08:00
David Mak ea217eaea1 [meta] Update pre-commit config
Directly invoke cargo using nix develop to avoid using the system cargo.
2024-09-09 14:24:38 +08:00
Sébastien Bourdeauducq 5a34551905 allow the use of the LLVM shared library
Which in turns allows working around the incompatibility of the LLVM static library
with Rust link-args=-rdynamic, which produces binaries that either fail to link (OpenBSD)
or segfault on startup (Linux).

The year is 2024 and compiler toolchains are still a trash fire like this.
2024-09-09 11:17:31 +08:00
Sebastien Bourdeauducq 6098b1b853 fix previous commit 2024-09-06 11:32:08 +08:00
Sebastien Bourdeauducq 668ccb1c95 nac3core: expose inkwell and nac3parser 2024-09-06 11:06:26 +08:00
Sebastien Bourdeauducq a3c624d69d update all dependencies 2024-09-06 10:21:58 +08:00
Sébastien Bourdeauducq bd06155f34 irrt: compatibility with pre-C23 compilers 2024-09-05 18:54:55 +08:00
David Mak 9c33c4209c [core] Fix type of ndarray.element_type
Should be the element type of the NDArray itself, not the pointer to its
type.
2024-08-30 22:47:38 +08:00
Sebastien Bourdeauducq 122983f11c flake: update dependencies 2024-08-30 14:45:38 +08:00
David Mak 71c3a65a31 [core] codegen/stmt: Fix obtaining return type of sret functions 2024-08-29 19:15:30 +08:00
David Mak 8c540d1033 [core] codegen/stmt: Add more casts for boolean types 2024-08-29 16:36:32 +08:00
David Mak 0cc60a3d33 [core] codegen/expr: Fix missing cast to i1 2024-08-29 16:36:32 +08:00
David Mak a59c26aa99 [artiq] Fix RPC of ndarrays from host 2024-08-29 16:08:45 +08:00
David Mak 02d93b11d1 [meta] Update dependencies 2024-08-29 14:32:21 +08:00
lyken 59cad5bfe1
standalone: clang-format demo.c 2024-08-29 10:37:24 +08:00
lyken 4318f8de84
standalone: improve src/assignment.py 2024-08-29 10:33:58 +08:00
David Mak 15ac00708a [core] Use quoted include paths instead of angled brackets
This is preferred for user-defined headers.
2024-08-28 16:37:03 +08:00
lyken c8dfdcfdea
standalone & artiq: remove class_names from resolver 2024-08-27 23:43:40 +08:00
Sébastien Bourdeauducq 600a5c8679 Revert "standalone: reformat demo.c"
This reverts commit 308edb8237.
2024-08-27 23:06:49 +08:00
lyken 22c4d25802 core/typecheck: add missing typecheck in matmul 2024-08-27 22:59:39 +08:00
lyken 308edb8237 standalone: reformat demo.c 2024-08-27 22:55:22 +08:00
lyken 9848795dcc core/irrt: add exceptions and debug utils 2024-08-27 22:55:22 +08:00
lyken 58222feed4 core/irrt: split into headers 2024-08-27 22:55:22 +08:00
lyken 518f21d174 core/irrt: build.rs capture IR defined constants 2024-08-27 22:55:22 +08:00
lyken e8e49684bf core/irrt: build.rs capture IR defined types 2024-08-27 22:55:22 +08:00
lyken b2900b4883 core/irrt: use +std=c++20 to compile
To explicitly set the C++ variant and avoid inconsistencies.
2024-08-27 22:55:22 +08:00
lyken c6dade1394 core/irrt: reformat 2024-08-27 22:55:22 +08:00
lyken 7e3fcc0845 add .clang-format 2024-08-27 22:55:22 +08:00
lyken d3b4c60d7f core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-27 22:55:22 +08:00
abdul124 5b2b6db7ed core: improve error messages 2024-08-26 18:37:55 +08:00
abdul124 15e62f467e standalone: add tests for polymorphism 2024-08-26 18:37:55 +08:00
abdul124 2c88924ff7 core: add support for simple polymorphism 2024-08-26 18:37:55 +08:00
abdul124 a744b139ba core: allow Call and AnnAssign in init block 2024-08-26 18:37:55 +08:00
David Mak 2b2b2dbf8f [core] Fix resolution of exception names in raise short form
Previous implementation fails as `resolver.get_identifier_def` in ARTIQ
would return the exception __init__ function rather than the class.

We fix this by limiting the exception class resolution to only include
raise statements, and to force the exception name to always be treated
as a class.

Fixes #501.
2024-08-26 18:35:02 +08:00
David Mak d9f96dab33 [core] Add codegen_unreachable 2024-08-23 13:10:55 +08:00
David Mak c5ae0e7c36 [standalone] Add tests for tuple equality 2024-08-21 16:25:32 +08:00
David Mak b8dab6cf7c [standalone] Add tests for string equality 2024-08-21 16:25:32 +08:00
David Mak 4d80ba38b7 [core] codegen/expr: Implement comparison of tuples 2024-08-21 16:25:32 +08:00
David Mak 33929bda24 [core] typecheck/typedef: Add support for tuple methods 2024-08-21 16:25:32 +08:00
David Mak a8e92212c0 [core] codegen/expr: Implement string equality 2024-08-21 16:25:32 +08:00
David Mak 908271014a [core] typecheck/magic_methods: Add equality methods to string 2024-08-21 16:25:32 +08:00
David Mak c407622f5c [core] codegen/expr: Add compilation error for unsupported cmpop 2024-08-21 15:46:13 +08:00
David Mak d7952d0629 [core] codegen/expr: Fix assertions not generated for -O0 2024-08-21 15:36:54 +08:00
David Mak ca1395aed6 [core] codegen: Remove redundant return 2024-08-21 15:36:54 +08:00
David Mak 7799aa4987 [meta] Do not specify rev in dependency version 2024-08-21 15:36:54 +08:00
David Mak 76016a26ad [meta] Apply clippy suggestions 2024-08-21 13:07:57 +08:00
lyken 8532bf5206
standalone: add missing test_ndarray_ceil() run 2024-08-21 11:39:00 +08:00
lyken 2cf64d8608
apply clippy comment changes 2024-08-21 11:21:10 +08:00
lyken 706759adb2
artiq: apply cargo fmt 2024-08-21 11:21:10 +08:00
lyken b90cf2300b
core/fix: add missing lifetime in gen_for* 2024-08-21 11:05:30 +08:00
Sebastien Bourdeauducq 0fc26df29e flake: update nixpkgs 2024-08-19 23:53:15 +08:00
David Mak 0b074c2cf2 [artiq] symbol_resolver: Set private linkage for constants 2024-08-19 14:41:43 +08:00
Sébastien Bourdeauducq a0f6961e0e cargo: update dependencies 2024-08-19 13:15:03 +08:00
David Mak b1c5c2e1d4 [artiq] Fix RPC of ndarrays to host 2024-08-15 15:41:24 +08:00
David Mak 69320a6cf1 [artiq] Fix LLVM representation of strings
Should be `%str` rather than `[N x i8]`.
2024-08-14 09:30:08 +08:00
David Mak 9e0601837a core: Add compile-time feature to disable escape analysis 2024-08-14 09:29:48 +08:00
lyken 432c81a500
core: update insta after #489 2024-08-13 15:30:34 +08:00
David Mak 6beff7a268 [artiq] Implement core_log and rtio_log in terms of polymorphic_print
Implementation mostly references the original implementation in Python.
2024-08-13 15:19:03 +08:00
David Mak 6ca7aecd4a [artiq] Add core_log and rtio_log function declarations 2024-08-13 15:19:03 +08:00
David Mak 8fd7216243 [core] toplevel/composer: Add lateinit_builtins
This is required for the new core_log and rtio_log functions, which take
a generic type as its parameter. However, in ARTIQ builtins are
initialized using one unifier and then actually used by another unifier.

lateinit_builtins workaround this issue by deferring the initialization
of functions requiring type variables until the actual unifier is ready.
2024-08-13 15:19:03 +08:00
David Mak 4f5e417012 [core] codegen: Add function to get format constants for integers 2024-08-13 15:19:03 +08:00
David Mak a0614bad83 [core] codegen/expr: Make gen_string return `StructValue`
So that it is clear that the value itself is returned rather than a
pointer to the struct or its data.
2024-08-13 15:19:03 +08:00
David Mak 5539d144ed [core] Add `CodeGenContext::build_in_bounds_gep_and_load`
For safer accesses to `gep`-able values and faster fails.
2024-08-13 15:19:03 +08:00
David Mak b3891b9a0d standalone: Fix several issues post script refactoring
- Add helptext for check_demos.sh
- Add back support for using debug NAC3 for running tests
- Output error message when argument is not recognized
- Fixed last non-demo script argument being ignored
- Add back SSE2 requirement to NAC3 (required for mandelbrot)
2024-08-13 15:19:03 +08:00
David Mak 6fb8939179 [meta] Update dependencies 2024-08-13 15:19:03 +08:00
lyken 973dc5041a core/typecheck: Support tuple arg type in len() 2024-08-13 15:02:59 +08:00
David Mak d0da688aa7 standalone: Add tuple len test 2024-08-13 15:02:59 +08:00
David Mak 12c4e1cf48 core/toplevel/builtins: Add support for len() on tuples 2024-08-13 15:02:59 +08:00
David Mak 9b988647ed core/toplevel/builtins: Extract len() into builtin function 2024-08-13 15:02:59 +08:00
lyken 35a7cecc12
core/typecheck: fix np_array ndmin bug 2024-08-13 12:50:04 +08:00
lyken 7e3d87f841 core/codegen: fix bug in call_ceil function 2024-08-07 16:40:55 +08:00
David Mak ac0d83ef98 standalone: Add vararg.py 2024-08-06 11:48:42 +08:00
David Mak 3ff6db1a29 core/codegen: Add va_start and va_end intrinsics 2024-08-06 11:48:42 +08:00
David Mak d7b806afb4 core/codegen: Implement support for va_info on supported architectures 2024-08-06 11:48:40 +08:00
David Mak fac60c3974 core/codegen: Handle vararg in function generation 2024-08-06 11:46:00 +08:00
David Mak f5fb504a15 core/codegen/expr: Implement vararg handling in gen_call 2024-08-06 11:46:00 +08:00
David Mak faa3bb97ad core/typecheck/typedef: Add vararg to Unifier::stringify 2024-08-06 11:46:00 +08:00
David Mak 6a64c9d1de core/typecheck/typedef: Add is_vararg_ctx to TTuple 2024-08-06 11:45:54 +08:00
David Mak 3dc8498202 core/typecheck/typedef: Handle vararg parameters in unify_call 2024-08-06 11:43:13 +08:00
David Mak cbf79c5e9c core/typecheck/typedef: Add is_vararg to FuncArg, ConcreteFuncArg 2024-08-06 11:43:13 +08:00
David Mak b8aa17bf8c core/toplevel/composer: Add parsing for vararg parameter 2024-08-06 10:52:24 +08:00
David Mak f5b998cd9c core/codegen: Remove unnecessary mut from get_llvm*_type 2024-08-06 10:52:24 +08:00
David Mak c36f85ecb9 meta: Update dependencies 2024-08-06 10:52:24 +08:00
lyken 3a8c385e01 core/typecheck: fix missing ExprKind::Asterisk in fix_assignment_target_context 2024-08-05 19:30:48 +08:00
lyken 221de4d06a core/codegen: add missing comment 2024-08-05 19:30:48 +08:00
lyken fb9fe8edf2 core: reimplement assignment type inference and codegen
- distinguish between setitem and getitem
- allow starred assignment targets, but the assigned value would be a tuple
- allow both [...] and (...) to be target lists
2024-08-05 19:30:48 +08:00
lyken 894083c6a3 core/codegen: refactor gen_{for,comprehension} to match on iter type 2024-08-05 19:30:48 +08:00
Sébastien Bourdeauducq 669c6aca6b clean up and fix 32-bit demos 2024-08-05 19:04:25 +08:00
abdul124 63d2b49b09 core: remove np_linalg_matmul 2024-08-05 11:44:55 +08:00
abdul124 bf709889c4 standalone/demo: separate linalg functions from main workspace 2024-08-05 11:44:54 +08:00
abdul124 1c72698d02 core: add np_linalg_det and np_linalg_matrix_power functions 2024-07-31 18:02:54 +08:00
abdul124 54f883f0a5 core: implement np_dot using LLVM_IR 2024-07-31 15:53:51 +08:00
abdul124 4a6845dac6 standalone: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 00236f48bc core: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 a3e6bb2292 core/helper: add linalg section 2024-07-31 13:23:07 +08:00
abdul124 17171065b1 standalone: link linalg at runtime 2024-07-31 13:23:07 +08:00
abdul124 540b35ec84 standalone: move linalg functions to demo 2024-07-31 13:23:05 +08:00
abdul124 4bb00c52e3 core/builtin_fns: improve error reporting 2024-07-31 13:21:31 +08:00
abdul124 faf07527cb standalone: add runtime implementation for linalg functions 2024-07-31 13:21:28 +08:00
abdul124 d6a4d0a634 standalone: add linalg methods and tests 2024-07-29 16:48:06 +08:00
abdul124 2242c5af43 core: add linalg methods 2024-07-29 16:48:06 +08:00
David Mak 318a675ea6 standalone: Rename -m32 to -i386 2024-07-29 14:58:58 +08:00
David Mak 32e52ce198 standalone: Revert using uint32_t as slice length
Turns out list and str have always been size_t.
2024-07-29 14:58:29 +08:00
Sebastien Bourdeauducq 665ca8e32d cargo: update dependencies 2024-07-27 22:24:56 +08:00
Sebastien Bourdeauducq 12c12b1d80 flake: update nixpkgs 2024-07-27 22:22:20 +08:00
lyken 72972fa909 core/toplevel: add more numpy categories 2024-07-27 21:57:47 +08:00
lyken 142cd48594 core/toplevel: reorder PrimDef::details 2024-07-27 21:57:47 +08:00
lyken 8adfe781c5 core/toplevel: fix PrimDef method names 2024-07-27 21:57:47 +08:00
lyken 339b74161b core/toplevel: reorganize PrimDef 2024-07-27 21:57:47 +08:00
David Mak 8c5ba37d09 standalone: Add 32-bit execution tests to check_demo.sh 2024-07-26 13:35:40 +08:00
David Mak 05a8948ff2 core: Minor cleanup to use ListValue APIs 2024-07-26 13:35:40 +08:00
David Mak 6d171ec284 core: Add label name and hooks to gen_for functions 2024-07-26 13:35:40 +08:00
David Mak 0ba68f6657 core: Set target triple and datalayout for each module
Fixes an issue with inconsistent pointer sizes causing crashes.
2024-07-26 13:35:40 +08:00
David Mak 693b2a8863 core: Add support for 32-bit size_t on 64-bit targets 2024-07-26 13:35:40 +08:00
David Mak 5faeede0e5 Determine size_t using LLVM target machine 2024-07-26 13:35:38 +08:00
David Mak 266707df9d standalone: Add support for running 32-bit binaries 2024-07-26 13:32:38 +08:00
David Mak 3d3c258756 standalone: Remove support for --lli 2024-07-26 13:32:38 +08:00
David Mak ed1182cb24 standalone: Update format specifiers for exceptions
Use platform-agnostic identifiers instead.
2024-07-26 13:32:37 +08:00
David Mak fd025c1137 standalone: Use uint32_t for cslice length
Matching the expected type of string and list slices.
2024-07-26 13:32:21 +08:00
David Mak f139db9af9 meta: Update dependencies 2024-07-26 10:33:02 +08:00
lyken 44487b76ae standalone: interpret_demo.py remove duplicated section 2024-07-22 17:23:35 +08:00
lyken 1332f113e8 standalone: fix interpret_demo.py comments 2024-07-22 17:06:14 +08:00
Sébastien Bourdeauducq 7632d6f72a cargo: update dependencies 2024-07-21 11:00:25 +08:00
David Mak 4948395ca2 core/toplevel/type_annotation: Add handling for mismatching class def
Primitive types only contain fields in its Type and not its TopLevelDef.
This causes primitive object types to lack some fields.
2024-07-19 14:42:14 +08:00
David Mak 3db3061d99 artiq/symbol_resolver: Handle type of zero-length lists 2024-07-19 14:42:14 +08:00
David Mak 51c2175c80 core/codegen/stmt: Convert assertion values to i1 2024-07-19 14:42:14 +08:00
lyken 1a31a50b8a
standalone: fix __nac3_raise def in demo.c 2024-07-17 21:22:08 +08:00
154 changed files with 13671 additions and 10468 deletions

32
.clang-format Normal file
View File

@ -0,0 +1,32 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
__pycache__
/target
/nac3standalone/demo/linalg/target
nix/windows/msys2

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [commit]
default_stages: [pre-commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: cargo
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [fmt]
args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: cargo
entry: nix
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [clippy, --tests]
args: [develop, -c, cargo, clippy, --tests]

573
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -4,6 +4,7 @@ members = [
"nac3ast",
"nac3parser",
"nac3core",
"nac3core/nac3core_derive",
"nac3standalone",
"nac3artiq",
"runkernel",

View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1720418205,
"narHash": "sha256-cPJoFPXU44GlhWg4pUk9oUPqurPlCFZ11ZQPk21GTPU=",
"lastModified": 1731319897,
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "655a58a72a6601292512670343087c2d75d859c1",
"rev": "dc460ec76cbff0e66e269457d7b728432263166c",
"type": "github"
},
"original": {

View File

@ -6,6 +6,7 @@
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -13,9 +14,24 @@
''
mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
@ -24,9 +40,8 @@
cargoLock = {
lockFile = ./Cargo.lock;
};
cargoTestFlags = [ "--features" "test" ];
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
@ -34,7 +49,9 @@
echo "Checking nac3standalone demos..."
pushd nac3standalone/demo
patchShebangs .
./check_demos.sh
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
@ -90,18 +107,18 @@
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "sipyco";
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
})
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
})
];
buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out
];
phases = [ "buildPhase" "installPhase" ];
@ -151,7 +168,7 @@
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
llvmPackages_14.clang llvmPackages_14.llvm.out # for running nac3standalone demos
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
@ -163,10 +180,12 @@
clippy
pre-commit
rustfmt
rust-analyzer
];
# https://nixos.wiki/wiki/Rust#Shell.nix_example
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -12,15 +12,10 @@ crate-type = ["cdylib"]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
tempfile = "3.13"
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -112,10 +112,15 @@ def extern(function):
register_function(function)
return function
def rpc(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""
@ -201,7 +206,7 @@ class Core:
embedding = EmbeddingMap()
if allow_registration:
compiler.analyze(registered_functions, registered_classes)
compiler.analyze(registered_functions, registered_classes, set())
allow_registration = False
if hasattr(method, "__self__"):

