Rename Complex to ComplexField.
This commit is contained in:
parent
1e60bc822b
commit
5b28c39fa7
@ -1,3 +1,3 @@
|
||||
pub use quaternion::quaternion;
|
||||
pub use self::quaternion::quaternion;
|
||||
|
||||
mod quaternion;
|
||||
|
@ -36,4 +36,4 @@ fn main() {
|
||||
// They both return the same result.
|
||||
assert!(result1 == Vector3::new(100001.0, 200002.0, 300003.0));
|
||||
assert!(result2 == Vector3::new(100001.0, 200002.0, 300003.0));
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
use alga::general::{ClosedAdd, ClosedMul, Complex};
|
||||
use alga::general::{ClosedAdd, ClosedMul, ComplexField};
|
||||
#[cfg(feature = "std")]
|
||||
use matrixmultiply;
|
||||
use num::{One, Signed, Zero};
|
||||
@ -15,7 +15,7 @@ use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector, DVecto
|
||||
|
||||
|
||||
// FIXME: find a way to avoid code duplication just for complex number support.
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
/// Computes the index of the vector component with the largest complex or real absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
@ -193,7 +193,7 @@ impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
|
||||
}
|
||||
|
||||
// FIXME: find a way to avoid code duplication just for complex number support.
|
||||
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Computes the index of the matrix component with the largest absolute value.
|
||||
///
|
||||
/// # Examples:
|
||||
@ -416,11 +416,11 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
#[inline]
|
||||
pub fn dotc<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> N
|
||||
where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
|
||||
{
|
||||
self.dotx(rhs, Complex::conjugate)
|
||||
self.dotx(rhs, ComplexField::conjugate)
|
||||
}
|
||||
|
||||
/// The dot product between the transpose of `self` and `rhs`.
|
||||
@ -726,7 +726,7 @@ where
|
||||
x: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, D2, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
|
||||
@ -881,12 +881,12 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
y: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
|
||||
{
|
||||
self.gerx(alpha, x, y, beta, Complex::conjugate)
|
||||
self.gerx(alpha, x, y, beta, ComplexField::conjugate)
|
||||
}
|
||||
|
||||
/// Computes `self = alpha * a * b + beta * self`, where `a, b, self` are matrices.
|
||||
@ -1216,12 +1216,12 @@ where N: Scalar + Zero + ClosedAdd + ClosedMul
|
||||
y: &Vector<N, D3, SC>,
|
||||
beta: N,
|
||||
) where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, D2>,
|
||||
SC: Storage<N, D3>,
|
||||
ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
|
||||
{
|
||||
self.xxgerx(alpha, x, y, beta, Complex::conjugate)
|
||||
self.xxgerx(alpha, x, y, beta, ComplexField::conjugate)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -16,7 +16,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
||||
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Real, Ring, Complex, Field};
|
||||
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Real, Ring, ComplexField, Field};
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
|
||||
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
@ -913,7 +913,7 @@ impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Takes the adjoint (aka. conjugate-transpose) of `self` and store the result into `out`.
|
||||
#[inline]
|
||||
pub fn adjoint_to<R2, C2, SB>(&self, out: &mut Matrix<N, R2, C2, SB>)
|
||||
@ -996,7 +996,7 @@ impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The conjugate of the complex matrix `self` computed in-place.
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
@ -1016,7 +1016,7 @@ impl<N: Complex, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
|
||||
/// Sets `self` to its adjoint.
|
||||
#[deprecated(note = "Renamed to `self.adjoint_mut()`.")]
|
||||
pub fn conjugate_transform_mut(&mut self) {
|
||||
@ -1103,7 +1103,7 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`.
|
||||
#[inline]
|
||||
pub fn symmetric_part(&self) -> MatrixMN<N, D, D>
|
||||
@ -1541,7 +1541,7 @@ where DefaultAllocator: Allocator<N, U3>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The smallest angle between two vectors.
