nalgebra/src/linalg/givens.rs

177 lines
5.7 KiB
Rust
Raw Normal View History

//! Construction of givens rotations.
use alga::general::{Complex, Real};
2019-03-12 20:15:02 +08:00
use num::Zero;
use num_complex::Complex as NumComplex;
use base::dimension::{Dim, U2};
use base::constraint::{ShapeConstraint, DimEq};
use base::storage::{Storage, StorageMut};
use base::{Vector, Matrix};
use geometry::UnitComplex;
/// A Givens rotation.
2019-03-12 20:15:02 +08:00
#[derive(Debug)]
pub struct GivensRotation<N: Complex> {
2019-03-12 20:15:02 +08:00
// FIXME: c should be a `N::Real`.
c: N,
s: N
}
// XXX: remove this
/// Computes the rotation `R` required such that the `y` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
pub fn cancel_y<N: Real, S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(UnitComplex<N>, N)> {
if !v[1].is_zero() {
let c = NumComplex::new(v[0], -v[1]);
Some(UnitComplex::from_complex_and_get(c))
2018-02-02 19:26:35 +08:00
} else {
None
}
}
// XXX: remove this
/// Computes the rotation `R` required such that the `x` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
pub fn cancel_x<N: Real, S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(UnitComplex<N>, N)> {
if !v[0].is_zero() {
let c = NumComplex::new(v[1], v[0]);
Some(UnitComplex::from_complex_and_get(c))
2018-02-02 19:26:35 +08:00
} else {
None
}
}
// Matrix = UnitComplex * Matrix
impl<N: Complex> GivensRotation<N> {
2019-03-12 20:15:02 +08:00
/// Initializes a Givens rotation from its non-normalized cosine an sine components.
pub fn new(c: N, s: N) -> Self {
2019-03-12 20:15:02 +08:00
let res = Self::try_new(c, s, N::Real::zero()).unwrap();
println!("The rot: {:?}", res);
res
}
/// Initializes a Givens rotation form its non-normalized cosine an sine components.
pub fn try_new(c: N, s: N, eps: N::Real) -> Option<Self> {
2019-03-12 20:15:02 +08:00
let (mod0, sign0) = c.to_exp();
let denom = (mod0 * mod0 + s.modulus_squared()).sqrt();
if denom > eps {
2019-03-12 20:15:02 +08:00
let c = N::from_real(mod0 / denom);
let s = s / sign0.scale(denom);
Some(Self { c, s })
} else {
None
}
}
/// Computes the rotation `R` required such that the `y` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
pub fn cancel_y<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
if !v[1].is_zero() {
let (mod0, sign0) = v[0].to_exp();
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
let c = N::from_real(mod0 / denom);
let s = (sign0 * v[1].conjugate()).unscale(-denom);
let r = sign0.scale(denom);
Some((Self { c, s }, r))
} else {
None
}
}
/// Computes the rotation `R` required such that the `x` component of `R * v` is zero.
///
/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
pub fn cancel_x<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
if !v[0].is_zero() {
let (mod0, sign0) = v[0].to_exp();
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
let c = N::from_real(mod0 / denom);
let s = (sign0 * v[1].conjugate()).unscale(denom);
let r = sign0.scale(denom);
Some((Self { c, s }, r))
} else {
None
}
}
/// The cos part of this roration.
pub fn c(&self) -> N {
self.c
}
/// The sin part of this roration.
pub fn s(&self) -> N {
self.s
}
/// The inverse of this givens rotation.
pub fn inverse(&self) -> Self {
2019-03-12 20:15:02 +08:00
Self { c: self.c, s: -self.s }
}
/// Performs the multiplication `rhs = self * rhs` in-place.
pub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
rhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<R2, U2>,
{
assert_eq!(
rhs.nrows(),
2,
"Unit complex rotation: the input matrix must have exactly two rows."
);
let s = self.s;
let c = self.c;
for j in 0..rhs.ncols() {
unsafe {
let a = *rhs.get_unchecked((0, j));
let b = *rhs.get_unchecked((1, j));
2019-03-12 20:15:02 +08:00
*rhs.get_unchecked_mut((0, j)) = c * a + -s.conjugate() * b;
*rhs.get_unchecked_mut((1, j)) = s * a + c * b;
}
}
}
/// Performs the multiplication `lhs = lhs * self` in-place.
pub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
&self,
lhs: &mut Matrix<N, R2, C2, S2>,
) where
ShapeConstraint: DimEq<C2, U2>,
{
assert_eq!(
lhs.ncols(),
2,
"Unit complex rotation: the input matrix must have exactly two columns."
);
let s = self.s;
let c = self.c;
// FIXME: can we optimize that to iterate on one column at a time ?
for j in 0..lhs.nrows() {
unsafe {
let a = *lhs.get_unchecked((j, 0));
let b = *lhs.get_unchecked((j, 1));
*lhs.get_unchecked_mut((j, 0)) = c * a + s * b;
2019-03-12 20:15:02 +08:00
*lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + c * b;
}
}
}
}