26
nac3artiq/demo/str_abi.py Normal file
View File

@ -0,0 +1,26 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,4 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![warn(clippy::pedantic)]
#![allow(
unsafe_op_in_unsafe_fn,
@ -16,63 +10,65 @@
clippy::wildcard_imports
)]
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
use std::process::Command;
use std::rc::Rc;
use std::sync::Arc;
use inkwell::{
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
use std::{
collections::{HashMap, HashSet},
fs,
io::Write,
process::Command,
rc::Rc,
sync::Arc,
};
use itertools::Itertools;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::typedef::{FunSignature, FuncArg},
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
};
use nac3ld::Linker;
use tempfile::{self, TempDir};
use crate::codegen::attributes_writeback;
use crate::{
codegen::{rpc_codegen_callback, ArtiqCodeGenerator},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
symbol_resolver::SymbolResolver,
toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
use nac3ld::Linker;
use codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
};
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
mod codegen;
mod symbol_resolver;
mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)]
enum Isa {
Host,
@ -126,7 +122,7 @@ struct Nac3 {
isa: Isa,
time_fns: &'static (dyn TimeFns + Sync),
primitive: PrimitiveStore,
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
builtins: Vec<BuiltinFuncSpec>,
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
primitive_ids: PrimitivePythonId,
working_directory: TempDir,
@ -146,14 +142,32 @@ impl Nac3 {
module: &PyObject,
registered_class_ids: &HashSet<u64>,
) -> PyResult<()> {
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> {
let module: &PyAny = module.extract(py)?;
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?))
})?;
let (module_name, source_file, source) =
Python::with_gil(|py| -> PyResult<(String, String, String)> {
let module: &PyAny = module.extract(py)?;
let source_file = module.getattr("__file__");
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
})?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -193,10 +207,8 @@ impl Nac3 {
body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
if let Some(id) = decorator_id_string(decorator) {
id == "kernel" || id == "portable" || id == "rpc"
} else {
false
}
@ -209,9 +221,8 @@ impl Nac3 {
}
StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node {
let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
if let Some(id) = decorator_id_string(decorator) {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
} else {
false
}
@ -264,7 +275,7 @@ impl Nac3 {
arg_names.len(),
));
}
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) {
Some(n) => n,
None if default_value.is_none() => {
@ -300,6 +311,64 @@ impl Nac3 {
None
}
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
vec![
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"core_log".into(),
FunSignature {
args: vec![FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
}],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"rtio_log".into(),
FunSignature {
args: vec![
FuncArg {
name: "channel".into(),
ty: primitives.str,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
},
],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
]
}
fn compile_method<T>(
&self,
obj: &PyAny,
@ -312,6 +381,7 @@ impl Nac3 {
let size_t = self.isa.get_size_type();
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
self.builtins.clone(),
Self::get_lateinit_builtins(),
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
size_t,
);
@ -388,7 +458,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -419,9 +488,25 @@ impl Nac3 {
match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id));
if decorator_list
.iter()
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
}
}
StmtKind::ClassDef { name, body, .. } => {
@ -429,19 +514,26 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if name == &"__init__".into() {
return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location
)));
}
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
}
}
}
}
_ => ()
_ => (),
}
let id = *name_to_pyid.get(&name).unwrap();
@ -480,7 +572,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -497,6 +588,10 @@ impl Nac3 {
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
let mut store = ConcreteTypeStore::new();
@ -534,13 +629,12 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context());
{
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read();
for (class_data, id) in &rpc_ids {
for (class_data, id, is_async) in &rpc_ids {
let mut def = defs[id.0].write();
match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen.clone());
*codegen_callback = Some(rpc_codegen_callback(*is_async));
}
TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap();
@ -551,7 +645,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write()
{
*codegen_callback = Some(rpc_codegen.clone());
*codegen_callback = Some(rpc_codegen_callback(*is_async));
store_fun
.call1(
py,
@ -566,6 +660,11 @@ impl Nac3 {
}
}
}
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
}
}
}
@ -586,33 +685,12 @@ impl Nac3 {
let task = CodeGenTask {
subst: Vec::default(),
symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()),
signature,
resolver,
store,
unifier_index: instance.unifier_id,
calls: Arc::new(HashMap::default()),
calls: instance.calls,
id: 0,
};
@ -625,7 +703,9 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = if self.isa == Isa::Host { 64 } else { 32 };
let size_t = context
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names
@ -634,16 +714,27 @@ impl Nac3 {
.collect();
let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| {
let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
let context = Context::create();
let module = context.create_module("main");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
@ -651,9 +742,27 @@ impl Nac3 {
&registry,
builder,
module,
attributes_writeback_task,
task,
|generator, ctx| {
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
},
)
.unwrap();
@ -662,37 +771,24 @@ impl Nac3 {
membuffer.lock().push(buffer);
});
let context = inkwell::context::Context::create();
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`.
let buffers = membuffers.lock();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
.create_module_from_ir(MemoryBuffer::create_from_memory_range(
buffers.last().unwrap(),
"main",
))
.unwrap();
for buffer in buffers.iter().skip(1) {
for buffer in buffers.iter().rev().skip(1) {
let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
}
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(load_irrt(&context))
.map_err(|err| CompileError::new_err(err.to_string()))?;
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function();
while let Some(func) = function_iter {
@ -778,6 +874,41 @@ impl Nac3 {
}
}
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![
"-shared".to_string(),
@ -847,7 +978,7 @@ impl Nac3 {
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
};
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(isa.get_size_type()).0;
let (primitive, _) = TopLevelComposer::make_primitives(isa.get_size_type());
let builtins = vec![
(
"now_mu".into(),
@ -863,6 +994,7 @@ impl Nac3 {
name: "t".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
@ -882,6 +1014,7 @@ impl Nac3 {
name: "dt".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
@ -957,7 +1090,12 @@ impl Nac3 {
})
}
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> {
fn analyze(
&mut self,
functions: &PySet,
classes: &PySet,
content_modules: &PySet,
) -> PyResult<()> {
let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: HashMap<u64, PyObject> = HashMap::new();
@ -967,14 +1105,22 @@ impl Nac3 {
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions {
let module = getmodule_fn.call1((function,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
}
for class in classes {
let module = getmodule_fn.call1((class,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?);
}
for module in content_modules {
let module: PyObject = module.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
Ok((modules, class_ids))
})?;

View File

@ -1,14 +1,30 @@
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
classes::{NDArrayType, ProxyType},
types::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator,
},
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
@ -20,21 +36,8 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
use crate::PrimitivePythonId;
use super::PrimitivePythonId;
pub enum PrimitiveValue {
I32(i32),
@ -79,7 +82,6 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -133,6 +135,8 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(),
);
global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false,
@ -163,7 +167,7 @@ impl StaticValue for PythonValue {
PrimitiveValue::Bool(val) => {
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
}
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
});
}
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -351,7 +355,7 @@ impl InnerResolver {
Ok(Ok((ndarray, false)))
} else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false)))
} else if ty_id == self.primitive_ids.option {
Ok(Ok((primitives.option, false)))
} else if ty_id == self.primitive_ids.none {
@ -555,7 +559,10 @@ impl InnerResolver {
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
Ok(Ok((
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
true,
)))
}
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
@ -797,7 +804,9 @@ impl InnerResolver {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
Ok(types.map(|types| {
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
}))
}
// special handling for option type since its class member layout in python side
// is special and cannot be mapped directly to a nac3 type as below
@ -972,7 +981,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
Ok(Some(ctx.gen_string(generator, val).into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
@ -991,8 +1000,15 @@ impl InnerResolver {
}
_ => unreachable!("must be list"),
};
let ty = ctx.get_llvm_type(generator, elem_ty);
let size_t = generator.get_size_type(ctx.ctx);
let ty = if len == 0
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
{
// The default type for zero-length lists of unknown element type is size_t
size_t.into()
} else {
ctx.get_llvm_type(generator, elem_ty)
};
let arr_ty = ctx
.ctx
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
@ -1080,7 +1096,7 @@ impl InnerResolver {
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(),
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()),
&id_str,
)
@ -1174,20 +1190,24 @@ impl InnerResolver {
data_global.set_initializer(&data);
// create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
let value = ndarray_llvm_ty
.as_base_type()
.get_element_type()
.into_struct_type()
.const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
let ndarray = ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(),
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()),
&id_str,
);
@ -1196,7 +1216,9 @@ impl InnerResolver {
Ok(Some(ndarray.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() };
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
unreachable!()
};
let tup_tys = ty.iter();
let elements: &PyTuple = obj.downcast()?;
@ -1452,6 +1474,7 @@ impl SymbolResolver for Resolver {
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();

View File

@ -1,9 +1,12 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either;
use nac3core::codegen::CodeGenContext;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline.
pub trait TimeFns {
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();

View File

@ -10,7 +10,6 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.5"
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -5,14 +5,12 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
lazy_static! {
static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
static INTERNER: LazyLock<Mutex<Interner>> =
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,10 +1,4 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
@ -14,9 +8,6 @@
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]

View File

@ -1,26 +1,29 @@
[features]
test = []
[package]
name = "nac3core"
version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = []
[dependencies]
itertools = "0.13"
crossbeam = "0.8"
indexmap = "2.2"
indexmap = "2.6"
parking_lot = "0.12"
rayon = "1.8"
rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
nac3parser = { path = "../nac3parser" }
strum = "0.26.2"
strum_macros = "0.26.4"
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.4"
version = "0.5"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"

View File

@ -1,68 +1,63 @@
use regex::Regex;
use std::{
env,
fs::File,
io::Write,
path::{Path, PathBuf},
path::Path,
process::{Command, Stdio},
};
const CMD_IRRT_CLANG: &str = "clang-irrt";
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
use regex::Regex;
fn get_out_dir() -> PathBuf {
PathBuf::from(env::var("OUT_DIR").unwrap())
}
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
fn get_irrt_dir() -> &'static Path {
Path::new("irrt")
}
/// Compile `irrt.cpp` for use in `src/codegen`
fn compile_irrt_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
let flags: &[&str] = &[
let mut flags: Vec<&str> = vec![
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
},
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-I",
irrt_dir.to_str().unwrap(),
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new(CMD_IRRT_CLANG)
let output = Command::new("clang-irrt")
.args(flags)
.output()
.map(|o| {
.inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
@ -103,9 +98,7 @@ fn compile_irrt_cpp() {
file.write_all(filtered_output.as_bytes()).unwrap();
}
// Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
@ -114,50 +107,3 @@ fn compile_irrt_cpp() {
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success());
}
/// Compile `irrt_test.cpp` for testing
fn compile_irrt_test_cpp() {
let out_dir = get_out_dir();
let irrt_dir = get_irrt_dir();
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
let flags: &[&str] = &[
irrt_test_cpp_path.to_str().unwrap(),
"-x",
"c++",
"-I",
irrt_dir.to_str().unwrap(),
"-g",
"-fno-discard-value-names",
"-O0",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-lm", // for `tgamma()`, `lgamma()`
"-I",
irrt_dir.to_str().unwrap(),
"-o",
exe_path.to_str().unwrap(),
];
Command::new(CMD_IRRT_CLANG_TEST)
.args(flags)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
}
fn main() {
compile_irrt_cpp();
// https://github.com/rust-lang/cargo/issues/2549
// `cargo test -F test` to also build `irrt_test.cpp
if cfg!(feature = "test") {
compile_irrt_test_cpp();
}
}

View File

@ -1,9 +1,5 @@
#define IRRT_DEFINE_TYPEDEF_INTS
#include <irrt_everything.hpp>
/*
All IRRT implementations.
We don't have any pre-compiled objects, so we are writing all implementations in headers and
concatenate them with `#include` into one massive source file that contains all the IRRT stuff.
*/
#include "irrt/exception.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"

View File

@ -1,402 +0,0 @@
#pragma once
#include <irrt/utils.hpp>
#include <irrt/int_defs.hpp>
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(
const SizeT* list_data,
SizeT list_len,
SizeT begin_idx,
SizeT end_idx
) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(
SizeT index,
const SizeT* dims,
SizeT num_dims,
NDIndex* idxs
) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(
const SizeT* dims,
SizeT num_dims,
const NDIndex* indices,
SizeT num_indices
) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(
const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims
) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(
const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) {\
return __nac3_int_exp_impl(base, exp);\
}
DEF_nac3_int_exp_(int32_t)
DEF_nac3_int_exp_(int64_t)
DEF_nac3_int_exp_(uint32_t)
DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(
const SliceIndex start,
const SliceIndex end,
const SliceIndex step
) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)
);
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(
const uint32_t* list_data,
uint32_t list_len,
uint32_t begin_idx,
uint32_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t __nac3_ndarray_calc_size64(
const uint64_t* list_data,
uint64_t list_len,
uint64_t begin_idx,
uint64_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(
uint32_t index,
const uint32_t* dims,
uint32_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(
uint64_t index,
const uint64_t* dims,
uint64_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(
const uint32_t* dims,
uint32_t num_dims,
const NDIndex* indices,
uint32_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(
const uint64_t* dims,
uint64_t num_dims,
const NDIndex* indices,
uint64_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(
const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(
const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(
const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(
const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // extern "C"

View File

@ -0,0 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
void* base;
SizeT len;
};

View File

@ -0,0 +1,25 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,85 +0,0 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/utils.hpp>
namespace {
// nac3core's "str" struct type definition
template <typename SizeT>
struct Str {
const char* content;
SizeT length;
};
// A limited set of errors IRRT could use.
typedef uint32_t ErrorId;
struct ErrorIds {
ErrorId index_error;
ErrorId value_error;
ErrorId assertion_error;
ErrorId runtime_error;
ErrorId type_error;
};
struct ErrorContext {
// Context
const ErrorIds* error_ids;
// Error thrown by IRRT
ErrorId error_id;
const char* message_template; // MUST BE `&'static`
int64_t param1;
int64_t param2;
int64_t param3;
void initialize(const ErrorIds* error_ids) {
this->error_ids = error_ids;
clear_error();
}
void clear_error() {
// Point the message_template to an empty str. Don't set it to nullptr as a sentinel
this->message_template = "";
}
void set_error(ErrorId error_id, const char* message, int64_t param1 = 0, int64_t param2 = 0, int64_t param3 = 0) {
this->error_id = error_id;
this->message_template = message;
this->param1 = param1;
this->param2 = param2;
this->param3 = param3;
}
bool has_error() {
return !cstr_utils::is_empty(message_template);
}
template <typename SizeT>
void get_error_str(Str<SizeT> *dst_str) {
dst_str->content = message_template;
dst_str->length = (SizeT) cstr_utils::length(message_template);
}
};
}
extern "C" {
void __nac3_error_context_initialize(ErrorContext* errctx, const ErrorIds* error_ids) {
errctx->initialize(error_ids);
}
bool __nac3_error_context_has_no_error(ErrorContext* errctx) {
return !errctx->has_error();
}
void __nac3_error_context_get_error_str(ErrorContext* errctx, Str<int32_t> *dst_str) {
errctx->get_error_str<int32_t>(dst_str);
}
void __nac3_error_context_get_error_str64(ErrorContext* errctx, Str<int64_t> *dst_str) {
errctx->get_error_str<int64_t>(dst_str);
}
void __nac3_error_dummy_raise(ErrorContext* errctx) {
errctx->set_error(errctx->error_ids->runtime_error, "THROWN FROM __nac3_error_dummy_raise!!!!!!");
}
}

View File

@ -0,0 +1,85 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
using ExceptionId = int32_t;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
} // namespace
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)

View File

@ -1,12 +0,0 @@
#pragma once
// This is made toggleable since `irrt_test.cpp` itself would include
// headers that define these typedefs
#ifdef IRRT_DEFINE_TYPEDEF_INTS
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
#endif

View File

@ -0,0 +1,27 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -0,0 +1,81 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -0,0 +1,93 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -0,0 +1,13 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -0,0 +1,144 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // namespace

View File

@ -1,221 +0,0 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/error_context.hpp>
#include <irrt/numpy/ndarray_def.hpp>
namespace { namespace ndarray { namespace basic {
namespace util {
// throw an error if there is an axis with negative dimension
template <typename SizeT>
void assert_shape_no_negative(ErrorContext* errctx, SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
errctx->set_error(
errctx->error_ids->value_error,
"negative dimensions are not allowed; axis {0} has dimension {1}",
axis, shape[axis]
);
return;
}
}
}
// compute the size/# of elements of an ndarray given its shape
template <typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
return size;
}
// compute the strides of an ndarray given an ndarray `shape`
// and assuming that the ndarray is *fully c-contagious*.
//
// you might want to read up on https://ajcr.net/stride-guide-part-1/.
//
// this function might be used in isolation without an ndarray. that's
// why it separated out into its own util function.
template <typename SizeT>
void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndims; i++) {
int axis = ndims - i - 1;
dst_strides[axis] = stride_product * itemsize;
stride_product *= shape[axis];
}
}
template <typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (int32_t i = 0; i < ndims; i++) {
int32_t axis = ndims - i - 1;
int32_t dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
}
// calculate the size/# of elements of an `ndarray`.
// this function corresponds to `np.size(<ndarray>)` or `ndarray.size`
template <typename SizeT>
SizeT size(NDArray<SizeT>* ndarray) {
return util::calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
// calculate the number of bytes of its content of an `ndarray` *in its view*.
// this function corresponds to `ndarray.nbytes`
template <typename SizeT>
SizeT nbytes(NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
template <typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
util::set_strides_by_shape(ndarray->itemsize, ndarray->ndims, ndarray->strides, ndarray->shape);
}
template <typename SizeT>
uint8_t* get_pelement_by_indices(NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
template <typename SizeT>
uint8_t* get_nth_pelement(NDArray<SizeT>* ndarray, SizeT nth) {
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, nth);
return get_pelement_by_indices(ndarray, indices);
}
// get the pointer to the nth element of the ndarray as if it were flattened.
template <typename SizeT>
uint8_t* checked_get_nth_pelement(NDArray<SizeT>* ndarray, ErrorContext* errctx, SizeT nth) {
SizeT arr_size = ndarray->size();
if (!(0 <= nth && nth < arr_size)) {
errctx->set_error(
errctx->error_ids->index_error,
"index {0} is out of bounds, valid range is {1} <= index < {2}",
nth, 0, arr_size
);
return 0;
}
return get_nth_pelement(ndarray, nth);
}
template <typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
template <typename SizeT>
void len(ErrorContext* errctx, NDArray<SizeT>* ndarray, SliceIndex* dst_length) {
// Error if the ndarray is "unsized" (i.e, ndims == 0)
if (ndarray->ndims == 0) {
// Error copied from python by doing `len(np.zeros(()))`
errctx->set_error(
errctx->error_ids->type_error,
"len() of unsized object"
);
return; // Terminate
}
*dst_length = (SliceIndex) ndarray->shape[0];
}
// Copy data from one ndarray to another *OF THE EXACT SAME* ndims, shape, and itemsize.
template <typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
__builtin_assume(src_ndarray->ndims == dst_ndarray->ndims);
__builtin_assume(src_ndarray->itemsize == dst_ndarray->itemsize);
for (SizeT i = 0; i < src_ndarray->size; i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
// `copy_data()` with assertions to check ndims, shape, and itemsize between the two ndarrays.
template <typename SizeT>
void copy_data_checked(ErrorContext* errctx, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// NOTE: Out of all error types, runtime error seems appropriate
// Check ndims
if (src_ndarray->ndims != dst_ndarray->ndims) {
errctx->set_error(
errctx->error_ids->runtime_error,
"IRRT copy_data_checked input arrays `ndims` are mismatched"
);
return; // Terminate
}
// Check shape
if (!arrays_match(src_ndarray->ndims, src_ndarray->shape, dst_ndarray->shape)) {
errctx->set_error(
errctx->error_ids->runtime_error,
"IRRT copy_data_checked input arrays `shape` are mismatched"
);
return; // Terminate
}
// Check itemsize
if (src_ndarray->itemsize != dst_ndarray->itemsize) {
errctx->set_error(
errctx->error_ids->runtime_error,
"IRRT copy_data_checked input arrays `itemsize` are mismatched"
);
return; // Terminate
}
copy_data(src_ndarray, dst_ndarray);
}
} } }
extern "C" {
using namespace ndarray::basic;
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
void __nac3_ndarray_len(ErrorContext* errctx, NDArray<int32_t>* ndarray, SliceIndex* dst_len) {
return len(errctx, ndarray, dst_len);
}
void __nac3_ndarray_len64(ErrorContext* errctx, NDArray<int64_t>* ndarray, SliceIndex* dst_len) {
return len(errctx, ndarray, dst_len);
}
void __nac3_ndarray_util_assert_shape_no_negative(ErrorContext* errctx, int32_t ndims, int32_t* shape) {
util::assert_shape_no_negative(errctx, ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(ErrorContext* errctx, int64_t ndims, int64_t* shape) {
util::assert_shape_no_negative(errctx, ndims, shape);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
}