|
||||
#[inline]
|
||||
pub fn angle<R2: Dim, C2: Dim, SB>(&self, other: &Matrix<N, R2, C2, SB>) -> N::Real
|
||||
@ -1592,7 +1592,7 @@ impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
pub fn slerp<S2: Storage<N, D>>(
|
||||
&self,
|
||||
|
@ -7,7 +7,7 @@ use alga::general::{
|
||||
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
|
||||
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
|
||||
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
|
||||
Multiplicative, RingCommutative, Complex
|
||||
Multiplicative, RingCommutative, ComplexField
|
||||
};
|
||||
use alga::linear::{
|
||||
FiniteDimInnerSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace, VectorSpace,
|
||||
@ -145,11 +145,11 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
|
||||
impl<N: ComplexField, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
{
|
||||
type Real = N::Real;
|
||||
type Complex = N;
|
||||
type ComplexField = N;
|
||||
|
||||
#[inline]
|
||||
fn norm_squared(&self) -> N::Real {
|
||||
@ -182,7 +182,7 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
|
||||
impl<N: ComplexField, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
{
|
||||
#[inline]
|
||||
@ -200,7 +200,7 @@ where DefaultAllocator: Allocator<N, R, C>
|
||||
// In particular:
|
||||
// − use `x()` instead of `::canonical_basis_element`
|
||||
// − use `::new(x, y, z)` instead of `::from_slice`
|
||||
impl<N: Complex, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
impl<N: ComplexField, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C>
|
||||
{
|
||||
#[inline]
|
||||
|
@ -1,7 +1,7 @@
|
||||
use num::Zero;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::{Real, Complex};
|
||||
use crate::{Real, ComplexField};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, Dim, MatrixMN};
|
||||
use crate::constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};
|
||||
@ -11,7 +11,7 @@ use crate::constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};
|
||||
/// A trait for abstract matrix norms.
|
||||
///
|
||||
/// This may be moved to the alga crate in the future.
|
||||
pub trait Norm<N: Complex> {
|
||||
pub trait Norm<N: ComplexField> {
|
||||
/// Apply this norm to the given matrix.
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C>;
|
||||
@ -29,7 +29,7 @@ pub struct LpNorm(pub i32);
|
||||
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
|
||||
pub struct UniformNorm;
|
||||
|
||||
impl<N: Complex> Norm<N> for EuclideanNorm {
|
||||
impl<N: ComplexField> Norm<N> for EuclideanNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
@ -48,7 +48,7 @@ impl<N: Complex> Norm<N> for EuclideanNorm {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex> Norm<N> for LpNorm {
|
||||
impl<N: ComplexField> Norm<N> for LpNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
@ -69,7 +69,7 @@ impl<N: Complex> Norm<N> for LpNorm {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex> Norm<N> for UniformNorm {
|
||||
impl<N: ComplexField> Norm<N> for UniformNorm {
|
||||
#[inline]
|
||||
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
|
||||
where R: Dim, C: Dim, S: Storage<N, R, C> {
|
||||
@ -95,7 +95,7 @@ impl<N: Complex> Norm<N> for UniformNorm {
|
||||
}
|
||||
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// The squared L2 norm of this vector.
|
||||
#[inline]
|
||||
pub fn norm_squared(&self) -> N::Real {
|
||||
@ -213,7 +213,7 @@ impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place and returns its norm.
|
||||
#[inline]
|
||||
pub fn normalize_mut(&mut self) -> N::Real {
|
||||
|
@ -5,7 +5,7 @@ use std::ops::{
|
||||
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
|
||||
};
|
||||
|
||||
use alga::general::{Complex, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
|
||||
use alga::general::{ComplexField, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
|
||||
|
||||
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
|
||||
use crate::base::constraint::{
|
||||
@ -633,7 +633,7 @@ where
|
||||
#[inline]
|
||||
pub fn ad_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixMN<N, C1, C2>
|
||||
where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, C1, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2>,
|
||||
@ -700,7 +700,7 @@ where
|
||||
rhs: &Matrix<N, R2, C2, SB>,
|
||||
out: &mut Matrix<N, R3, C3, SC>,
|
||||
) where
|
||||
N: Complex,
|
||||
N: ComplexField,
|
||||
SB: Storage<N, R2, C2>,
|
||||
SC: StorageMut<N, R3, C3>,
|
||||
ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
|
||||
@ -833,7 +833,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
||||
#[inline]
|
||||
pub fn camax(&self) -> N::Real
|
||||
where N: Complex {
|
||||
where N: ComplexField {
|
||||
self.xcmp(|e| e.norm1(), |a, b| a > b)
|
||||
}
|
||||
|
||||
@ -854,7 +854,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
||||
#[inline]
|
||||
pub fn camin(&self) -> N::Real
|
||||
where N: Complex {
|
||||
where N: ComplexField {
|
||||
self.xcmp(|e| e.norm1(), |a, b| a < b)
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
use approx::RelativeEq;
|
||||
use num::{One, Zero};
|
||||
|
||||
use alga::general::{ClosedAdd, ClosedMul, Real, Complex};
|
||||
use alga::general::{ClosedAdd, ClosedMul, Real, ComplexField};
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, DimMin};
|
||||
@ -84,7 +84,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Checks that `Mᵀ × M = Id`.
