nalgebra/src/linalg/givens.rs

162 lines
5.1 KiB
Rust
Raw Normal View History

//! Construction of givens rotations.
2020-03-21 19:16:46 +08:00
use num::{One, Zero};
use simba::scalar::ComplexField;
2020-03-21 19:16:46 +08:00
use crate::base::constraint::{DimEq, ShapeConstraint};
2019-03-23 21:29:07 +08:00
use crate::base::dimension::{Dim, U2};
use crate::base::storage::{Storage, StorageMut};
2020-03-21 19:16:46 +08:00
use crate::base::{Matrix, Vector};
/// A Givens rotation.
2019-03-18 18:23:19 +08:00
#[derive(Debug, Clone, Copy)]
2019-03-25 18:19:36 +08:00
pub struct GivensRotation<N: ComplexField> {
2019-03-25 18:21:41 +08:00
c: N::RealField,
2020-03-21 19:16:46 +08:00
s: N,
}
// Matrix = UnitComplex * Matrix
2019-03-25 18:19:36 +08:00
impl<N: ComplexField> GivensRotation<N> {
2019-03-18 18:23:19 +08:00
/// The Givents rotation that does nothing.
pub fn identity() -> Self {
Self {
2019-03-25 18:21:41 +08:00
c: N::RealField::one(),
2020-03-21 19:16:46 +08:00
s: N::zero(),
2019-03-18 18:23:19 +08:00
}
}
/// Initializes a Givens rotation from its components.
///
/// The components are copies as-is. It is not checked whether they describe
/// an actually valid Givens rotation.
2019-03-25 18:21:41 +08:00
pub fn new_unchecked(c: N::RealField, s: N) -> Self {
2020-03-21 19:16:46 +08:00
Self { c, s }
}
2019-03-12 20:15:02 +08:00
/// Initializes a Givens rotation from its non-normalized cosine an sine components.
2019-03-18 18:23:19 +08:00
pub fn new(c: N, s: N) -> (Self, N) {
Self::try_new(c, s, N::RealField::zero())
.unwrap_or_else(|| (GivensRotation::identity(), N::zero()))
}
/// Initializes a Givens rotation form its non-normalized cosine an sine components.
2019-03-25 18:21:41 +08:00
pub fn try_new(c: N, s: N, eps: N::RealField) -> Option<(Self, N)> {
2019-03-12 20:15:02 +08:00
let (mod0, sign0) = c.to_exp();
let denom = (mod0 * mod0 + s.modulus_squared()).sqrt();
if denom > eps {
2019-03-18 18:23:19 +08:00
let norm = sign0.scale(denom);
let c = mod0 / denom;
let s = s / norm;
Some((Self { c, s }, norm))
} else {
None
}
}
/// Computes the rotation `R` required such that the `y` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
pub fn cancel_y<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
if !v[1].is_zero() {
let (mod0, sign0) = v[0].to_exp();
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
2019-03-18 18:23:19 +08:00
let c = mod0 / denom;
let s = -v[1] / sign0.scale(denom);
let r = sign0.scale(denom);
Some((Self { c, s }, r))
} else {
None
}
}
/// Computes the rotation `R` required such that the `x` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
pub fn cancel_x<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
if !v[0].is_zero() {
2019-03-18 18:23:19 +08:00
let (mod1, sign1) = v[1].to_exp();
let denom = (mod1 * mod1 + v[0].modulus_squared()).sqrt();
let c = mod1 / denom;
let s = (v[0].conjugate() * sign1).unscale(denom);
let r = sign1.scale(denom);
Some((Self { c, s }, r))
} else {
None
}
}
/// The cos part of this roration.
2019-03-25 18:21:41 +08:00
pub fn c(&self) -> N::RealField {
self.c
}
/// The sin part of this roration.
pub fn s(&self) -> N {
self.s
}
/// The inverse of this givens rotation.
pub fn inverse(&self) -> Self {
2020-03-21 19:16:46 +08:00
Self {
c: self.c,
s: -self.s,
}
}
/// Performs the multiplication `rhs = self * rhs` in-place.
pub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
rhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<R2, U2>,
{
assert_eq!(
rhs.nrows(),
2,
"Unit complex rotation: the input matrix must have exactly two rows."
);
let s = self.s;
let c = self.c;
for j in 0..rhs.ncols() {
unsafe {
let a = *rhs.get_unchecked((0, j));
let b = *rhs.get_unchecked((1, j));
2019-03-18 18:23:19 +08:00
*rhs.get_unchecked_mut((0, j)) = a.scale(c) - s.conjugate() * b;
*rhs.get_unchecked_mut((1, j)) = s * a + b.scale(c);
}
}
}
/// Performs the multiplication `lhs = lhs * self` in-place.
pub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
lhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<C2, U2>,
{
assert_eq!(
lhs.ncols(),
2,
"Unit complex rotation: the input matrix must have exactly two columns."
);
let s = self.s;
let c = self.c;
// FIXME: can we optimize that to iterate on one column at a time ?
for j in 0..lhs.nrows() {
unsafe {
let a = *lhs.get_unchecked((j, 0));
let b = *lhs.get_unchecked((j, 1));
2019-03-18 18:23:19 +08:00
*lhs.get_unchecked_mut((j, 0)) = a.scale(c) + s * b;
*lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + b.scale(c);
}
}
}
}