View File

@ -1,135 +0,0 @@
#include <irrt/numpy/ndarray_def.hpp>
namespace { namespace ndarray { namespace broadcast {
namespace util {
template <typename SizeT>
void assert_broadcast_shape_to(
ErrorContext* errctx,
const SizeT target_ndims,
const SizeT* target_shape,
const SizeT src_ndims,
const SizeT* src_shape
) {
/*
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
This function handles this example:
```
Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3
```
Other interesting examples to consider:
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) ... ok`
- `can_broadcast_shape_to([3], [3, 1]) == false`
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) ... ok`
In cases when the shapes contain zero(es):
- `can_broadcast_shape_to([0], [1]) ... ok`
- `can_broadcast_shape_to([0], [2]) == false`
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) ... ok`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) ... ok`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) ... ok`
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
*/
// Target ndims must not be smaller than source ndims
// e.g., `np.broadcast_to(np.zeros((1, 1, 1, 1)), (1, ))` is prohibited by numpy
if (target_ndims < src_ndims) {
// Error copied from python by doing the `np.broadcast_to(np.zeros((1, 1, 1, 1)), (1, ))`
errctx->set_error(
errctx->error_ids->value_error,
"input operand has more dimensions than allowed by the axis remapping"
);
return; // Terminate
}
// Implements the rules in https://numpy.org/doc/stable/user/basics.broadcasting.html
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_axis = target_ndims - i - 1;
SizeT src_axis = src_ndims - i - 1;
bool target_dim_exists = target_axis >= 0;
bool src_dim_exists = src_axis >= 0;
SizeT target_dim = target_dim_exists ? target_shape[target_axis] : 1;
SizeT src_dim = src_dim_exists ? src_shape[src_axis] : 1;
bool ok = src_dim == 1 || target_dim == src_dim;
if (!ok) {
// Error copied from python by doing `np.broadcast_to(np.zeros((3, 1)), (1, 1)),
// but this is the true numpy error:
// "ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (3,1) and requested shape (1,1)"
// TODO: we cannot show more than 3 parameters!!
errctx->set_error(
errctx->error_ids->value_error,
"operands could not be broadcast together with remapping shapes [original->remapped]"
);
return; // Terminate
}
}
}
}
// Similar to `np.broadcast_to(<ndarray>, <target_shape>)`
// Assumptions:
// - `src_ndarray` has to be fully initialized.
// - `dst_ndarray->ndims` has to be set.
// - `dst_ndarray->shape` has to be set, this determines the shape `this` broadcasts to.
//
// Other notes:
// - `dst_ndarray->data` does not have to be set, it will be set to `src_ndarray->data`.
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `src_ndarray->data`.
// - `dst_ndarray->strides` does not have to be set, it will be overwritten.
//
// Cautions:
// ```
// xs = np.zeros((4,))
// ys = np.zero((4, 1))
// ys[:] = xs # ok
//
// xs = np.zeros((1, 4))
// ys = np.zero((4,))
// ys[:] = xs # allowed
// # However `np.broadcast_to(xs, (4,))` would fails, as per numpy's broadcasting rule.
// # and apparently numpy will "deprecate" this? SEE https://github.com/numpy/numpy/issues/21744
// # This implementation will NOT support this assignment.
// ```
template <typename SizeT>
void broadcast_to(ErrorContext* errctx, NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
ndarray::broadcast::util::assert_broadcast_shape_to(
errctx,
dst_ndarray->ndims,
dst_ndarray->shape,
src_ndarray->ndims,
src_ndarray->shape
);
if (errctx->has_error()) {
return; // Propagate error
}
SizeT stride_product = 1;
for (SizeT i = 0; i < max(src_ndarray->ndims, dst_ndarray->ndims); i++) {
SizeT this_dim_i = src_ndarray->ndims - i - 1;
SizeT dst_dim_i = dst_ndarray->ndims - i - 1;
bool this_dim_exists = this_dim_i >= 0;
bool dst_dim_exists = dst_dim_i >= 0;
// TODO: Explain how this works
bool c1 = this_dim_exists && src_ndarray->shape[this_dim_i] == 1;
bool c2 = dst_dim_exists && dst_ndarray->shape[dst_dim_i] != 1;
if (!this_dim_exists || (c1 && c2)) {
dst_ndarray->strides[dst_dim_i] = 0; // Freeze it in-place
} else {
dst_ndarray->strides[dst_dim_i] = stride_product * src_ndarray->itemsize;
stride_product *= src_ndarray->shape[this_dim_i]; // NOTE: this_dim_exist must be true here.
}
}
}
} } }

View File

@ -1,55 +0,0 @@
#pragma once
namespace {
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
//
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
//
// Some resources you might find helpful:
// - The official numpy implementations:
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
// - On strides (about reshaping, slicing, C-contagiousness, etc)
// - https://ajcr.net/stride-guide-part-1/.
// - https://ajcr.net/stride-guide-part-2/.
// - https://ajcr.net/stride-guide-part-3/.
template <typename SizeT>
struct NDArray {
// The underlying data this `ndarray` is pointing to.
//
// NOTE: Formally this should be of type `void *`, but clang
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
// so we will put `uint8_t *` here for clarity.
//
// This pointer should point to the first element of the ndarray directly
uint8_t *data;
// The number of bytes of a single element in `data`.
//
// The `SizeT` is treated as `unsigned`.
SizeT itemsize;
// The number of dimensions of this shape.
//
// The `SizeT` is treated as `unsigned`.
SizeT ndims;
// Array shape, with length equal to `ndims`.
//
// The `SizeT` is treated as `unsigned`.
//
// NOTE: `shape` can contain 0.
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
SizeT *shape;
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
//
// The `SizeT` is treated as `signed`.
//
// NOTE: `strides` can have negative numbers.
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
SizeT *strides;
};
// Because ndarray is so complicated, its functions are splitted into
// different files and namespaces.
}

View File

@ -1,28 +0,0 @@
#pragma once
#include <irrt/numpy/ndarray_def.hpp>
#include <irrt/numpy/ndarray_basic.hpp>
namespace { namespace ndarray { namespace fill {
// Fill the ndarray with a value
template <typename SizeT>
void fill_generic(NDArray<SizeT>* ndarray, const uint8_t* pvalue) {
const SizeT size = ndarray::basic::size(ndarray);
for (SizeT i = 0; i < size; i++) {
uint8_t* pelement = ndarray::basic::get_nth_pelement(ndarray, i); // No need for checked_get_nth_pelement
ndarray::basic::set_pelement_value(ndarray, pelement, pvalue);
}
}
} } }
extern "C" {
using namespace ndarray::fill;
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
fill_generic(ndarray, pvalue);
}
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
fill_generic(ndarray, pvalue);
}
}

View File

@ -1,169 +0,0 @@
#pragma once
#include <irrt/slice.hpp>
#include <irrt/numpy/ndarray_def.hpp>
#include <irrt/numpy/ndarray_basic.hpp>
#include <irrt/error_context.hpp>
namespace {
typedef uint8_t NDSubscriptType;
const NDSubscriptType INPUT_SUBSCRIPT_TYPE_INDEX = 0;
const NDSubscriptType INPUT_SUBSCRIPT_TYPE_SLICE = 1;
struct NDSubscript {
// A poor-man's enum variant type
NDSubscriptType type;
/*
if type == INPUT_SUBSCRIPT_TYPE_INDEX => `slice` points to a single `SliceIndex`
if type == INPUT_SUBSCRIPT_TYPE_SLICE => `slice` points to a single `UserRange`
`SizeT` is controlled by the caller: `NDSubscript` only cares about where that
slice is (the pointer), `NDSubscript` does not care/know about the actual `sizeof()`
of the slice value.
*/
uint8_t* data;
};
}
namespace { namespace ndarray { namespace subscript {
namespace util {
template<typename SizeT>
void deduce_ndims_after_slicing(ErrorContext* errctx, SizeT* result, SizeT ndims, SizeT num_ndsubscripts, const NDSubscript* ndsubscripts) {
if (num_ndsubscripts > ndims) {
// Error copied from python by doing `np.zeros((3, 4))[:, :, :]`
errctx->set_error(
errctx->error_ids->index_error,
"too many indices for array: array is {0}-dimensional, but {1} were indexed",
ndims, num_ndsubscripts
);
return; // Terminate
}
SizeT final_ndims = ndims;
for (SizeT i = 0; i < num_ndsubscripts; i++) {
if (ndsubscripts[i].type == INPUT_SUBSCRIPT_TYPE_INDEX) {
final_ndims--; // An index demotes the rank by 1
}
}
*result = final_ndims;
}
}
// To support numpy "basic indexing" https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing
// "Advanced indexing" https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing is not supported
//
// This function supports:
// - "scalar indexing",
// - "slicing and strides",
// - and "dimensional indexing tools" (TODO, but this is really easy to implement).
//
// Things assumed by this function:
// - `dst_ndarray` is allocated by the caller
// - `dst_ndarray.ndims` has the correct value (according to `ndarray::util::deduce_ndims_after_slicing`).
// - ... and `dst_ndarray.shape` and `dst_ndarray.strides` have been allocated by the caller as well
//
// Other notes:
// - `dst_ndarray->data` does not have to be set, it will be derived.
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `src_ndarray->itemsize`
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
template <typename SizeT>
void subscript(ErrorContext* errctx, SliceIndex num_subscripts, NDSubscript* subscripts, NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
// irrt_assert(dst_ndarray->ndims == ndarray::util::deduce_ndims_after_slicing(src_ndarray->ndims, num_subscripts, subscripts));
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (SliceIndex i = 0; i < num_subscripts; i++) {
NDSubscript *ndsubscript = &subscripts[i];
if (ndsubscript->type == INPUT_SUBSCRIPT_TYPE_INDEX) {
// Handle when the ndsubscript is just a single (possibly negative) integer
// e.g., `my_array[::2, -5, ::-1]`
// ^^------ like this
SliceIndex input_index = *((SliceIndex*) ndsubscript->data);
SliceIndex index = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input_index);
if (index == slice::OUT_OF_BOUNDS) {
// Error message copied from numpy by doing `np.zeros((3, 4))[100]`
errctx->set_error(
errctx->error_ids->index_error,
"index {0} is out of bounds for axis {1} with size {2}",
input_index, src_axis, src_ndarray->shape[src_axis]
);
return; // Terminate
}
dst_ndarray->data += index * src_ndarray->strides[src_axis]; // Add offset
// Next
src_axis++;
} else if (ndsubscript->type == INPUT_SUBSCRIPT_TYPE_SLICE) {
// Handle when the ndsubscript is a slice (represented by UserSlice in IRRT)
// e.g., `my_array[::2, -5, ::-1]`
// ^^^------^^^^----- like these
UserSlice* input_user_slice = (UserSlice*) ndsubscript->data;
// TODO: use checked indices
Slice slice;
input_user_slice->indices_checked(errctx, src_ndarray->shape[src_axis], &slice); // To resolve negative indices and other funny stuff written by the user
if (errctx->has_error()) {
return; // Propagate error
}
// NOTE: There is no need to write special code to handle negative steps/strides.
// This simple implementation meticulously handles both positive and negative steps/strides.
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
dst_ndarray->data += (SizeT) slice.start * src_ndarray->strides[src_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
dst_ndarray->strides[dst_axis] = ((SizeT) slice.step) * src_ndarray->strides[src_axis]; // Determine stride
dst_ndarray->shape[dst_axis] = (SizeT) slice.len(); // Determine shape dimension
// Next
dst_axis++;
src_axis++;
} else {
__builtin_unreachable();
}
}
/*
Reference python code:
```python
dst_ndarray.shape.extend(src_ndarray.shape[src_axis:])
dst_ndarray.strides.extend(src_ndarray.strides[src_axis:])
```
*/
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
} } }
extern "C" {
using namespace ndarray::subscript;
void __nac3_ndarray_subscript_deduce_ndims_after_slicing(ErrorContext* errctx, int32_t* result, int32_t ndims, int32_t num_ndsubscripts, const NDSubscript* ndsubscripts) {
ndarray::subscript::util::deduce_ndims_after_slicing(errctx, result, ndims, num_ndsubscripts, ndsubscripts);
}
void __nac3_ndarray_subscript_deduce_ndims_after_slicing64(ErrorContext* errctx, int64_t* result, int64_t ndims, int64_t num_ndsubscripts, const NDSubscript* ndsubscripts) {
ndarray::subscript::util::deduce_ndims_after_slicing(errctx, result, ndims, num_ndsubscripts, ndsubscripts);
}
void __nac3_ndarray_subscript(ErrorContext* errctx, SliceIndex num_subscripts, NDSubscript* subscripts, NDArray<int32_t>* src_ndarray, NDArray<int32_t> *dst_ndarray) {
subscript(errctx, num_subscripts, subscripts, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_subscript64(ErrorContext* errctx, SliceIndex num_subscripts, NDSubscript* subscripts, NDArray<int64_t>* src_ndarray, NDArray<int64_t> *dst_ndarray) {
subscript(errctx, num_subscripts, subscripts, src_ndarray, dst_ndarray);
}
}

View File

@ -1,143 +1,28 @@
#pragma once
#include <irrt/int_defs.hpp>
#include <irrt/slice.hpp>
#include "irrt/int_types.hpp"
namespace {
struct Slice {
SliceIndex start;
SliceIndex stop;
SliceIndex step;
// The length/The number of elements of the slice if it were a range,
// i.e., the value of `len(range(this->start, this->stop, this->end))`
SliceIndex len() {
SliceIndex diff = stop - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
};
namespace slice {
// "Resolve" an index value under a length in Python lists.
// If you have a `list` of length 100, `list[-1]` would resolve to `list[100-1] == list[99]`.
//
// If length == 0, this function returns 0
//
// If index is out of bounds, this function clamps the value
// (to `list[0]` or `list[-1]` in the context of a list and depending on if index is + or -)
SliceIndex resolve_index_in_length_clamped(SliceIndex length, SliceIndex index) {
if (index < 0) {
// Remember that index is negative, so do a plus here
return max<SliceIndex>(length + index, 0);
} else {
return min<SliceIndex>(length, index);
}
}
const SliceIndex OUT_OF_BOUNDS = -1;
// Like `resolve_index_in_length`.
// But also checks if the resolved index is in
// bounds (function returns true) or out of bounds
// (function returns false); `0 <= resolved index < length` is false).
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
SliceIndex resolved = index < 0 ? length + index : index;
bool in_bounds = 0 <= resolved && resolved < length;
return in_bounds ? resolved : OUT_OF_BOUNDS;
}
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
// A user-written Python-like slice.
//
// i.e., this slice is a triple of either an int or nothing. (e.g., `my_array[:10:2]`, `start` is None)
//
// You can "resolve" a `UserSlice` by using `user_slice.indices(<length>)`
struct UserSlice {
// Did the user specify `start`? If 0, `start` is undefined (and contains an empty value)
bool start_defined;
SliceIndex start;
// Similar to `start_defined`
bool stop_defined;
SliceIndex stop;
// Similar to `start_defined`
bool step_defined;
SliceIndex step;
// Convenient constructor for C++ internal use only (say testing)
UserSlice() {
this->reset();
}
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(SliceIndex start) {
this->start_defined = true;
this->start = start;
}
void set_stop(SliceIndex stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(SliceIndex step) {
this->step_defined = true;
this->step = step;
}
// Like Python's `slice(start, stop, step).indices(length)`
void indices(SliceIndex length, Slice* result) {
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
result->step = step_defined ? step : 1;
bool step_is_negative = result->step < 0;
if (start_defined) {
result->start = slice::resolve_index_in_length_clamped(length, start);
} else {
result->start = step_is_negative ? length - 1 : 0;
}
if (stop_defined) {
result->stop = slice::resolve_index_in_length_clamped(length, stop);
} else {
result->stop = step_is_negative ? -1 : length;
}
}
// `indices()` but asserts `this->step != 0` and `this->length >= 0`
void indices_checked(ErrorContext* errctx, SliceIndex length, Slice* result) {
if (length < 0) {
errctx->set_error(
errctx->error_ids->value_error,
"length should not be negative, got {0}", // Edited. Error message copied from python by doing `slice(0, 0, 0).indices(100)`
length
);
return;
}
if (this->step_defined && this->step == 0) {
// Error message
errctx->set_error(
errctx->error_ids->value_error,
"slice step cannot be zero" // Error message copied from python by doing `slice(0, 0, 0).indices(100)`
);
return;
}
this->indices(length, result);
}
};
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
} // namespace

View File

@ -1,78 +0,0 @@
#pragma once
#include <irrt/int_defs.hpp>
namespace {
template <typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
template <typename T>
bool arrays_match(int len, T* as, T* bs) {
for (int i = 0; i < len; i++) {
if (as[i] != bs[i]) return false;
}
return true;
}
namespace cstr_utils {
bool is_empty(const char* str) {
return str[0] == '\0';
}
int8_t compare(const char* a, const char* b) {
uint32_t i = 0;
while (true) {
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else { // a[i] == b[i]
if (a[i] == '\0') {
return 0;
} else {
i++;
}
}
}
}
int8_t equal(const char* a, const char* b) {
return compare(a, b) == 0;
}
uint32_t length(const char* str) {
uint32_t length = 0;
while (*str != '\0') {
length++;
str++;
}
return length;
}
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
for (uint32_t i = 0; i < dst_max_size; i++) {
bool is_last = i + 1 == dst_max_size;
if (is_last && src[i] != '\0') {
dst[i] = '\0';
return false;
}
if (src[i] == '\0') {
dst[i] = '\0';
return true;
}
dst[i] = src[i];
}
__builtin_unreachable();
}
}
}

View File

@ -1,12 +0,0 @@
#pragma once
#include <irrt/core.hpp>
#include <irrt/error_context.hpp>
#include <irrt/int_defs.hpp>
#include <irrt/numpy/ndarray_basic.hpp>
#include <irrt/numpy/ndarray_broadcast.hpp>
#include <irrt/numpy/ndarray_def.hpp>
#include <irrt/numpy/ndarray_fill.hpp>
#include <irrt/numpy/ndarray_subscript.hpp>
#include <irrt/slice.hpp>
#include <irrt/utils.hpp>

View File

@ -1,25 +0,0 @@
// This file will be compiled like a real C++ program,
// and we do have the luxury to use the standard libraries.
// That is if the nix flakes do not have issues... especially on msys2...
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <irrt_everything.hpp>
#include <test/core.hpp>
#include <test/test_core.hpp>
#include <test/test_ndarray_basic.hpp>
#include <test/test_ndarray_subscript.hpp>
#include <test/test_ndarray_broadcast.hpp>
#include <test/test_slice.hpp>
int main() {
// Be wise about the order of suites!!
test::core::run();
test::slice::run();
test::ndarray_basic::run();
test::ndarray_subscript::run();
test::ndarray_broadcast::run();
return 0;
}