|
||||
///
|
||||
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
|
||||
|
@ -10,7 +10,7 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
#[cfg(feature = "abomonation-serialize")]
|
||||
use abomonation::Abomonation;
|
||||
|
||||
use alga::general::{SubsetOf, Complex};
|
||||
use alga::general::{SubsetOf, ComplexField};
|
||||
use alga::linear::NormedSpace;
|
||||
|
||||
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
|
||||
@ -106,7 +106,7 @@ impl<T: NormedSpace> Unit<T> {
|
||||
let sq_norm = self.value.norm_squared();
|
||||
let _3: T::Real = crate::convert(3.0);
|
||||
let _0_5: T::Real = crate::convert(0.5);
|
||||
self.value *= T::Complex::from_real(_0_5 * (_3 - sq_norm));
|
||||
self.value *= T::ComplexField::from_real(_0_5 * (_3 - sq_norm));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3,7 +3,7 @@ use crate::base::storage::Owned;
|
||||
#[cfg(feature = "arbitrary")]
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::base::Scalar;
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, Dynamic, U2};
|
||||
@ -18,7 +18,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> RandomOrthogonal<N, D>
|
||||
impl<N: ComplexField, D: Dim> RandomOrthogonal<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
@ -41,7 +41,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
impl<N: Complex + Arbitrary + Send, D: Dim> Arbitrary for RandomOrthogonal<N, D>
|
||||
impl<N: ComplexField + Arbitrary + Send, D: Dim> Arbitrary for RandomOrthogonal<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
Owned<N, D, D>: Clone + Send,
|
||||
|
@ -3,7 +3,7 @@ use crate::base::storage::Owned;
|
||||
#[cfg(feature = "arbitrary")]
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::base::Scalar;
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::{Dim, Dynamic};
|
||||
@ -19,7 +19,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
m: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> RandomSDP<N, D>
|
||||
impl<N: ComplexField, D: Dim> RandomSDP<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Retrieve the generated matrix.
|
||||
@ -44,7 +44,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
impl<N: Complex + Arbitrary + Send, D: Dim> Arbitrary for RandomSDP<N, D>
|
||||
impl<N: ComplexField + Arbitrary + Send, D: Dim> Arbitrary for RandomSDP<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
Owned<N, D, D>: Clone + Send,
|
||||
|
@ -119,7 +119,7 @@ impl<N: Real> FiniteDimVectorSpace for Quaternion<N> {
|
||||
|
||||
impl<N: Real> NormedSpace for Quaternion<N> {
|
||||
type Real = N;
|
||||
type Complex = N;
|
||||
type ComplexField = N;
|
||||
|
||||
#[inline]
|
||||
fn norm_squared(&self) -> N {
|
||||
|
@ -1,4 +1,4 @@
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use crate::base::{DefaultAllocator, Matrix, Scalar, Unit, Vector};
|
||||
@ -13,7 +13,7 @@ pub struct Reflection<N: Scalar, D: Dim, S: Storage<N, D>> {
|
||||
bias: N,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
|
||||
/// Creates a new reflection wrt the plane orthogonal to the given axis and bias.
|
||||
///
|
||||
/// The bias is the position of the plane on the axis. In particular, a bias equal to zero
|
||||
|
@ -160,7 +160,7 @@ use alga::linear::SquareMatrix as AlgaSquareMatrix;
|
||||
use alga::linear::{EuclideanSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace};
|
||||
use num::Signed;
|
||||
|
||||
pub use alga::general::{Id, Real, Complex};
|
||||
pub use alga::general::{Id, Real, ComplexField};
|
||||
|
||||
/*
|
||||
*
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
|
||||
use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1};
|
||||
@ -37,7 +37,7 @@ use crate::linalg::householder;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Bidiagonal<N: Complex, R: DimMin<C>, C: Dim>
|
||||
pub struct Bidiagonal<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
@ -54,7 +54,7 @@ where
|
||||
upper_diagonal: bool,
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
@ -65,7 +65,7 @@ where
|
||||
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
@ -282,7 +282,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
// impl<N: Complex, D: DimMin<D, Output = D> + DimSub<Dynamic>> Bidiagonal<N, D, D>
|
||||
// impl<N: ComplexField, D: DimMin<D, Output = D> + DimSub<Dynamic>> Bidiagonal<N, D, D>
|
||||
// where DefaultAllocator: Allocator<N, D, D> +
|
||||
// Allocator<N, D> {
|
||||
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
@ -355,7 +355,7 @@ where
|
||||
// // }
|
||||
// }
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>,
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix};
|
||||
@ -26,19 +26,19 @@ use crate::storage::{Storage, StorageMut};
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: Complex, D: Dim>
|
||||
pub struct Cholesky<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
chol: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> Copy for Cholesky<N, D>
|
||||
impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
||||
@ -148,7 +148,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
|
@ -1,4 +1,4 @@
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::DimMin;
|
||||
@ -7,7 +7,7 @@ use crate::base::{DefaultAllocator, SquareMatrix};
|
||||
|
||||
use crate::linalg::LU;
|
||||
|
||||
impl<N: Complex, D: DimMin<D, Output = D>, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Computes the matrix determinant.