View File

@ -1,143 +0,0 @@
#pragma once
// Include this header for every test_*.cpp
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <test/print.hpp>
// Some utils can be used here
#include <irrt/utils.hpp>
void __begin_test(const char* function_name, const char* file, int line) {
printf("######### Running %s @ %s:%d\n", function_name, file, line);
}
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
void test_fail() {
printf("[!] Test failed. Exiting with status code 1.\n");
exit(1);
}
void print_assertion_passed(const char* file, int line) {
printf("[*] Assertion passed on %s:%d\n", file, line);
}
void print_assertion_failed(const char* file, int line) {
printf("[!] Assertion failed on %s:%d\n", file, line);
}
void __assert_true(const char* file, int line, bool cond) {
if (cond) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
test_fail();
}
}
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
template <typename T>
void __assert_arrays_match(const char* file, int line, int len, const T* expected, const T* got) {
if (arrays_match(len, expected, got)) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
print_array(len, expected);
printf("\n");
printf(" Got = ");
print_array(len, got);
printf("\n");
test_fail();
}
}
#define assert_arrays_match(len, expected, got) __assert_arrays_match(__FILE__, __LINE__, len, expected, got)
template <typename T>
void __assert_values_match(const char* file, int line, T expected, T got) {
if (expected == got) {
print_assertion_passed(file, line);
} else {
print_assertion_failed(file, line);
printf("Expect = ");
print_value(expected);
printf("\n");
printf(" Got = ");
print_value(got);
printf("\n");
test_fail();
}
}
#define assert_values_match(expected, got) __assert_values_match(__FILE__, __LINE__, expected, got)
// A fake set of ErrorIds for testing only
const ErrorIds TEST_ERROR_IDS = {
.index_error = 0,
.value_error = 1,
.assertion_error = 2,
.runtime_error = 3,
};
ErrorContext create_testing_errctx() {
// Everything is global so it is fine to directly return a struct ErrorContext
ErrorContext errctx;
errctx.initialize(&TEST_ERROR_IDS);
return errctx;
}
void print_errctx_content(ErrorContext* errctx) {
if (errctx->has_error()) {
printf(
"(Error ID %d): %s ... where param1 = %ld, param2 = %ld, param3 = %ld\n",
errctx->error_id,
errctx->message_template,
errctx->param1,
errctx->param2,
errctx->param3
);
} else {
printf("<no error>\n");
}
}
void __assert_errctx_no_error(const char* file, int line, ErrorContext* errctx) {
if (errctx->has_error()) {
print_assertion_failed(file, line);
printf("Expecting no error but caught the following:\n\n");
print_errctx_content(errctx);
test_fail();
}
}
#define assert_errctx_no_error(errctx) __assert_errctx_no_error(__FILE__, __LINE__, errctx)
void __assert_errctx_has_error(const char* file, int line, ErrorContext* errctx, ErrorId expected_error_id) {
if (errctx->has_error()) {
if (errctx->error_id == expected_error_id) {
// OK
} else {
// Otherwise it got the wrong kind of error
print_assertion_failed(file, line);
printf(
"Expecting error id %d but got error id %d. Error caught:\n\n",
expected_error_id,
errctx->error_id
);
print_errctx_content(errctx);
test_fail();
}
} else {
print_assertion_failed(file, line);
printf("Expecting an error, but there is none.");
test_fail();
}
}
#define assert_errctx_has_error(errctx, expected_error_id) __assert_errctx_has_error(__FILE__, __LINE__, errctx, expected_error_id)

View File

@ -1,118 +0,0 @@
#pragma once
#include <cstdlib>
#include <cstdio>
template <class T>
void print_value(const T& value);
template <>
void print_value(const bool& value) {
printf("%s", value ? "true" : "false");
}
template <>
void print_value(const int8_t& value) {
printf("%d", value);
}
template <>
void print_value(const int32_t& value) {
printf("%d", value);
}
template <>
void print_value(const uint8_t& value) {
printf("%u", value);
}
template <>
void print_value(const uint32_t& value) {
printf("%u", value);
}
template <>
void print_value(const float& value) {
printf("%f", value);
}
template <>
void print_value(const double& value) {
printf("%f", value);
}
void print_repeated(const char *str, int count) {
for (int i = 0; i < count; i++) {
printf("%s", str);
}
}
template <typename T>
void print_array(int len, const T* as) {
printf("[");
for (int i = 0; i < len; i++) {
if (i != 0) printf(", ");
print_value(as[i]);
}
printf("]");
}
template<typename ElementT, typename SizeT>
void __print_ndarray_aux(bool first, bool last, SizeT* cursor, SizeT depth, NDArray<SizeT>* ndarray) {
// A really lazy recursive implementation
// Add left padding unless its the first entry (since there would be "[[[" before it)
if (!first) {
print_repeated(" ", depth);
}
const SizeT dim = ndarray->shape[depth];
if (depth + 1 == ndarray->ndims) {
// Recursed down to last dimension, print the values in a nice list
printf("[");
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
for (SizeT i = 0; i < dim; i++) {
ndarray::basic::util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
ElementT* pelement = (ElementT*) ndarray::basic::get_pelement_by_indices<SizeT>(ndarray, indices);
ElementT element = *pelement;
if (i != 0) printf(", "); // List delimiter
print_value(element);
printf("(@");
print_array(ndarray->ndims, indices);
printf(")");
(*cursor)++;
}
printf("]");
} else {
printf("[");
for (SizeT i = 0; i < ndarray->shape[depth]; i++) {
__print_ndarray_aux<ElementT, SizeT>(
i == 0, // first?
i + 1 == dim, // last?
cursor,
depth + 1,
ndarray
);
}
printf("]");
}
// Add newline unless its the last entry (since there will be "]]]" after it)
if (!last) {
print_repeated("\n", depth);
}
}
template <typename ElementT, typename SizeT>
void print_ndarray(NDArray<SizeT>* ndarray) {
if (ndarray->ndims == 0) {
printf("<empty ndarray>");
} else {
SizeT cursor = 0;
__print_ndarray_aux<ElementT, SizeT>(true, true, &cursor, 0, ndarray);
}
printf("\n");
}

View File

@ -1,19 +0,0 @@
#pragma once
#include <test/core.hpp>
#include <irrt_everything.hpp>
namespace test {
namespace core {
void test_int_exp() {
BEGIN_TEST();
assert_values_match(125, __nac3_int_exp_impl<int32_t>(5, 3));
assert_values_match(3125, __nac3_int_exp_impl<int32_t>(5, 5));
}
void run() {
test_int_exp();
}
}
}

View File

@ -1,47 +0,0 @@
#pragma once
#include <test/core.hpp>
#include <irrt_everything.hpp>
namespace test {
namespace ndarray_basic {
void test_calc_size_from_shape_normal() {
// Test shapes with normal values
BEGIN_TEST();
int32_t shape[4] = { 2, 3, 5, 7 };
assert_values_match(210, ndarray::basic::util::calc_size_from_shape<int32_t>(4, shape));
}
void test_calc_size_from_shape_has_zero() {
// Test shapes with 0 in them
BEGIN_TEST();
int32_t shape[4] = { 2, 0, 5, 7 };
assert_values_match(0, ndarray::basic::util::calc_size_from_shape<int32_t>(4, shape));
}
void test_set_strides_by_shape() {
// Test `set_strides_by_shape()`
BEGIN_TEST();
int32_t shape[4] = { 99, 3, 5, 7 };
int32_t strides[4] = { 0 };
ndarray::basic::util::set_strides_by_shape((int32_t) sizeof(int32_t), 4, strides, shape);
int32_t expected_strides[4] = {
105 * sizeof(int32_t),
35 * sizeof(int32_t),
7 * sizeof(int32_t),
1 * sizeof(int32_t)
};
assert_arrays_match(4, expected_strides, strides);
}
void run() {
test_calc_size_from_shape_normal();
test_calc_size_from_shape_has_zero();
test_set_strides_by_shape();
}
}
}

View File

@ -1,72 +0,0 @@
#pragma once
#include <test/core.hpp>
#include <irrt_everything.hpp>
namespace test { namespace ndarray_broadcast {
void test_ndarray_broadcast_1() {
/*
```python
array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
>>> [[19.9 29.9 39.9 49.9]]
array = np.broadcast_to(array, (2, 3, 4))
>>> [[[19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]]
>>> [[19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]]]
assert array.strides == (0, 0, 8)
# and then pick some values in `array` and check them...
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[4] = { 19.9, 29.9, 39.9, 49.9 };
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = {1, 4};
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {
.data = (uint8_t*) src_data,
.itemsize = sizeof(double),
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides
};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int32_t dst_ndims = 3;
int32_t dst_shape[dst_ndims] = {2, 3, 4};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
// Broadcast
ErrorContext errctx = create_testing_errctx();
ndarray::broadcast::broadcast_to(&errctx, &src_ndarray, &dst_ndarray);
assert_errctx_no_error(&errctx);
assert_arrays_match(dst_ndims, ((int32_t[]) { 0, 0, 8 }), dst_ndarray.strides);
assert_values_match(19.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 0, 0}))));
assert_values_match(29.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 0, 1}))));
assert_values_match(39.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 0, 2}))));
assert_values_match(49.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 0, 3}))));
assert_values_match(19.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 1, 0}))));
assert_values_match(29.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 1, 1}))));
assert_values_match(39.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 1, 2}))));
assert_values_match(49.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {0, 1, 3}))));
assert_values_match(49.9, *((double*) ndarray::basic::get_pelement_by_indices(&dst_ndarray, ((int32_t[]) {1, 2, 3}))));
}
void run() {
test_ndarray_broadcast_1();
}
}}

View File

@ -1,233 +0,0 @@
#pragma once
#include <test/core.hpp>
#include <irrt_everything.hpp>
namespace test { namespace ndarray_subscript {
void test_ndsubscript_normal_1() {
/*
Reference Python code:
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[-2:, 1::2]
# array([[ 5., 7.],
# [ 9., 11.]])
assert dst_ndarray.shape == (2, 2)
assert dst_ndarray.strides == (32, 16)
assert dst_ndarray[0, 0] == 5.0
assert dst_ndarray[0, 1] == 7.0
assert dst_ndarray[1, 0] == 9.0
assert dst_ndarray[1, 1] == 11.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
int32_t src_itemsize = sizeof(double);
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = { 3, 4 };
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {
.data = (uint8_t*) src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides
};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int32_t dst_ndims = 2;
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
NDArray<int32_t> dst_ndarray = {
.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
// Create the subscripts in `ndarray[-2::, 1::2]`
UserSlice subscript_1;
subscript_1.set_start(-2);
UserSlice subscript_2;
subscript_2.set_start(1);
subscript_2.set_step(2);
const int32_t num_ndsubscripts = 2;
NDSubscript ndsubscripts[num_ndsubscripts] = {
{ .type = INPUT_SUBSCRIPT_TYPE_SLICE, .data = (uint8_t*) &subscript_1 },
{ .type = INPUT_SUBSCRIPT_TYPE_SLICE, .data = (uint8_t*) &subscript_2 }
};
ErrorContext errctx = create_testing_errctx();
ndarray::subscript::subscript(&errctx, num_ndsubscripts, ndsubscripts, &src_ndarray, &dst_ndarray);
assert_errctx_no_error(&errctx);
int32_t expected_shape[dst_ndims] = { 2, 2 };
int32_t expected_strides[dst_ndims] = { 32, 16 };
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
// dst_ndarray[0, 0]
assert_values_match(
5.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 0, 0 }))
);
// dst_ndarray[0, 1]
assert_values_match(
7.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 0, 1 }))
);
// dst_ndarray[1, 0]
assert_values_match(
9.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 1, 0 }))
);
// dst_ndarray[1, 1]
assert_values_match(
11.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 1, 1 }))
);
}
void test_ndsubscript_normal_2() {
/*
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[2, ::-2]
# array([11., 9.])
assert dst_ndarray.shape == (2,)
assert dst_ndarray.strides == (-16,)
assert dst_ndarray[0] == 11.0
assert dst_ndarray[1] == 9.0
```
*/
BEGIN_TEST();
// Prepare src_ndarray
double src_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
int32_t src_itemsize = sizeof(double);
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = { 3, 4 };
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {
.data = (uint8_t*) src_data,
.itemsize = src_itemsize,
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides
};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Prepare dst_ndarray
const int32_t dst_ndims = 1;
int32_t dst_shape[dst_ndims] = {999}; // Empty values
int32_t dst_strides[dst_ndims] = {999}; // Empty values
NDArray<int32_t> dst_ndarray = {
.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
// Create the subscripts in `ndarray[2, ::-2]`
int32_t subscript_1 = 2;
UserSlice subscript_2;
subscript_2.set_step(-2);
const int32_t num_ndsubscripts = 2;
NDSubscript ndsubscripts[num_ndsubscripts] = {
{ .type = INPUT_SUBSCRIPT_TYPE_INDEX, .data = (uint8_t*) &subscript_1 },
{ .type = INPUT_SUBSCRIPT_TYPE_SLICE, .data = (uint8_t*) &subscript_2 }
};
ErrorContext errctx = create_testing_errctx();
ndarray::subscript::subscript(&errctx, num_ndsubscripts, ndsubscripts, &src_ndarray, &dst_ndarray);
assert_errctx_no_error(&errctx);
int32_t expected_shape[dst_ndims] = { 2 };
int32_t expected_strides[dst_ndims] = { -16 };
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
assert_values_match(
11.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 0 }))
);
assert_values_match(
9.0,
*((double *) ndarray::basic::get_pelement_by_indices(&dst_ndarray, (int32_t[dst_ndims]) { 1 }))
);
}
void test_ndsubscript_index_subscript_out_of_bounds() {
/*
# Consider `my_array`
print(my_array.shape)
# (4, 5, 6)
my_array[2, 100] # error, index subscript at axis 1 is out of bounds
*/
BEGIN_TEST();
// Prepare src_ndarray
const int32_t src_ndims = 2;
int32_t src_shape[src_ndims] = { 3, 4 };
int32_t src_strides[src_ndims] = {};
NDArray<int32_t> src_ndarray = {
.data = (uint8_t*) nullptr, // placeholder, we wouldn't access it
.itemsize = sizeof(double), // placeholder
.ndims = src_ndims,
.shape = src_shape,
.strides = src_strides
};
ndarray::basic::set_strides_by_shape(&src_ndarray);
// Create the subscripts in `my_array[2, 100]`
int32_t subscript_1 = 2;
int32_t subscript_2 = 100;
const int32_t num_ndsubscripts = 2;
NDSubscript ndsubscripts[num_ndsubscripts] = {
{ .type = INPUT_SUBSCRIPT_TYPE_INDEX, .data = (uint8_t*) &subscript_1 },
{ .type = INPUT_SUBSCRIPT_TYPE_INDEX, .data = (uint8_t*) &subscript_2 }
};
// Prepare dst_ndarray
const int32_t dst_ndims = 0;
int32_t dst_shape[dst_ndims] = {};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {
.data = nullptr, // placehloder
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
ErrorContext errctx = create_testing_errctx();
ndarray::subscript::subscript(&errctx, num_ndsubscripts, ndsubscripts, &src_ndarray, &dst_ndarray);
assert_errctx_has_error(&errctx, errctx.error_ids->index_error);
}
void run() {
test_ndsubscript_normal_1();
test_ndsubscript_normal_2();
test_ndsubscript_index_subscript_out_of_bounds();
}
} }

View File

@ -1,96 +0,0 @@
#pragma once
#include <test/core.hpp>
#include <irrt_everything.hpp>
namespace test {
namespace slice {
void test_slice_normal() {
// Normal situation
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_stop(5);
Slice slice;
user_slice.indices(100, &slice);
printf("%d, %d, %d\n", slice.start, slice.stop, slice.step);
assert_values_match(0, slice.start);
assert_values_match(5, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_start_too_large() {
// Start is too large and should be clamped to length
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_start(400);
Slice slice;
user_slice.indices(100, &slice);
assert_values_match(100, slice.start);
assert_values_match(100, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_negative_start_stop() {
// Negative start/stop should be resolved
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_start(-10);
user_slice.set_stop(-5);
Slice slice;
user_slice.indices(100, &slice);
assert_values_match(90, slice.start);
assert_values_match(95, slice.stop);
assert_values_match(1, slice.step);
}
void test_slice_only_negative_step() {
// Things like `[::-5]` should be handled correctly
BEGIN_TEST();
UserSlice user_slice;
user_slice.set_step(-5);
Slice slice;
user_slice.indices(100, &slice);
assert_values_match(99, slice.start);
assert_values_match(-1, slice.stop);
assert_values_match(-5, slice.step);
}
void test_slice_step_zero() {
// Step = 0 is a value error
BEGIN_TEST();
ErrorContext errctx = create_testing_errctx();
UserSlice user_slice;
user_slice.set_start(2);
user_slice.set_stop(12);
user_slice.set_step(0);
Slice slice;
user_slice.indices_checked(&errctx, 100, &slice);
assert_errctx_has_error(&errctx, errctx.error_ids->value_error);
}
void run() {
test_slice_normal();
test_slice_start_too_large();
test_slice_negative_start_stop();
test_slice_only_negative_step();
test_slice_step_zero();
}
}
}

View File

@ -0,0 +1,21 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -0,0 +1,320 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -0,0 +1,9 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -0,0 +1,20 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,10 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,9 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
@ -9,10 +15,6 @@ use crate::{
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}
@ -25,6 +27,7 @@ pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
@ -46,6 +49,7 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
},
TObj {
obj_id: DefinitionId,
@ -102,8 +106,16 @@ impl ConcreteTypeStore {
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -158,11 +170,12 @@ impl ConcreteTypeStore {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
@ -248,11 +261,12 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
@ -277,6 +291,7 @@ impl ConcreteTypeStore {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,10 @@
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either;
use crate::codegen::CodeGenContext;
use super::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
@ -13,11 +15,11 @@ use crate::codegen::CodeGenContext;
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
/// These will be used unless other attributes are specified
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
@ -130,3 +132,62 @@ pub fn call_ldexp<'ctx>(
.map(Either::unwrap_left)
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,16 +1,18 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
@ -57,6 +59,7 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(
@ -131,6 +134,39 @@ pub trait CodeGenerator {
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
}
/// Generate code for a while expression.
/// Return true if the while loop must early return
fn gen_while(

View File

@ -1,187 +0,0 @@
use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
use super::util::{get_sized_dependent_function_name, FunctionBuilder};
pub struct StrFields<'ctx> {
pub content: Field<PointerModel<FixedIntModel<Byte>>>,
pub length: Field<IntModel<'ctx>>,
}
#[derive(Debug, Clone, Copy)]
pub struct Str<'ctx> {
pub sizet: IntModel<'ctx>,
}
impl<'ctx> IsStruct<'ctx> for Str<'ctx> {
type Fields = StrFields<'ctx>;
fn struct_name(&self) -> &'static str {
"Str"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
Self::Fields {
content: builder.add_field_auto("content"),
length: builder.add_field("length", self.sizet),
}
}
}
type ErrorId = Int32;
pub struct ErrorIdsFields {
pub index_error: Field<FixedIntModel<ErrorId>>,
pub value_error: Field<FixedIntModel<ErrorId>>,
pub assertion_error: Field<FixedIntModel<ErrorId>>,
pub runtime_error: Field<FixedIntModel<ErrorId>>,
pub type_error: Field<FixedIntModel<ErrorId>>,
}
#[derive(Debug, Clone, Copy)]
pub struct ErrorIds;
impl<'ctx> IsStruct<'ctx> for ErrorIds {
type Fields = ErrorIdsFields;
fn struct_name(&self) -> &'static str {
"ErrorIds"
}
fn build_fields(&self, builder: &mut FieldBuilder) -> Self::Fields {
Self::Fields {
index_error: builder.add_field_auto("index_error"),
value_error: builder.add_field_auto("value_error"),
assertion_error: builder.add_field_auto("assertion_error"),
runtime_error: builder.add_field_auto("runtime_error"),
type_error: builder.add_field_auto("type_error"),
}
}
}
pub struct ErrorContextFields {
pub error_id: Field<FixedIntModel<ErrorId>>,
pub message_template: Field<PointerModel<FixedIntModel<Byte>>>,
pub param1: Field<FixedIntModel<Int64>>,
pub param2: Field<FixedIntModel<Int64>>,
pub param3: Field<FixedIntModel<Int64>>,
}
#[derive(Debug, Clone, Copy)]
pub struct ErrorContext;
impl<'ctx> IsStruct<'ctx> for ErrorContext {
type Fields = ErrorContextFields;
fn struct_name(&self) -> &'static str {
"ErrorIds"
}
fn build_fields(&self, builder: &mut FieldBuilder) -> Self::Fields {
Self::Fields {
error_id: builder.add_field_auto("error_id"),
message_template: builder.add_field_auto("message_template"),
param1: builder.add_field_auto("param1"),
param2: builder.add_field_auto("param2"),
param3: builder.add_field_auto("param3"),
}
}
}
// Prepare ErrorIds
fn build_error_ids<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> Pointer<'ctx, StructModel<ErrorIds>> {
// ErrorIdsLens.get_fields(ctx.ctx).assertion_error.
let error_ids = StructModel(ErrorIds).alloca(ctx, "error_ids");
let i32_model = FixedIntModel(Int32);
// i32_model.make_constant()
let get_string_id =
|string_id| i32_model.constant(ctx.ctx, ctx.resolver.get_string_id(string_id) as u64);
error_ids.gep(ctx, |f| f.index_error).store(ctx, get_string_id("0:IndexError"));
error_ids.gep(ctx, |f| f.value_error).store(ctx, get_string_id("0:ValueError"));
error_ids.gep(ctx, |f| f.assertion_error).store(ctx, get_string_id("0:AssertionError"));
error_ids.gep(ctx, |f| f.runtime_error).store(ctx, get_string_id("0:RuntimeError"));
error_ids.gep(ctx, |f| f.type_error).store(ctx, get_string_id("0:TypeError"));
error_ids
}
pub fn call_nac3_error_context_initialize<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
perrctx: Pointer<'ctx, StructModel<ErrorContext>>,
perror_ids: Pointer<'ctx, StructModel<ErrorIds>>,
) {
FunctionBuilder::begin(ctx, "__nac3_error_context_initialize")
.arg("errctx", PointerModel(StructModel(ErrorContext)), perrctx)
.arg("error_ids", PointerModel(StructModel(ErrorIds)), perror_ids)
.returning_void();
}
pub fn call_nac3_error_context_has_no_error<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
errctx: Pointer<'ctx, StructModel<ErrorContext>>,
) -> FixedInt<'ctx, Bool> {
FunctionBuilder::begin(ctx, "__nac3_error_context_has_no_error")
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx)
.returning("has_error", FixedIntModel(Bool))
}
pub fn call_nac3_error_context_get_error_str<'ctx>(
sizet: IntModel<'ctx>,
ctx: &CodeGenContext<'ctx, '_>,
errctx: Pointer<'ctx, StructModel<ErrorContext>>,
dst_str: Pointer<'ctx, StructModel<Str<'ctx>>>,
) {
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(sizet, "__nac3_error_context_get_error_str"),
)
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx)
.arg("dst_str", PointerModel(StructModel(Str { sizet })), dst_str)
.returning_void();
}
pub fn prepare_error_context<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
) -> Pointer<'ctx, StructModel<ErrorContext>> {
let error_ids = build_error_ids(ctx);
let errctx_ptr = StructModel(ErrorContext).alloca(ctx, "errctx");
call_nac3_error_context_initialize(ctx, errctx_ptr, error_ids);
errctx_ptr
}
pub fn check_error_context<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
errctx_ptr: Pointer<'ctx, StructModel<ErrorContext>>,
) {
let sizet = IntModel(generator.get_size_type(ctx.ctx));
let has_error = call_nac3_error_context_has_no_error(ctx, errctx_ptr);
let pstr = StructModel(Str { sizet }).alloca(ctx, "error_str");
call_nac3_error_context_get_error_str(sizet, ctx, errctx_ptr, pstr);
let error_id = errctx_ptr.gep(ctx, |f| f.error_id).load(ctx, "error_id");
let error_str = pstr.load(ctx, "error_str");
let param1 = errctx_ptr.gep(ctx, |f| f.param1).load(ctx, "param1");
let param2 = errctx_ptr.gep(ctx, |f| f.param2).load(ctx, "param2");
let param3 = errctx_ptr.gep(ctx, |f| f.param3).load(ctx, "param3");
ctx.make_assert_impl_by_id(
generator,
has_error.value,
error_id.value,
error_str.get_llvm_value(),
[Some(param1.value), Some(param2.value), Some(param3.value)],
ctx.current_loc,
);
}
pub fn call_nac3_dummy_raise<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext,
) {
let errctx = prepare_error_context(ctx);
FunctionBuilder::begin(ctx, "__nac3_error_dummy_raise")
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx)
.returning_void();
check_error_context(generator, ctx, errctx);
}

View File

@ -0,0 +1,162 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -0,0 +1,152 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,33 +1,28 @@
use crate::typecheck::typedef::Type;
pub mod error_context;
pub mod numpy;
mod test;
mod util;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate,
values::{BasicValue, BasicValueEnum, IntValue},
IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use ndarray::*;
pub use slice::*;
mod list;
mod math;
mod ndarray;
mod slice;
#[must_use]
pub fn load_irrt(ctx: &Context) -> Module {
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -43,91 +38,28 @@ pub fn load_irrt(ctx: &Context) -> Module {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.
@ -293,642 +225,3 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
}
}))
}
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -0,0 +1,384 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -1,4 +0,0 @@
pub mod ndarray;
pub mod shape;
pub mod slice;
pub mod subscript;

View File

@ -1,254 +0,0 @@
use inkwell::types::{BasicType, BasicTypeEnum};
use crate::codegen::{
irrt::{
error_context::{check_error_context, prepare_error_context, ErrorContext},
util::{get_sized_dependent_function_name, FunctionBuilder},
},
model::*,
CodeGenContext, CodeGenerator,
};
use super::{
shape::Producer,
slice::{SliceIndex, SliceIndexModel},
};
pub struct NpArrayFields<'ctx> {
pub data: Field<PointerModel<ByteModel>>,
pub itemsize: Field<IntModel<'ctx>>,
pub ndims: Field<IntModel<'ctx>>,
pub shape: Field<PointerModel<IntModel<'ctx>>>,
pub strides: Field<PointerModel<IntModel<'ctx>>>,
}
#[derive(Debug, Clone, Copy)]
pub struct NpArray<'ctx> {
pub sizet: IntModel<'ctx>,
}
impl<'ctx> IsStruct<'ctx> for NpArray<'ctx> {
type Fields = NpArrayFields<'ctx>;
fn struct_name(&self) -> &'static str {
"NDArray"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
NpArrayFields {
data: builder.add_field_auto("data"),
itemsize: builder.add_field("itemsize", self.sizet),
ndims: builder.add_field("ndims", self.sizet),
shape: builder.add_field("shape", PointerModel(self.sizet)),
strides: builder.add_field("strides", PointerModel(self.sizet)),
}
}
}
impl<'ctx> Pointer<'ctx, StructModel<NpArray<'ctx>>> {
pub fn shape_slice(&self, ctx: &CodeGenContext<'ctx, '_>) -> ArraySlice<'ctx, IntModel<'ctx>> {
let ndims = self.gep(ctx, |f| f.ndims).load(ctx, "ndims");
let shape_base_ptr = self.gep(ctx, |f| f.shape).load(ctx, "shape");
ArraySlice { num_elements: ndims, pointer: shape_base_ptr }
}
pub fn strides_slice(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> ArraySlice<'ctx, IntModel<'ctx>> {
let ndims = self.gep(ctx, |f| f.ndims).load(ctx, "ndims");
let strides_base_ptr = self.gep(ctx, |f| f.strides).load(ctx, "strides");
ArraySlice { num_elements: ndims, pointer: strides_base_ptr }
}
}
pub fn alloca_ndarray<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
ndims: Int<'ctx>,
name: &str,
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
where
G: CodeGenerator + ?Sized,
{
let sizet = IntModel(generator.get_size_type(ctx.ctx));
// Allocate ndarray
let ndarray_ptr = StructModel(NpArray { sizet }).alloca(ctx, name);
// Set ndims
ndarray_ptr.gep(ctx, |f| f.ndims).store(ctx, ndims);
// Set itemsize
let itemsize = Int(elem_type.size_of().unwrap());
ndarray_ptr.gep(ctx, |f| f.itemsize).store(ctx, itemsize.signed_cast_to_int(ctx, sizet, ""));
// Allocate and set shape
let shape_array = sizet.array_alloca(ctx, ndims, "shape");
ndarray_ptr.gep(ctx, |f| f.shape).store(ctx, shape_array.pointer);
// Allocate and set strides
let strides_array = sizet.array_alloca(ctx, ndims, "strides");
ndarray_ptr.gep(ctx, |f| f.strides).store(ctx, strides_array.pointer);
Ok(ndarray_ptr)
}
pub enum NDArrayInitMode<'ctx, G: CodeGenerator + ?Sized> {
NDims { ndims: Int<'ctx> },
Shape { shape: Producer<'ctx, G, IntModel<'ctx>> },
ShapeAndAllocaData { shape: Producer<'ctx, G, IntModel<'ctx>> },
}
/// TODO: DOCUMENT ME
pub fn alloca_ndarray_and_init<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
init_mode: NDArrayInitMode<'ctx, G>,
name: &str,
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
where
G: CodeGenerator + ?Sized,
{
// It is implemented verbosely in order to make the initialization modes super clear in their intent.
match init_mode {
NDArrayInitMode::NDims { ndims } => {
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
Ok(ndarray_ptr)
}
NDArrayInitMode::Shape { shape } => {
let ndims = shape.count;
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape`
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_slice(ctx))?;
// Check if `shape` has bad inputs
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
ndims,
ndarray_ptr.gep(ctx, |f| f.shape).load(ctx, "shape"),
);
// NOTE: DO NOT DO `set_strides_by_shape` HERE.
// Simply this is because we specified that `SetShape` wouldn't do `set_strides_by_shape`
Ok(ndarray_ptr)
}
NDArrayInitMode::ShapeAndAllocaData { shape } => {
let ndims = shape.count;
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape`
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_slice(ctx))?;
// Check if `shape` has bad inputs
call_nac3_ndarray_util_assert_shape_no_negative(
generator,
ctx,
ndims,
ndarray_ptr.gep(ctx, |f| f.shape).load(ctx, "shape"),
);
// Now we populate `ndarray.data` by alloca-ing.
// But first, we need to know the size of the ndarray to know how many elements to alloca,
// since calculating nbytes of an ndarray requires `ndarray.shape` to be set.
let ndarray_nbytes = call_nac3_ndarray_nbytes(ctx, ndarray_ptr);
// Alloca `data` and assign it to `ndarray.data`
let data_array = FixedIntModel(Byte).array_alloca(ctx, ndarray_nbytes, "data");
ndarray_ptr.gep(ctx, |f| f.data).store(ctx, data_array.pointer);
// Finally, do `set_strides_by_shape`
// Check out https://ajcr.net/stride-guide-part-1/ to see what numpy "strides" are.
call_nac3_ndarray_set_strides_by_shape(ctx, ndarray_ptr);
Ok(ndarray_ptr)
}
}
}
fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Int<'ctx>,
shape_ptr: Pointer<'ctx, IntModel<'ctx>>,
) {
let sizet = IntModel(generator.get_size_type(ctx.ctx));
let errctx = prepare_error_context(ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_util_assert_shape_no_negative"),
)
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx)
.arg("ndims", sizet, ndims)
.arg("shape", PointerModel(sizet), shape_ptr)
.returning_void();
check_error_context(generator, ctx, errctx);
}
fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
) {
let sizet = ndarray_ptr.element.0.sizet;
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_set_strides_by_shape"),
)
.arg("ndarray", PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
.returning_void();
}
pub fn call_nac3_ndarray_nbytes<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
) -> Int<'ctx> {
let sizet = ndarray_ptr.element.0.sizet;
FunctionBuilder::begin(ctx, &get_sized_dependent_function_name(sizet, "__nac3_ndarray_nbytes"))
.arg("ndarray", PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
.returning("nbytes", sizet)
}
pub fn call_nac3_ndarray_fill_generic<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
fill_value_ptr: Pointer<'ctx, ByteModel>,
) {
let sizet = ndarray_ptr.element.0.sizet;
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_fill_generic"),
)
.arg("ndarray", PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
.arg("pvalue", PointerModel(FixedIntModel(Byte)), fill_value_ptr)
.returning_void();
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ptr: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
) -> SliceIndex<'ctx> {
let sizet = ndarray_ptr.element.0.sizet;
let slice_index_model = SliceIndexModel::default();
let dst_len = slice_index_model.alloca(ctx, "dst_len");
let errctx = prepare_error_context(ctx);
FunctionBuilder::begin(ctx, &get_sized_dependent_function_name(sizet, "__nac3_ndarray_len"))
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx)
.arg("ndarray", PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
.arg("dst_len", PointerModel(slice_index_model), dst_len)
.returning_void();
check_error_context(generator, ctx, errctx);
dst_len.load(ctx, "len")
}

View File

@ -1,162 +0,0 @@
use inkwell::values::BasicValueEnum;
use crate::{
codegen::{
classes::{ListValue, UntypedArrayLikeAccessor},
model::*,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
pub type ProducerWriteToArray<'ctx, G, E> = Box<
dyn Fn(&mut G, &mut CodeGenContext<'ctx, '_>, &ArraySlice<'ctx, E>) -> Result<(), String>
+ 'ctx,
>;
pub struct Producer<'ctx, G: CodeGenerator + ?Sized, E: Model<'ctx>> {
pub count: Int<'ctx>,
pub write_to_array: ProducerWriteToArray<'ctx, G, E>,
}
/// TODO: UPDATE DOCUMENTATION
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
///
/// ### Notes on `shape`
///
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
/// learn how `shape` gets from being a Python user expression to here.
pub fn parse_input_shape_arg<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
) -> Producer<'ctx, G, IntModel<'ctx>>
where
G: CodeGenerator + ?Sized,
{
let sizet = IntModel(generator.get_size_type(ctx.ctx));
match &*ctx.unifier.get_ty(shape_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
// A list has to be a PointerValue
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), sizet.0, None);
// Create `Producer`
let ndims = Int(shape_list.load_size(ctx, Some("count")));
Producer {
count: ndims,
write_to_array: Box::new(move |ctx, generator, dst_array| {
// Basically iterate through the list and write to `dst_slice` accordingly
let init_val = sizet.constant(0).0;
let max_val = (ndims.0, false);
let incr_val = sizet.constant(1).0;
gen_for_callback_incrementing(
ctx,
generator,
init_val,
max_val,
|generator, ctx, _hooks, axis| {
let axis = Int(axis);
// Get the dimension at `axis`
let dim = shape_list
.data()
.get(ctx, generator, &axis.0, None)
.into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, sizet.0, "dim_casted")
.unwrap();
// Write
dst_array.ix(generator, ctx, axis, "dim").store(ctx, Int(dim));
Ok(())
},
incr_val,
)
}),
}
}
TypeEnum::TTuple { ty: tuple_types } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = tuple_types.len();
// A tuple has to be a StructValue
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
let shape_tuple = shape.into_struct_value();
Producer {
count: sizet.constant(ndims as u64),
write_to_array: Box::new(move |generator, ctx, dst_array| {
for axis in 0..ndims {
// Get the dimension at `axis`
let dim = ctx
.builder
.build_extract_value(
shape_tuple,
axis as u32,
format!("dim{axis}").as_str(),
)
.unwrap()
.into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, sizet.0, "dim_casted")
.unwrap();
// Write
dst_array
.ix(generator, ctx, sizet.constant(axis as u64), "dim")
.store(ctx, Int(dim));
}
Ok(())
}),
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
// The value has to be an integer
let shape_int = shape.into_int_value();
Producer {
count: sizet.constant(1),
write_to_array: Box::new(move |generator, ctx, dst_array| {
// Cast `shape_int` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(shape_int, sizet.0, "dim_casted")
.unwrap();
// Set shape[0] = shape_int
dst_array.ix(generator, ctx, sizet.constant(0), "dim").store(ctx, Int(dim));
Ok(())
}),
}
}
_ => panic!("parse_input_shape_arg encountered unknown type"),
}
}

View File

@ -1,86 +0,0 @@
use crate::codegen::{model::*, CodeGenContext};
// nac3core's slicing index/length values are always int32_t
pub type SliceIndexInt = Int32;
pub type SliceIndexModel = FixedIntModel<SliceIndexInt>;
pub type SliceIndex<'ctx> = FixedInt<'ctx, SliceIndexInt>;
#[derive(Debug, Clone)]
pub struct UserSliceFields {
pub start_defined: Field<BoolModel>,
pub start: Field<SliceIndexModel>,
pub stop_defined: Field<BoolModel>,
pub stop: Field<SliceIndexModel>,
pub step_defined: Field<BoolModel>,
pub step: Field<SliceIndexModel>,
}
#[derive(Debug, Clone, Copy, Default)]
pub struct UserSlice;
impl<'ctx> IsStruct<'ctx> for UserSlice {
type Fields = UserSliceFields;
fn struct_name(&self) -> &'static str {
"UserSlice"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
Self::Fields {
start_defined: builder.add_field_auto("start_defined"),
start: builder.add_field_auto("start"),
stop_defined: builder.add_field_auto("stop_defined"),
stop: builder.add_field_auto("stop"),
step_defined: builder.add_field_auto("step_defined"),
step: builder.add_field_auto("step"),
}
}
}
#[derive(Debug, Clone)]
pub struct RustUserSlice<'ctx> {
pub start: Option<SliceIndex<'ctx>>,
pub stop: Option<SliceIndex<'ctx>>,
pub step: Option<SliceIndex<'ctx>>,
}
impl<'ctx> RustUserSlice<'ctx> {
// Set the values of an LLVM UserSlice
// in the format of Python's `slice()`
pub fn write_to_user_slice(
&self,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Pointer<'ctx, StructModel<UserSlice>>,
) {
// TODO: make this neater, with a helper lambda?
let bool_model = BoolModel::default();
let false_ = bool_model.constant(ctx.ctx, 0);
let true_ = bool_model.constant(ctx.ctx, 1);
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
}

View File

@ -1,181 +0,0 @@
use crate::codegen::{
irrt::{
error_context::{check_error_context, prepare_error_context, ErrorContext},
util::{get_sized_dependent_function_name, FunctionBuilder},
},
model::*,
CodeGenContext, CodeGenerator,
};
use super::{
ndarray::NpArray,
slice::{RustUserSlice, SliceIndex, SliceIndexModel, UserSlice},
};
#[derive(Debug, Clone, Copy)]
pub struct NDSubscriptFields {
pub type_: Field<ByteModel>, // Defined to be uint8_t in IRRT
pub data: Field<PointerModel<ByteModel>>,
}
#[derive(Debug, Clone, Copy, Default)]
pub struct NDSubscript;
impl<'ctx> IsStruct<'ctx> for NDSubscript {
type Fields = NDSubscriptFields;
fn struct_name(&self) -> &'static str {
"NDSubscript"
}
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
Self::Fields { type_: builder.add_field_auto("type"), data: builder.add_field_auto("data") }
}
}
// An enum variant to store the content
// and type of an NDSubscript in high level.
#[derive(Debug, Clone)]
pub enum RustNDSubscript<'ctx> {
Index(SliceIndex<'ctx>),
Slice(RustUserSlice<'ctx>),
}
impl<'ctx> RustNDSubscript<'ctx> {
fn irrt_subscript_id(&self) -> u64 {
// Defined in IRRT
match self {
RustNDSubscript::Index(_) => 0,
RustNDSubscript::Slice(_) => 1,
}
}
fn write_to_ndsubscript(
&self,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndsubscript_ptr: Pointer<'ctx, StructModel<NDSubscript>>,
) {
let byte_model = ByteModel::default();
let slice_index_model = SliceIndexModel::default();
let user_slice_model = StructModel(UserSlice);
// Set `dst_ndsubscript_ptr->type`
dst_ndsubscript_ptr
.gep(ctx, |f| f.type_)
.store(ctx, byte_model.constant(ctx.ctx, self.irrt_subscript_id()));
// Set `dst_ndsubscript_ptr->data`
let data = match self {
RustNDSubscript::Index(in_index) => {
let index_ptr = slice_index_model.alloca(ctx, "index");
index_ptr.store(ctx, *in_index);
index_ptr.cast_to(ctx, FixedIntModel(Byte), "")
}
RustNDSubscript::Slice(in_rust_slice) => {
let user_slice_ptr = user_slice_model.alloca(ctx, "user_slice");
in_rust_slice.write_to_user_slice(ctx, user_slice_ptr);
user_slice_ptr.cast_to(ctx, FixedIntModel(Byte), "")
}
};
dst_ndsubscript_ptr.gep(ctx, |f| f.data).store(ctx, data);
}
// Allocate an array of subscripts onto the stack and return its stack pointer
pub fn alloca_subscripts(
ctx: &CodeGenContext<'ctx, '_>,
subscripts: &[RustNDSubscript<'ctx>],
) -> ArraySlice<'ctx, StructModel<NDSubscript>> {
let index_model = Int32Model::default();
let ndsubscript_model = StructModel(NDSubscript);
let ndsubscript_array = ndsubscript_model.array_alloca(
ctx,
index_model.constant(ctx.ctx, subscripts.len() as u64).to_int(),
"ndsubscripts",
);
for (i, rust_ndsubscript) in subscripts.iter().enumerate() {
let ndsubscript_ptr = ndsubscript_array.ix_unchecked(
ctx,
index_model.constant(ctx.ctx, i as u64).to_int(),
"",
);
rust_ndsubscript.write_to_ndsubscript(ctx, ndsubscript_ptr);
}
ndsubscript_array
}
#[must_use]
pub fn deduce_ndims_after_slicing(slices: &[RustNDSubscript], original_ndims: i32) -> i32 {
let mut final_ndims: i32 = original_ndims;
for slice in slices {
match slice {
RustNDSubscript::Index(_) => {
// Index subscripts demotes the rank by 1
final_ndims -= 1;
}
RustNDSubscript::Slice(_) => {
// Nothing
}
}
}
final_ndims
}
}
pub fn call_nac3_ndarray_subscript_deduce_ndims_after_slicing<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
sizet: IntModel<'ctx>,
ndims: Int<'ctx>,
num_ndsubscripts: Int<'ctx>,
ndsubscripts: Pointer<'ctx, StructModel<NDSubscript>>,
) -> Int<'ctx> {
let result = sizet.alloca(ctx, "result");
let errctx_ptr = prepare_error_context(ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(
sizet,
"__nac3_ndarray_subscript_deduce_ndims_after_slicing",
),
)
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx_ptr)
.arg("result", PointerModel(sizet), result)
.arg("ndims", sizet, ndims)
.arg("num_ndsubscripts", sizet, num_ndsubscripts)
.arg("ndsubscripts", PointerModel(StructModel(NDSubscript)), ndsubscripts)
.returning_void();
check_error_context(generator, ctx, errctx_ptr);
result.load(ctx, "final_ndims")
}
pub fn call_nac3_ndarray_subscript<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_subscripts: SliceIndex<'ctx>,
subscripts: Pointer<'ctx, StructModel<NDSubscript>>,
src_ndarray: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
dst_ndarray: Pointer<'ctx, StructModel<NpArray<'ctx>>>,
) {
let sizet = src_ndarray.element.0.sizet;
assert!(sizet.same_as(dst_ndarray.element.0.sizet)); // SizeT of src_ndarray and dst_ndarray must match
let errctx_ptr = prepare_error_context(ctx);
FunctionBuilder::begin(
ctx,
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_subscript"),
)
.arg("errctx", PointerModel(StructModel(ErrorContext)), errctx_ptr)
.arg("num_subscripts", SliceIndexModel::default(), num_subscripts)
.arg("subscripts", PointerModel(StructModel(NDSubscript)), subscripts)
.arg("src_ndarray", PointerModel(StructModel(NpArray { sizet })), src_ndarray)
.arg("dst_ndarray", PointerModel(StructModel(NpArray { sizet })), dst_ndarray)
.returning_void();
check_error_context(generator, ctx, errctx_ptr);
}

View File

@ -0,0 +1,76 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,26 +0,0 @@
#[cfg(test)]
mod tests {
use std::{path::Path, process::Command};
#[test]
fn run_irrt_test() {
assert!(
cfg!(feature = "test"),
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
);
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
if !output.status.success() {
eprintln!("irrt_test failed with status {}:", output.status);
eprintln!("====== stdout ======");
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
eprintln!("====== stderr ======");
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
eprintln!("====================");
panic!("irrt_test failed");
}
}
}

View File

@ -1,79 +0,0 @@
use inkwell::{
types::{BasicMetadataTypeEnum, BasicType, IntType},
values::{AnyValue, BasicMetadataValueEnum},
};
use crate::{
codegen::{model::*, CodeGenContext},
util::SizeVariant,
};
fn get_size_variant(ty: IntType) -> SizeVariant {
match ty.get_bit_width() {
32 => SizeVariant::Bits32,
64 => SizeVariant::Bits64,
_ => unreachable!("Unsupported int type bit width {}", ty.get_bit_width()),
}
}
#[must_use]
pub fn get_sized_dependent_function_name(ty: IntModel, fn_name: &str) -> String {
let mut fn_name = fn_name.to_owned();
match get_size_variant(ty.0) {
SizeVariant::Bits32 => {
// Do nothing, `fn_name` already has the correct name
}
SizeVariant::Bits64 => {
// Append "64", this is the naming convention
fn_name.push_str("64");
}
}
fn_name
}
// TODO: Variadic argument?
pub struct FunctionBuilder<'ctx, 'a> {
ctx: &'a CodeGenContext<'ctx, 'a>,
fn_name: &'a str,
arguments: Vec<(BasicMetadataTypeEnum<'ctx>, BasicMetadataValueEnum<'ctx>)>,
}
impl<'ctx, 'a> FunctionBuilder<'ctx, 'a> {
pub fn begin(ctx: &'a CodeGenContext<'ctx, 'a>, fn_name: &'a str) -> Self {
FunctionBuilder { ctx, fn_name, arguments: Vec::new() }
}
// The name is for self-documentation
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, _name: &'static str, model: M, value: M::Value) -> Self {
self.arguments
.push((model.get_llvm_type(self.ctx.ctx).into(), value.get_llvm_value().into()));
self
}
pub fn returning<M: Model<'ctx>>(self, name: &'static str, return_model: M) -> M::Value {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let return_type = return_model.get_llvm_type(self.ctx.ctx);
let fn_type = return_type.fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
let ret = self.ctx.builder.build_call(function, &param_vals, name).unwrap();
return_model.review(self.ctx.ctx, ret.as_any_value_enum())
}
// TODO: Code duplication, but otherwise returning<S: Optic<'ctx>> cannot resolve S if return_optic = None
pub fn returning_void(self) {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let return_type = self.ctx.ctx.void_type();
let fn_type = return_type.fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
self.ctx.builder.build_call(function, &param_vals, "").unwrap();
}
}

View File

@ -1,12 +1,14 @@
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
@ -35,52 +37,38 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
unreachable!()
}
/// Invokes the [`llvm.lifetime.start`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-start-intrinsic)
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_lifetime_start<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
ptr: PointerValue<'ctx>,
) {
const FN_NAME: &str = "llvm.lifetime.start";
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
.map(CallSiteValue::try_as_basic_value)
.unwrap();
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.lifetime.end`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-end-intrinsic)
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_lifetime_end<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
ptr: PointerValue<'ctx>,
) {
const FN_NAME: &str = "llvm.lifetime.end";
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
.map(CallSiteValue::try_as_basic_value)
.unwrap();
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
@ -197,7 +185,7 @@ pub fn call_memcpy_generic<'ctx>(
dest
} else {
ctx.builder
.build_bitcast(dest, llvm_p0i8, "")
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -205,7 +193,7 @@ pub fn call_memcpy_generic<'ctx>(
src
} else {
ctx.builder
.build_bitcast(src, llvm_p0i8, "")
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -219,8 +207,9 @@ pub fn call_memcpy_generic<'ctx>(
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
@ -236,8 +225,8 @@ macro_rules! generate_llvm_intrinsic_fn_body {
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {

View File

@ -1,12 +1,12 @@
use crate::{
codegen::classes::{ListType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
thread,
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -23,36 +23,53 @@ use inkwell::{
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use irrt::{error_context::Str, numpy::ndarray::NpArray};
use itertools::Itertools;
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use std::thread;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ListType, NDArrayType, ProxyType, RangeType};
pub mod builtin_fns;
pub mod classes;
pub mod concrete_type;
pub mod expr;
pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod model;
pub mod numpy;
pub mod numpy_new;
pub mod stmt;
pub mod types;
pub mod values;
#[cfg(test)]
mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)]
pub struct StaticValueStore {
@ -72,6 +89,16 @@ pub struct CodeGenLLVMOptions {
pub target: CodeGenTargetMachineOptions,
}
impl CodeGenLLVMOptions {
/// Creates a [`TargetMachine`] using the target options specified by this struct.
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self) -> Option<TargetMachine> {
self.target.create_target_machine(self.opt_level)
}
}
/// Additional options for code generation for the target machine.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CodeGenTargetMachineOptions {
@ -342,6 +369,10 @@ impl WorkerRegistry {
let mut builder = context.create_builder();
let mut module = context.create_module(generator.get_name());
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
inkwell::module::FlagBehavior::Warning,
@ -365,6 +396,10 @@ impl WorkerRegistry {
errors.insert(e);
// create a new empty module just to continue codegen and collect errors
module = context.create_module(&format!("{}_recover", generator.get_name()));
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
}
}
*self.task_count.lock() -= 1;
@ -430,7 +465,7 @@ pub struct CodeGenTask {
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &mut G,
generator: &G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -475,8 +510,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let sizet = IntModel(generator.get_size_type(ctx));
PointerModel(StructModel(NpArray { sizet })).get_llvm_type(ctx)
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
}
_ => unreachable!(
@ -520,8 +559,10 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
};
return ty;
}
TTuple { ty } => {
TTuple { ty, is_vararg_ctx } => {
// a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty
.iter()
.map(|ty| {
@ -551,7 +592,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &mut G,
generator: &G,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -560,11 +601,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
return if unifier.unioned(ty, primitives.bool) {
if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
};
}
}
/// Whether `sret` is needed for a return value with type `ty`.
@ -589,6 +630,40 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
need_sret_impl(ty, true)
}
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl<
'ctx,
@ -646,7 +721,7 @@ pub fn gen_func_impl<
..primitives
};
let mut type_cache: HashMap<_, BasicTypeEnum<'_>> = [
let mut type_cache: HashMap<_, _> = [
(primitives.int32, context.i32_type().into()),
(primitives.int64, context.i64_type().into()),
(primitives.uint32, context.i32_type().into()),
@ -654,8 +729,19 @@ pub fn gen_func_impl<
(primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()),
(primitives.str, {
let sizet = IntModel(generator.get_size_type(context));
StructModel(Str { sizet }).get_llvm_type(context)
let name = "str";
match module.get_struct_type(name) {
None => {
let str_type = context.opaque_struct_type("str");
let fields = [
context.i8_type().ptr_type(AddressSpace::default()).into(),
generator.get_size_type(context).into(),
];
str_type.set_body(&fields, false);
str_type.into()
}
Some(t) => t.as_basic_type_enum(),
}
}),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.exception, {
@ -663,12 +749,10 @@ pub fn gen_func_impl<
if let Some(t) = module.get_struct_type(name) {
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
} else {
let sizet = IntModel(generator.get_size_type(context));
let str_ty = StructModel(Str { sizet }).get_llvm_type(context);
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
@ -691,6 +775,7 @@ pub fn gen_func_impl<
name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -713,7 +798,10 @@ pub fn gen_func_impl<
let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args
.iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type(
context,
&module,
@ -732,9 +820,12 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, false),
Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()),
_ => context.void_type().fn_type(&params, vararg_arg.is_some()),
};
let symbol = &task.symbol_name;
@ -762,9 +853,10 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
for (n, arg) in args.iter().enumerate() {
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
context,
@ -797,6 +889,8 @@ pub fn gen_func_impl<
var_assignment.insert(arg.name, (alloca, None, 0));
}
// TODO: Save vararg parameters as list
let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else {
@ -1019,3 +1113,9 @@ fn gen_in_range_check<'ctx>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
}
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}

View File

@ -1,70 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicTypeEnum},
values::{AnyValueEnum, BasicValueEnum},
};
use crate::codegen::CodeGenContext;
use super::{slice::ArraySlice, Int, Pointer};
pub trait ModelValue<'ctx>: Clone + Copy {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx>;
}
// Should have been within [`Model<'ctx>`],
// but rust object safety requirements made it necessary to
// split this interface out
pub trait CanCheckLLVMType<'ctx> {
/// Check if `scrutinee` matches the same LLVM type of this [`Model<'ctx>`].
///
/// If they don't not match, a human-readable error message is returned.
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String>;
}
/// A [`Model`] is a type-safe concrete representation of a complex LLVM type.
pub trait Model<'ctx>: Clone + Copy + CanCheckLLVMType<'ctx> + Sized {
/// The values that inhabit this [`Model<'ctx>`].
///
/// ...that is the type of wrapper that wraps the LLVM values that inhabit [`Model<'ctx>::get_llvm_type()`].
type Value: ModelValue<'ctx>;
/// Get the [`BasicTypeEnum<'ctx>`] this [`Model<'ctx>`] is representing.
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
/// Cast an [`AnyValueEnum<'ctx>`] into a [`Self::Value`].
///
/// Panics if `value` cannot pass [`CanCheckLLVMType::check_llvm_type()`].
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value;
/// Build an instruction to allocate a value of [`Model::get_llvm_type`].
fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Pointer<'ctx, Self> {
Pointer {
element: *self,
value: ctx.builder.build_alloca(self.get_llvm_type(ctx.ctx), name).unwrap(),
}
}
/// Build an instruction to allocate an array of [`Model::get_llvm_type`].
fn array_alloca(
&self,
ctx: &CodeGenContext<'ctx, '_>,
count: Int<'ctx>,
name: &str,
) -> ArraySlice<'ctx, Self> {
ArraySlice {
num_elements: count,
pointer: Pointer {
element: *self,
value: ctx
.builder
.build_array_alloca(self.get_llvm_type(ctx.ctx), count.0, name)
.unwrap(),
},
}
}
}

View File

@ -1,220 +0,0 @@
use inkwell::{
context::Context,
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, StructType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, StructValue},
};
use itertools::{izip, Itertools};
use crate::codegen::CodeGenContext;
use super::{core::CanCheckLLVMType, Model, ModelValue, Pointer};
#[derive(Debug, Clone, Copy)]
pub struct Field<E> {
pub gep_index: u64,
pub name: &'static str,
pub element: E,
}
// Like [`Field<E>`] but element must be [`BasicTypeEnum<'ctx>`]
struct FieldLLVM<'ctx> {
gep_index: u64,
name: &'ctx str,
llvm_type: BasicTypeEnum<'ctx>,
// Only CanCheckLLVMType is needed, dont put in the whole `Model<'ctx>`
llvm_type_model: Box<dyn CanCheckLLVMType<'ctx> + 'ctx>,
}
pub struct FieldBuilder<'ctx> {
pub ctx: &'ctx Context,
gep_index_counter: u64,
struct_name: &'ctx str,
fields: Vec<FieldLLVM<'ctx>>,
}
impl<'ctx> FieldBuilder<'ctx> {
#[must_use]
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
FieldBuilder { ctx, gep_index_counter: 0, struct_name, fields: Vec::new() }
}
fn next_gep_index(&mut self) -> u64 {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
index
}
pub fn add_field<E: Model<'ctx> + 'ctx>(&mut self, name: &'static str, element: E) -> Field<E> {
let gep_index = self.next_gep_index();
self.fields.push(FieldLLVM {
gep_index,
name,
llvm_type: element.get_llvm_type(self.ctx),
llvm_type_model: Box::new(element),
});
Field { gep_index, name, element }
}
pub fn add_field_auto<E: Model<'ctx> + Default + 'ctx>(
&mut self,
name: &'static str,
) -> Field<E> {
self.add_field(name, E::default())
}
}
/// A marker trait to mark singleton struct that describes a particular LLVM structure.
pub trait IsStruct<'ctx>: Clone + Copy {
/// The type of the Rust `struct` that holds all the fields of this LLVM struct.
type Fields;
/// A cosmetic name for this struct.
/// TODO: Currently unused. To be used in error reporting.
fn struct_name(&self) -> &'static str;
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields;
fn get_fields(&self, ctx: &'ctx Context) -> Self::Fields {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder)
}
/// Get the LLVM struct type this [`IsStruct<'ctx>`] is representing.
fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder); // Self::Fields is discarded
let field_types = builder.fields.iter().map(|f| f.llvm_type).collect_vec();
ctx.struct_type(&field_types, false)
}
/// Check if `scrutinee` matches the [`StructType<'ctx>`] this [`IsStruct<'ctx>`] is representing.
fn check_struct_type(
&self,
ctx: &'ctx Context,
scrutinee: StructType<'ctx>,
) -> Result<(), String> {
// Details about scrutinee
let scrutinee_field_types = scrutinee.get_field_types();
// Details about the defined specifications of this struct
// We will access them through builder
let mut builder = FieldBuilder::new(ctx, self.struct_name());
self.build_fields(&mut builder);
// Check # of fields
if builder.fields.len() != scrutinee_field_types.len() {
return Err(format!(
"Expecting struct to have {} field(s), but scrutinee has {} field(s)",
builder.fields.len(),
scrutinee_field_types.len()
));
}
// Check the types of each field
// TODO: Traceback?
for (f, scrutinee_field_type) in izip!(builder.fields, scrutinee_field_types) {
f.llvm_type_model.check_llvm_type(ctx, scrutinee_field_type.as_any_type_enum())?;
}
Ok(())
}
}
/// A [`Model<'ctx>`] that represents an LLVM struct.
///
/// `self.0` contains a [`IsStruct<'ctx>`] that gives the details of the LLVM struct.
#[derive(Debug, Clone, Copy)]
pub struct StructModel<S>(pub S);
impl<'ctx, S: IsStruct<'ctx>> CanCheckLLVMType<'ctx> for StructModel<S> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a struct type
let AnyTypeEnum::StructType(scrutinee) = scrutinee else {
return Err(format!("Expecting a struct type, but got {scrutinee:?}"));
};
// Ok. now check the struct type *thoroughly*
self.0.check_struct_type(ctx, scrutinee)
}
}
impl<'ctx, S: IsStruct<'ctx>> Model<'ctx> for StructModel<S> {
type Value = Struct<'ctx, S>; // TODO: enrich it
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.get_struct_type(ctx).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
// Check that `value` is not some bogus values or an incorrect StructValue
self.check_llvm_type(ctx, value.get_type()).unwrap();
Struct { structure: self.0, value: value.into_struct_value() }
}
}
#[derive(Debug, Clone, Copy)]
pub struct Struct<'ctx, S> {
pub structure: S,
pub value: StructValue<'ctx>,
}
impl<'ctx, S: IsStruct<'ctx>> ModelValue<'ctx> for Struct<'ctx, S> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, S: IsStruct<'ctx>> Pointer<'ctx, StructModel<S>> {
/// Build an instruction that does `getelementptr` on an LLVM structure referenced by this pointer.
///
/// This provides a nice syntax to chain up `getelementptr` in an intuitive and type-safe way:
///
/// ```ignore
/// let ctx: &CodeGenContext<'ctx, '_>;
/// let ndarray: Pointer<'ctx, StructModel<NpArray<'ctx>>>;
/// ndarray.gep(ctx, |f| f.ndims).store();
/// ```
///
/// You might even write chains `gep`, i.e.,
/// ```ignore
/// my_struct
/// .gep(ctx, |f| f.thing1)
/// .gep(ctx, |f| f.value)
/// .store(ctx, my_value) // Equivalent to `my_struct.thing1.value = my_value`
/// ```
pub fn gep<E, GetFieldFn>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetFieldFn,
) -> Pointer<'ctx, E>
where
E: Model<'ctx>,
GetFieldFn: FnOnce(S::Fields) -> Field<E>,
{
let fields = self.element.0.get_fields(ctx.ctx);
let field = get_field(fields);
let llvm_i32 = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to *just* use i32 for GEP like that
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
Pointer { element: field.element, value: ptr }
}
}

View File

@ -1,279 +0,0 @@
use inkwell::{
context::Context,
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{AnyValueEnum, BasicValue, BasicValueEnum, IntValue},
};
use crate::codegen::CodeGenContext;
use super::core::*;
/// Helper function to check if `scrutinee` is the same as `expected_int_type`
fn check_int_llvm_type<'ctx>(
scrutinee: AnyTypeEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<(), String> {
// Check if llvm_type is int type
let AnyTypeEnum::IntType(scrutinee) = scrutinee else {
return Err(format!("Expecting an int type but got {scrutinee:?}"));
};
// Check bit width
if scrutinee.get_bit_width() != expected_int_type.get_bit_width() {
return Err(format!(
"Expecting an int type of {}-bit(s) but got int type {}-bit(s)",
expected_int_type.get_bit_width(),
scrutinee.get_bit_width()
));
}
Ok(())
}
/// Helper function to cast `scrutinee` is into an [`IntValue<'ctx>`].
/// The LLVM type of `scrutinee` will be checked with [`check_int_llvm_type`].
fn review_int_llvm_value<'ctx>(
value: AnyValueEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<IntValue<'ctx>, String> {
// Check if value is of int type, error if that is anything else
check_int_llvm_type(value.get_type().as_any_type_enum(), expected_int_type)?;
// Ok, it is must be an int
Ok(value.into_int_value())
}
/// A model representing an [`IntType<'ctx>`].
///
/// Also see [`FixedIntModel`], which is more constrained than [`IntModel`]
/// but provides more type-safe mechanisms and even auto-derivation of [`BasicTypeEnum<'ctx>`]
/// for creating LLVM structures.
#[derive(Debug, Clone, Copy)]
pub struct IntModel<'ctx>(pub IntType<'ctx>);
/// An inhabitant of an [`IntModel<'ctx>`]
#[derive(Debug, Clone, Copy)]
pub struct Int<'ctx>(pub IntValue<'ctx>);
impl<'ctx> CanCheckLLVMType<'ctx> for IntModel<'ctx> {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, self.0)
}
}
impl<'ctx> Model<'ctx> for IntModel<'ctx> {
type Value = Int<'ctx>;
fn get_llvm_type(&self, _ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let int = value.into_int_value();
self.check_llvm_type(ctx, int.get_type().as_any_type_enum()).unwrap();
Int(int)
}
}
impl<'ctx> ModelValue<'ctx> for Int<'ctx> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.0.as_basic_value_enum()
}
}
// Extra utilities for [`Int<'ctx>`]
impl<'ctx> Int<'ctx> {
#[must_use]
pub fn signed_cast_to_int(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_int: IntModel<'ctx>,
name: &str,
) -> Int<'ctx> {
Int(ctx.builder.build_int_s_extend_or_bit_cast(self.0, target_int.0, name).unwrap())
}
#[must_use]
pub fn signed_cast_to_fixed<T: IsFixedInt>(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_fixed: T,
name: &str,
) -> FixedInt<'ctx, T> {
FixedInt {
int: target_fixed,
value: ctx
.builder
.build_int_s_extend_or_bit_cast(self.0, T::get_int_type(ctx.ctx), name)
.unwrap(),
}
}
}
// Extra utilities for [`IntModel<'ctx>`]
impl<'ctx> IntModel<'ctx> {
/// Create a constant value that inhabits this [`IntModel<'ctx>`].
#[must_use]
pub fn constant(&self, value: u64) -> Int<'ctx> {
Int(self.0.const_int(value, false))
}
/// Check if `other` is fully compatible with this [`IntModel<'ctx>`].
///
/// This simply checks if the underlying [`IntType<'ctx>`] has
/// the same number of bits.
#[must_use]
pub fn same_as(&self, other: IntModel<'ctx>) -> bool {
// TODO: or `self.0 == other.0` would also work?
self.0.get_bit_width() == other.0.get_bit_width()
}
}
/// A model representing a compile-time known [`IntType<'ctx>`].
///
/// Also see [`IntModel`], which is less constrained than [`FixedIntModel`],
/// but enables one to handle [`IntType<'ctx>`] that could be dynamic
#[derive(Debug, Clone, Copy, Default)]
pub struct FixedIntModel<T>(pub T);
impl<T: IsFixedInt> FixedIntModel<T> {
pub fn to_int_model(self, ctx: &Context) -> IntModel<'_> {
IntModel(T::get_int_type(ctx))
}
}
impl<'ctx, T: IsFixedInt> CanCheckLLVMType<'ctx> for FixedIntModel<T> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
check_int_llvm_type(scrutinee, T::get_int_type(ctx))
}
}
impl<'ctx, T: IsFixedInt> Model<'ctx> for FixedIntModel<T> {
type Value = FixedInt<'ctx, T>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
T::get_int_type(ctx).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
let value = review_int_llvm_value(value, T::get_int_type(ctx)).unwrap();
FixedInt { int: self.0, value }
}
}
impl<'ctx, T: IsFixedInt> FixedIntModel<T> {
pub fn constant(&self, ctx: &'ctx Context, value: u64) -> FixedInt<'ctx, T> {
FixedInt { int: self.0, value: T::get_int_type(ctx).const_int(value, false) }
}
}
/// An inhabitant of [`FixedIntModel<'ctx>`]
#[derive(Debug, Clone, Copy)]
pub struct FixedInt<'ctx, T: IsFixedInt> {
pub int: T,
pub value: IntValue<'ctx>,
}
/// A marker trait to mark singleton struct that describes a particular fixed integer type.
/// See [`Bool`], [`Byte`], [`Int32`], etc.
///
/// The [`Default`] trait is to enable auto-derivations for utilities like
/// [`FieldBuilder::add_field_auto`]
pub trait IsFixedInt: Clone + Copy + Default {
fn get_int_type(ctx: &Context) -> IntType<'_>;
fn get_bit_width() -> u32; // This is required, instead of only relying on get_int_type
}
impl<'ctx, T: IsFixedInt> ModelValue<'ctx> for FixedInt<'ctx, T> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
// Extra utilities for [`FixedInt<'ctx, T>`]
impl<'ctx, T: IsFixedInt> FixedInt<'ctx, T> {
pub fn to_int(self) -> Int<'ctx> {
Int(self.value)
}
pub fn signed_cast_to_fixed<R: IsFixedInt>(
self,
ctx: &CodeGenContext<'ctx, '_>,
target_fixed_int: R,
name: &str,
) -> FixedInt<'ctx, R> {
FixedInt {
int: target_fixed_int,
value: ctx
.builder
.build_int_s_extend_or_bit_cast(self.value, R::get_int_type(ctx.ctx), name)
.unwrap(),
}
}
}
// Some pre-defined fixed integers
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
pub type BoolModel = FixedIntModel<Bool>;
impl IsFixedInt for Bool {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.bool_type()
}
fn get_bit_width() -> u32 {
1
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
pub type ByteModel = FixedIntModel<Byte>;
impl IsFixedInt for Byte {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i8_type()
}
fn get_bit_width() -> u32 {
8
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
pub type Int32Model = FixedIntModel<Int32>;
impl IsFixedInt for Int32 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i32_type()
}
fn get_bit_width() -> u32 {
32
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
pub type Int64Model = FixedIntModel<Int64>;
impl IsFixedInt for Int64 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i64_type()
}
fn get_bit_width() -> u32 {
64
}
}

View File

@ -1,11 +0,0 @@
pub mod core;
pub mod gep;
pub mod int;
pub mod pointer;
pub mod slice;
pub use core::*;
pub use gep::*;
pub use int::*;
pub use pointer::*;
pub use slice::*;

View File

@ -1,184 +0,0 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum},
values::{AnyValue, AnyValueEnum, BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::core::*;
/// An inhabitant of [`PointerModel<E>`]
#[derive(Debug, Clone, Copy)]
pub struct Pointer<'ctx, E: Model<'ctx>> {
pub element: E,
pub value: PointerValue<'ctx>,
}
/// A [`Model<'ctx>`] representing an LLVM [`PointerType<'ctx>`]
/// with *full* information on the element u
///
/// [`self.0`] contains [`Model<'ctx>`] that represents the
/// LLVM type of element of the [`PointerType<'ctx>`] is pointing at
/// (like `PointerType<'ctx>::get_element_type()`, but abstracted as a [`Model<'ctx>`]).
#[derive(Debug, Clone, Copy, Default)]
pub struct PointerModel<E>(pub E);
impl<'ctx, E: Model<'ctx>> ModelValue<'ctx> for Pointer<'ctx, E> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.value.as_basic_value_enum()
}
}
impl<'ctx, E: Model<'ctx>> Pointer<'ctx, E> {
/// Build an instruction to store a value into this pointer
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, val: E::Value) {
ctx.builder.build_store(self.value, val.get_llvm_value()).unwrap();
}
/// Build an instruction to load a value from this pointer
pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> E::Value {
let val = ctx.builder.build_load(self.value, name).unwrap();
self.element.review(ctx.ctx, val.as_any_value_enum())
}
pub fn to_opaque(self) -> OpaquePointer<'ctx> {
OpaquePointer(self.value)
}
pub fn cast_opaque_to(
&self,
ctx: &CodeGenContext<'ctx, '_>,
element_type: BasicTypeEnum<'ctx>,
name: &str,
) -> OpaquePointer<'ctx> {
self.to_opaque().cast_opaque_to(ctx, element_type, name)
}
pub fn cast_to<R: Model<'ctx>>(
self,
ctx: &CodeGenContext<'ctx, '_>,
element_model: R,
name: &str,
) -> Pointer<'ctx, R> {
let casted_ptr =
self.to_opaque().cast_opaque_to(ctx, element_model.get_llvm_type(ctx.ctx), name).0;
Pointer { element: element_model, value: casted_ptr }
}
}
impl<'ctx, E: Model<'ctx>> CanCheckLLVMType<'ctx> for PointerModel<E> {
fn check_llvm_type(
&self,
ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// Check if scrutinee is even a PointerValue
let AnyTypeEnum::PointerType(scrutinee) = scrutinee else {
return Err(format!("Expecting a pointer value, but got {scrutinee:?}"));
};
// Check the type of what the pointer is pointing at
// TODO: This will be deprecated by inkwell > llvm14 because `get_element_type()` will be gone
self.0.check_llvm_type(ctx, scrutinee.get_element_type())?; // TODO: Include backtrace?
Ok(())
}
}
impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> {
type Value = Pointer<'ctx, E>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0.get_llvm_type(ctx).ptr_type(AddressSpace::default()).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
self.check_llvm_type(ctx, value.get_type()).unwrap();
// TODO: Check get_element_type()? for LLVM 14 at least...
Pointer { element: self.0, value: value.into_pointer_value() }
}
}
// A pointer of which the element's model is unknown.
#[derive(Debug, Clone, Copy)]
pub struct OpaquePointer<'ctx>(pub PointerValue<'ctx>);
#[derive(Debug, Clone, Copy, Default)]
pub struct OpaquePointerModel;
impl<'ctx> ModelValue<'ctx> for OpaquePointer<'ctx> {
fn get_llvm_value(&self) -> BasicValueEnum<'ctx> {
self.0.as_basic_value_enum()
}
}
impl<'ctx> CanCheckLLVMType<'ctx> for OpaquePointerModel {
fn check_llvm_type(
&self,
_ctx: &'ctx Context,
scrutinee: AnyTypeEnum<'ctx>,
) -> Result<(), String> {
// OpaquePointerModel only cares that it is a pointer,
// but not what the pointer is pointing at
match scrutinee {
AnyTypeEnum::PointerType(_) => Ok(()),
_ => Err(format!("Expecting a pointer type, but got {scrutinee:?}")),
}
}
}
impl<'ctx> Model<'ctx> for OpaquePointerModel {
type Value = OpaquePointer<'ctx>;
fn get_llvm_type(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
ctx.i8_type().ptr_type(AddressSpace::default()).as_basic_type_enum()
}
fn review(&self, ctx: &'ctx Context, value: AnyValueEnum<'ctx>) -> Self::Value {
// Check if value is even of a pointer type
self.check_llvm_type(ctx, value.get_type()).unwrap();
OpaquePointer(value.into_pointer_value())
}
}
impl<'ctx> OpaquePointer<'ctx> {
pub fn load_opaque(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> BasicValueEnum<'ctx> {
ctx.builder.build_load(self.0, name).unwrap()
}
pub fn store_opaque(&self, ctx: &CodeGenContext<'ctx, '_>, value: BasicValueEnum<'ctx>) {
ctx.builder.build_store(self.0, value).unwrap();
}
#[must_use]
pub fn cast_opaque_to(
self,
ctx: &CodeGenContext<'ctx, '_>,
element_llvm_type: BasicTypeEnum<'ctx>,
name: &str,
) -> OpaquePointer<'ctx> {
OpaquePointer(
ctx.builder
.build_pointer_cast(
self.0,
element_llvm_type.ptr_type(AddressSpace::default()),
name,
)
.unwrap(),
)
}
pub fn cast_to<E: Model<'ctx>>(
self,
ctx: &CodeGenContext<'ctx, '_>,
element_model: E,
name: &str,
) -> Pointer<'ctx, E> {
let ptr = self.cast_opaque_to(ctx, element_model.get_llvm_type(ctx.ctx), name).0;
Pointer { element: element_model, value: ptr }
}
}

View File

@ -1,73 +0,0 @@
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::{Int, Model, Pointer};
pub struct ArraySlice<'ctx, E: Model<'ctx>> {
pub num_elements: Int<'ctx>,
pub pointer: Pointer<'ctx, E>,
}
impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
pub fn ix_unchecked(
&self,
ctx: &CodeGenContext<'ctx, '_>,
idx: Int<'ctx>,
name: &str,
) -> Pointer<'ctx, E> {
let element_addr =
unsafe { ctx.builder.build_in_bounds_gep(self.pointer.value, &[idx.0], name).unwrap() };
Pointer { value: element_addr, element: self.pointer.element }
}
pub fn ix<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
idx: Int<'ctx>,
name: &str,
) -> Pointer<'ctx, E> {
let int_type = self.num_elements.0.get_type(); // NOTE: Weird get_type(), see comment under `trait Ixed`
assert_eq!(int_type.get_bit_width(), idx.0.get_type().get_bit_width()); // Might as well check bit width to catch bugs
// TODO: SGE or UGE? or make it defined by the implementee?
// Check `0 <= index`
let lower_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLE,
int_type.const_zero(),
idx.0,
"lower_bounded",
)
.unwrap();
// Check `index < num_elements`
let upper_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLT,
idx.0,
self.num_elements.0,
"upper_bounded",
)
.unwrap();
// Compute `0 <= index && index < num_elements`
let bounded = ctx.builder.build_and(lower_bounded, upper_bounded, "bounded").unwrap();
// Assert `bounded`
ctx.make_assert(
generator,
bounded,
"0:IndexError",
"nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}",
[ Some(idx.0), Some(self.num_elements.0), None],
ctx.current_loc
);
// ...and finally do indexing
self.ix_unchecked(ctx, idx, name)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,195 +0,0 @@
use inkwell::values::{BasicValue, BasicValueEnum, PointerValue};
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::ValueEnum,
toplevel::DefinitionId,
typecheck::typedef::{FunSignature, Type},
};
use super::{
irrt::numpy::{
ndarray::{
alloca_ndarray_and_init, call_nac3_ndarray_fill_generic, NDArrayInitMode, NpArray,
},
shape::parse_input_shape_arg,
},
model::*,
CodeGenContext, CodeGenerator,
};
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
fn call_ndarray_empty_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
name: &str,
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
where
G: CodeGenerator + ?Sized,
{
let elem_type = ctx.get_llvm_type(generator, elem_ty);
let shape = parse_input_shape_arg(generator, ctx, shape, shape_ty);
let ndarray_ptr = alloca_ndarray_and_init(
generator,
ctx,
elem_type,
NDArrayInitMode::ShapeAndAllocaData { shape },
name,
)?;
Ok(ndarray_ptr)
}
fn call_ndarray_full_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
fill_value: BasicValueEnum<'ctx>,
name: &str,
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
where
G: CodeGenerator + ?Sized,
{
let ndarray_ptr = call_ndarray_empty_impl(generator, ctx, elem_ty, shape, shape_ty, name)?;
// NOTE: fill_value's type is not checked!! so be careful with logics
// Allocate fill_value on the stack and give the corresponding stack pointer
// to call_nac3_ndarray_fill_generic
let fill_value_ptr = ctx.builder.build_alloca(fill_value.get_type(), "fill_value_ptr").unwrap();
let fill_value_ptr = OpaquePointer(fill_value_ptr);
fill_value_ptr.store_opaque(ctx, fill_value);
let fill_value_ptr = fill_value_ptr.cast_to(ctx, FixedIntModel(Byte), "");
call_nac3_ndarray_fill_generic(ctx, ndarray_ptr, fill_value_ptr);
Ok(ndarray_ptr)
}
/// Generates LLVM IR for `np.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
let ndarray_ptr = call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
shape,
shape_ty,
"ndarray",
)?;
Ok(ndarray_ptr.value)
}
/// Generates LLVM IR for `np.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
// NOTE: Currently nac3's `np.zeros` is always `float64`.
let float64_ty = context.primitives.float;
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
let ndarray_ptr = call_ndarray_full_impl(
generator,
context,
float64_ty, // `elem_ty` is always `float64`
shape,
shape_ty,
float64_llvm_type.const_zero().as_basic_value_enum(),
"ndarray",
)?;
Ok(ndarray_ptr.value)
}
/// Generates LLVM IR for `np.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
// NOTE: Currently nac3's `np.ones` is always `float64`.
let float64_ty = context.primitives.float;
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
let ndarray_ptr = call_ndarray_full_impl(
generator,
context,
float64_ty, // `elem_ty` is always `float64`
shape,
shape_ty,
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
"ndarray",
)?;
Ok(ndarray_ptr.value)
}
/// Generates LLVM IR for `ndarray.full`.
pub fn gen_ndarray_full<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
// Parse argument #1 shape
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Parse argument #2 fill_value
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
// Implementation
let ndarray_ptr = call_ndarray_full_impl(
generator,
context,
fill_value_ty,
shape_arg,
shape_ty,
fill_value_arg,
"ndarray",
)?;
Ok(ndarray_ptr.value)
}

File diff suppressed because it is too large Load Diff

View File

@ -1,34 +1,37 @@
use crate::{
codegen::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::ast::FileName;
use nac3parser::{
ast::{fold::Fold, StrRef},
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use super::{
concrete_type::ConcreteTypeStore,
types::{ListType, NDArrayType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
@ -64,6 +67,7 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -94,7 +98,7 @@ fn test_primitives() {
"};
let statements = parse_program(source, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
@ -109,8 +113,18 @@ fn test_primitives() {
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
args: vec![
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
],
ret: primitives.int32,
vars: VarMap::new(),
@ -128,7 +142,8 @@ fn test_primitives() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -189,6 +204,8 @@ fn test_primitives() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
@ -246,14 +263,19 @@ fn test_simple_call() {
"};
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32,
vars: VarMap::new(),
};
@ -300,7 +322,8 @@ fn test_simple_call() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -368,6 +391,8 @@ fn test_simple_call() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
@ -427,7 +452,7 @@ fn test_classes_list_type_new() {
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
@ -435,7 +460,7 @@ fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
}
#[test]
@ -447,5 +472,5 @@ fn test_classes_ndarray_type_new() {
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -0,0 +1,192 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap();
let Ok(_) = PointerType::try_from(list_size_ty) else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}"));
};
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap();
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t }
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
ListType::from_type(llvm_list, llvm_usize)
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
Self::Value::from_pointer_value(value, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,64 @@
use inkwell::{context::Context, types::BasicType, values::IntValue};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod list;
mod ndarray;
mod range;
pub mod structure;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Creates a new value of this type.
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value;
/// Creates a new array value of this type.
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx>;
/// Converts an existing value into a [`ProxyValue`] of this type.
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value;
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -0,0 +1,258 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{StructField, StructFields},
ProxyType,
};
use crate::codegen::{
values::{ArraySliceValue, NDArrayValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
if llvm_ndarray_ty.count_fields() != 3 {
return Err(format!(
"Expected 3 fields in `NDArray`, got {}",
llvm_ndarray_ty.count_fields()
));
}
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
};
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
llvm_usize.get_bit_width(),
ndarray_ndims_ty.get_bit_width()
));
}
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
};
let ndarray_dims = ndarray_pdims.get_element_type();
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
));
};
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
llvm_usize.get_bit_width(),
ndarray_dims.get_bit_width()
));
}
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
let Ok(ndarray_pdata) = PointerType::try_from(ndarray_data_ty) else {
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
};
let ndarray_data = ndarray_pdata.get_element_type();
let Ok(ndarray_data) = IntType::try_from(ndarray_data) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.2`, got pointer-to-{ndarray_data}"
));
};
if ndarray_data.get_bit_width() != 8 {
return Err(format!(
"Expected pointer-to-8-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
ndarray_data.get_bit_width()
));
}
Ok(())
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
fn fields(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(
&self,
ctx: &'ctx Context,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { num_dims: size_t, dims: size_t*, data: i8* }
//
// * data : Pointer to an array containing the array data
// * itemsize: The size of each NDArray elements in bytes
// * ndims : Number of dimensions in the array
// * shape : Pointer to an array containing the shape of the NDArray
// * strides : Pointer to an array indicating the number of bytes between each element at a dimension
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
NDArrayValue::from_pointer_value(value, self.dtype, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,159 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `range` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct RangeType<'ctx> {
ty: PointerType<'ctx>,
}
impl<'ctx> RangeType<'ctx> {
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
let llvm_range_ty = llvm_ty.get_element_type();
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
};
if llvm_range_ty.len() != 3 {
return Err(format!(
"Expected 3 elements for `range` type, got {}",
llvm_range_ty.len()
));
}
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
return Err(format!(
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
));
};
if llvm_range_elem_ty.get_bit_width() != 32 {
return Err(format!(
"Expected 32-bit int type for `range` element type, got {}",
llvm_range_elem_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
#[must_use]
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
// typedef int32_t Range[3];
let llvm_i32 = ctx.i32_type();
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`RangeType`].
#[must_use]
pub fn new(ctx: &'ctx Context) -> Self {
let llvm_range = Self::llvm_type(ctx);
RangeType::from_type(llvm_range)
}
/// Creates an [`RangeType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty).is_ok());
RangeType { ty: ptr_ty }
}
/// Returns the type of all fields of this `range` type.
#[must_use]
pub fn value_type(&self) -> IntType<'ctx> {
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
}
}
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
type Base = PointerType<'ctx>;
type Value = RangeValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_: &G,
_: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
RangeValue::from_pointer_value(value, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
fn from(value: RangeType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,203 @@
use std::marker::PhantomData;
use inkwell::{
context::AsContextRef,
types::{BasicTypeEnum, IntType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
};
use crate::codegen::CodeGenContext;
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
///
/// # Usage
///
/// For example, for a simple C-slice LLVM structure:
///
/// ```ignore
/// struct CSliceFields<'ctx> {
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
/// len: StructField<'ctx, IntValue<'ctx>>
/// }
/// ```
pub trait StructFields<'ctx>: Eq + Copy {
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
self.to_vec().into_iter()
}
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.to_vec()
}
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.into_vec().into_iter()
}
}
/// A single field of an LLVM structure.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// The index of this field within the structure.
index: u32,
/// The name of this field.
name: &'static str,
/// The type of this field.
ty: BasicTypeEnum<'ctx>,
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
_value_ty: PhantomData<Value>,
}
impl<'ctx, Value> StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// Creates an instance of [`StructField`].
///
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
/// index.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create(
idx_counter: &mut FieldIndexCounter,
name: &'static str,
ty: impl Into<BasicTypeEnum<'ctx>>,
) -> Self {
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates an instance of [`StructField`] with a given index.
///
/// * `index` - The index of this field within its enclosing structure.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
/// {idx...}, i32 {self.index}`.
pub fn ptr_by_array_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
idx: &[IntValue<'ctx>],
) -> PointerValue<'ctx> {
unsafe {
ctx.builder.build_in_bounds_gep(
pobj,
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
"",
)
}
.unwrap()
}
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
/// `getelementptr i32 0, i32 {self.index}`.
pub fn ptr_by_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_struct_gep(
pobj,
self.index,
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
)
.unwrap()
}
/// Gets the value of this field for a given `obj`.
#[must_use]
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
}
/// Sets the value of this field for a given `obj`.
pub fn set_from_value(&self, obj: StructValue<'ctx>, value: Value) {
obj.set_field_at_index(self.index, value);
}
/// Gets the value of this field for a pointer-to-structure.
pub fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> Value {
ctx.builder
.build_load(
self.ptr_by_gep(ctx, pobj, obj_name),
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
)
.map_err(|_| ())
.and_then(|value| Value::try_from(value))
.unwrap()
}
/// Sets the value of this field for a pointer-to-structure.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
value: Value,
obj_name: Option<&'ctx str>,
) {
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
}
}
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
fn from(value: StructField<'ctx, Value>) -> Self {
(value.name, value.ty)
}
}
/// A counter that tracks the next index of a field using a monotonically increasing counter.
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
pub struct FieldIndexCounter(u32);
impl FieldIndexCounter {
/// Increments the number stored by this counter, returning the previous value.
///
/// Functionally equivalent to `i++` in C-based languages.
pub fn increment(&mut self) -> u32 {
let v = self.0;
self.0 += 1;
v
}
}

View File

@ -0,0 +1,426 @@
use inkwell::{
types::AnyTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
/// An LLVM value that is array-like, i.e. it contains a contiguous, sequenced collection of
/// elements.
pub trait ArrayLikeValue<'ctx> {
/// Returns the element type of this array-like value.
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx>;
/// Returns the base pointer to the array.
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx>;
/// Returns the size of this array-like value.
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx>;
/// Returns a [`ArraySliceValue`] representing this value.
fn as_slice_value<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
self.base_ptr(ctx, generator),
self.size(ctx, generator),
None,
)
}
}
/// An array-like value that can be indexed by memory offset.
pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
/// Returns the pointer to the data at the `idx`-th index.
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
}
/// An array-like value that can have its array elements accessed as a [`BasicValueEnum`].
pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
/// Returns the data at the `idx`-th index.
fn get<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = self.ptr_offset(ctx, generator, idx, name);
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
}
/// An array-like value that can have its array elements mutated as a [`BasicValueEnum`].
pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, None) };
ctx.builder.build_store(ptr, value).unwrap();
}
/// Sets the data at the `idx`-th index.
fn set<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = self.ptr_offset(ctx, generator, idx, None);
ctx.builder.build_store(ptr, value).unwrap();
}
}
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index>
{
/// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, value)
}
/// Returns the data at the `idx`-th index.
fn get_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, value)
}
}
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index>
{
/// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx>;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) }
}
/// Sets the data at the `idx`-th index.
fn set_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
self.set(ctx, generator, idx, value);
}
}
/// Type alias for a function that casts a [`BasicValueEnum`] into a `T`.
type ValueDowncastFn<'ctx, T> =
Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, BasicValueEnum<'ctx>) -> T>;
/// Type alias for a function that casts a `T` into a [`BasicValueEnum`].
type ValueUpcastFn<'ctx, T> = Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, T) -> BasicValueEnum<'ctx>>;
/// An adapter for constraining untyped array values as typed values.
pub struct TypedArrayLikeAdapter<'ctx, T, Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>> {
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
}
impl<'ctx, T, Adapted> TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
/// Creates a [`TypedArrayLikeAdapter`].
///
/// * `adapted` - The value to be adapted.
/// * `downcast_fn` - The function converting a [`BasicValueEnum`] into a `T`.
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from(
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
}
}
impl<'ctx, T, Adapted> ArrayLikeValue<'ctx> for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator)
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator)
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
self.adapted.size(ctx, generator)
}
}
impl<'ctx, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeIndexer<'ctx, Index>,
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
self.adapted.ptr_offset(ctx, generator, idx, name)
}
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T {
(self.downcast_fn)(ctx, value)
}
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeMutator<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, value)
}
}
/// An LLVM value representing an array slice, consisting of a pointer to the data and the size of
/// the slice.
#[derive(Copy, Clone)]
pub struct ArraySliceValue<'ctx>(PointerValue<'ctx>, IntValue<'ctx>, Option<&'ctx str>);
impl<'ctx> ArraySliceValue<'ctx> {
/// Creates an [`ArraySliceValue`] from a [`PointerValue`] and its size.
#[must_use]
pub fn from_ptr_val(
ptr: PointerValue<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Self {
ArraySliceValue(ptr, size, name)
}
}
impl<'ctx> From<ArraySliceValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ArraySliceValue<'ctx>) -> Self {
value.0
}
}
impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
self.0
}
fn size<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.1
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ArraySliceValue<'ctx> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ArraySliceValue<'ctx> {}

View File

@ -0,0 +1,241 @@
use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
types::ListType,
{CodeGenContext, CodeGenerator},
};
/// Proxy type for accessing a `list` value in LLVM.
#[derive(Copy, Clone)]
pub struct ListValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ListValue<'ctx> {
/// Checks whether `value` is an instance of `list`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
ListType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ListValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
ListValue { value: ptr, llvm_usize, name }
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
///
/// If `size` is [None], the size stored in the field of this instance is used instead.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
#[must_use]
pub fn data(&self) -> ListDataProxy<'ctx, '_> {
ListDataProxy(self)
}
/// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
size: IntValue<'ctx>,
) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx);
ctx.builder.build_store(psize, size).unwrap();
}
/// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let psize = self.ptr_to_size(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.size")))
.unwrap_or_default();
ctx.builder
.build_load(psize, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ListType<'ctx>;
fn get_type(&self) -> Self::Type {
ListType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ListValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ListValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `data` array of an `list` instance in LLVM.
#[derive(Copy, Clone)]
pub struct ListDataProxy<'ctx, 'a>(&'a ListValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.value.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.pptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_size(ctx, None)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}

View File

@ -0,0 +1,47 @@
use inkwell::{context::Context, values::BasicValue};
use super::types::ProxyType;
use crate::codegen::CodeGenerator;
pub use array::*;
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod array;
mod list;
mod ndarray;
mod range;
/// A LLVM type that is used to represent a non-primitive value in NAC3.
pub trait ProxyValue<'ctx>: Into<Self::Base> {
/// The type of LLVM values represented by this instance. This is usually the
/// [LLVM pointer type][PointerValue].
type Base: BasicValue<'ctx>;
/// The type of this value.
type Type: ProxyType<'ctx, Value = Self>;
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_instance<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: impl BasicValue<'ctx>,
) -> Result<(), String> {
Self::Type::is_type(generator, ctx, value.as_basic_value_enum().get_type())
}
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: Self::Base,
) -> Result<(), String> {
Self::is_instance(generator, ctx, value.as_basic_value_enum())
}
/// Returns the [type][ProxyType] of this value.
fn get_type(&self) -> Self::Type;
/// Returns the [base value][Self::Base] of this proxy.
fn as_base_value(&self) -> Self::Base;
}

View File

@ -0,0 +1,523 @@
use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
llvm_intrinsics::call_int_umin,
stmt::gen_for_callback_incrementing,
types::NDArrayType,
CodeGenContext, CodeGenerator,
};
/// Proxy type for accessing an `NDArray` value in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDArrayValue<'ctx> {
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
NDArrayType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
NDArrayValue { value: ptr, dtype, llvm_usize, name }
}
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
fn ptr_to_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.ndims
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the number of dimensions `ndims` into this instance.
pub fn store_ndims<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
ndims: IntValue<'ctx>,
) {
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_store(pndims, ndims).unwrap();
}
/// Returns the number of dimensions of this `NDArray` as a value.
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
}
/// Returns the double-indirection pointer to the `shape` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.shape
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of dimension sizes `dims` into this instance.
fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
ctx.builder.build_store(self.ptr_to_shape(ctx), dims).unwrap();
}
/// Convenience method for creating a new array storing dimension sizes with the given `size`.
pub fn create_shape(
&self,
ctx: &CodeGenContext<'ctx, '_>,
llvm_usize: IntType<'ctx>,
size: IntValue<'ctx>,
) {
self.store_shape(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
}
/// Returns a proxy object to the field storing the size of each dimension of this `NDArray`.
#[must_use]
pub fn shape(&self) -> NDArrayShapeProxy<'ctx, '_> {
NDArrayShapeProxy(self)
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.data
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
let data = ctx
.builder
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
ctx.builder.build_store(self.ptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
pub fn create_data(
&self,
ctx: &CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
) {
let itemsize =
ctx.builder.build_int_cast(elem_ty.size_of().unwrap(), size.get_type(), "").unwrap();
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
// TODO: What about alignment?
self.store_data(
ctx,
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap(),
);
}
/// Returns a proxy object to the field storing the data of this `NDArray`.
#[must_use]
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self)
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDArrayType<'ctx>;
fn get_type(&self) -> Self::Type {
NDArrayType::from_type(self.as_base_value().get_type(), self.dtype, self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDArrayValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.dtype.as_any_type_enum()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
idx.get_type(),
"",
)
.unwrap();
let idx = ctx.builder.build_int_mul(*idx, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[idx],
name.unwrap_or_default(),
)
.unwrap()
};
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let data_sz = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, data_sz, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_elem_ty = indices
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
.get_type()
.get_element_type();
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
panic!("Expected list[int32] but got {indices_elem_ty}")
};
assert_eq!(
indices_elem_ty.get_bit_width(),
32,
"Expected list[int32] but got list[int{}]",
indices_elem_ty.get_bit_width()
);
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
index.get_type(),
"",
)
.unwrap();
let index = ctx.builder.build_int_mul(index, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[index],
name.unwrap_or_default(),
)
.unwrap()
};
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_size = indices.size(ctx, generator);
let nidx_leq_ndims = ctx
.builder
.build_int_compare(IntPredicate::SLE, indices_size, self.0.load_ndims(ctx), "")
.unwrap();
ctx.make_assert(
generator,
nidx_leq_ndims,
"0:IndexError",
"invalid index to scalar variable",
[None, None, None],
ctx.current_loc,
);
let indices_len = indices.size(ctx, generator);
let ndarray_len = self.0.load_ndims(ctx);
let len = call_int_umin(ctx, indices_len, ndarray_len, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let (dim_idx, dim_sz) = unsafe {
(
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),
self.0.shape().get_typed_unchecked(ctx, generator, &i, None),
)
};
let dim_idx = ctx
.builder
.build_int_z_extend_or_bit_cast(dim_idx, dim_sz.get_type(), "")
.unwrap();
let dim_lt =
ctx.builder.build_int_compare(IntPredicate::SLT, dim_idx, dim_sz, "").unwrap();
ctx.make_assert(
generator,
dim_lt,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(dim_idx), Some(dim_sz), None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, indices, name) };
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeAccessor<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}

View File

@ -0,0 +1,153 @@
use inkwell::values::{BasicValueEnum, IntValue, PointerValue};
use super::ProxyValue;
use crate::codegen::{types::RangeType, CodeGenContext};
/// Proxy type for accessing a `range` value in LLVM.
#[derive(Copy, Clone)]
pub struct RangeValue<'ctx> {
value: PointerValue<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> RangeValue<'ctx> {
/// Checks whether `value` is an instance of `range`, returning [Err] if `value` is not an instance.
pub fn is_representable(value: PointerValue<'ctx>) -> Result<(), String> {
RangeType::is_representable(value.get_type())
}
/// Creates an [`RangeValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(ptr: PointerValue<'ctx>, name: Option<&'ctx str>) -> Self {
debug_assert!(Self::is_representable(ptr).is_ok());
RangeValue { value: ptr, name }
}
fn ptr_to_start(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.start.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(0, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_end(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.end.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_step(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.step.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(2, false)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the `start` value into this instance.
pub fn store_start(&self, ctx: &CodeGenContext<'ctx, '_>, start: IntValue<'ctx>) {
debug_assert_eq!(start.get_type().get_bit_width(), 32);
let pstart = self.ptr_to_start(ctx);
ctx.builder.build_store(pstart, start).unwrap();
}
/// Returns the `start` value of this `range`.
pub fn load_start(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstart = self.ptr_to_start(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.start")))
.unwrap_or_default();
ctx.builder
.build_load(pstart, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Stores the `end` value into this instance.
pub fn store_end(&self, ctx: &CodeGenContext<'ctx, '_>, end: IntValue<'ctx>) {
debug_assert_eq!(end.get_type().get_bit_width(), 32);
let pend = self.ptr_to_end(ctx);
ctx.builder.build_store(pend, end).unwrap();
}
/// Returns the `end` value of this `range`.
pub fn load_end(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pend = self.ptr_to_end(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.end")))
.unwrap_or_default();
ctx.builder.build_load(pend, var_name.as_str()).map(BasicValueEnum::into_int_value).unwrap()
}
/// Stores the `step` value into this instance.
pub fn store_step(&self, ctx: &CodeGenContext<'ctx, '_>, step: IntValue<'ctx>) {
debug_assert_eq!(step.get_type().get_bit_width(), 32);
let pstep = self.ptr_to_step(ctx);
ctx.builder.build_store(pstep, step).unwrap();
}
/// Returns the `step` value of this `range`.
pub fn load_step(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstep = self.ptr_to_step(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.step")))
.unwrap_or_default();
ctx.builder
.build_load(pstep, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for RangeValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = RangeType<'ctx>;
fn get_type(&self) -> Self::Type {
RangeType::from_type(self.value.get_type())
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<RangeValue<'ctx>> for PointerValue<'ctx> {
fn from(value: RangeValue<'ctx>) -> Self {
value.as_base_value()
}
}

View File

@ -1,10 +1,4 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
#![warn(clippy::pedantic)]
#![allow(
dead_code,
@ -19,8 +13,13 @@
clippy::wildcard_imports
)]
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
pub use inkwell;
pub use nac3parser;
pub mod codegen;
pub mod symbol_resolver;
pub mod toplevel;
pub mod typecheck;
pub(crate) mod util;
extern crate self as nac3core;

View File

@ -1,7 +1,15 @@
use std::fmt::Debug;
use std::rc::Rc;
use std::sync::Arc;
use std::{collections::HashMap, collections::HashSet, fmt::Display};
use std::{
collections::{HashMap, HashSet},
fmt::{Debug, Display},
rc::Rc,
sync::Arc,
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
@ -11,10 +19,6 @@ use crate::{
typedef::{Type, TypeEnum, Unifier, VarMap},
},
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue {
@ -78,14 +82,14 @@ impl SymbolValue {
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
return Err(format!(
"Expected {:?}, but got Tuple",
expected_ty.get_type_name()
));
};
assert_eq!(ty.len(), t.len());
assert!(*is_vararg_ctx || ty.len() == t.len());
let elems = t
.iter()
@ -155,7 +159,7 @@ impl SymbolValue {
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys })
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
}
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
}
@ -365,6 +369,7 @@ pub trait SymbolResolver {
&self,
str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;
@ -482,7 +487,7 @@ pub fn parse_type_annotation<T>(
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
} else {
Err(HashSet::from(["Expected multiple elements for tuple".into()]))
}

Some files were not shown because too many files have changed in this diff Show More