|
||||
///
|
||||
/// If the matrix has a dimension larger than 3, an LU decomposition is used.
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Serialize, Deserialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use num_complex::Complex;
|
||||
use std::cmp;
|
||||
use std::fmt::Display;
|
||||
@ -40,7 +40,7 @@ use crate::linalg::Schur;
|
||||
)
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Eigen<N: Complex, D: Dim>
|
||||
pub struct Eigen<N: ComplexField, D: Dim>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
{
|
||||
@ -48,7 +48,7 @@ where
|
||||
pub eigenvalues: VectorN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> Copy for Eigen<N, D>
|
||||
impl<N: ComplexField, D: Dim> Copy for Eigen<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
@ -56,7 +56,7 @@ where
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> Eigen<N, D>
|
||||
impl<N: ComplexField, D: Dim> Eigen<N, D>
|
||||
where
|
||||
D: DimSub<U1>, // For Hessenberg.
|
||||
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
@ -32,7 +32,7 @@ use crate::linalg::PermutationSequence;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct FullPivLU<N: Complex, R: DimMin<C>, C: Dim>
|
||||
pub struct FullPivLU<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
@ -40,14 +40,14 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
||||
q: PermutationSequence<DimMinimum<R, C>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Copy for FullPivLU<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for FullPivLU<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
PermutationSequence<DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
@ -156,7 +156,7 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
@ -261,7 +261,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the LU decomposition with full pivoting of `matrix`.
|
||||
|
@ -1,6 +1,6 @@
|
||||
//! Construction of givens rotations.
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use num::{Zero, One};
|
||||
|
||||
use crate::base::dimension::{Dim, U2};
|
||||
@ -11,13 +11,13 @@ use crate::base::{Vector, Matrix};
|
||||
|
||||
/// A Givens rotation.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GivensRotation<N: Complex> {
|
||||
pub struct GivensRotation<N: ComplexField> {
|
||||
c: N::Real,
|
||||
s: N
|
||||
}
|
||||
|
||||
// Matrix = UnitComplex * Matrix
|
||||
impl<N: Complex> GivensRotation<N> {
|
||||
impl<N: ComplexField> GivensRotation<N> {
|
||||
/// The Givents rotation that does nothing.
|
||||
pub fn identity() -> Self {
|
||||
Self {
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
|
||||
use crate::dimension::{DimDiff, DimSub, U1};
|
||||
@ -30,21 +30,21 @@ use crate::linalg::householder;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Hessenberg<N: Complex, D: DimSub<U1>>
|
||||
pub struct Hessenberg<N: ComplexField, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
hess: MatrixN<N, D>,
|
||||
subdiag: VectorN<N, DimDiff<D, U1>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>> Copy for Hessenberg<N, D>
|
||||
impl<N: ComplexField, D: DimSub<U1>> Copy for Hessenberg<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, DimDiff<D, U1>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>> Hessenberg<N, D>
|
||||
impl<N: ComplexField, D: DimSub<U1>> Hessenberg<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
/// Computes the Hessenberg decomposition using householder reflections.
|
||||
@ -133,7 +133,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimD
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
|
||||
|
@ -1,7 +1,7 @@
|
||||
//! Construction of householder elementary reflections.
|
||||
|
||||
use num::Zero;
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Unit, Vector, VectorN};
|
||||
use crate::dimension::Dim;
|
||||
@ -16,7 +16,7 @@ use crate::geometry::Reflection;
|
||||
/// `column` after reflection and `false` if no reflection was necessary.
|
||||
#[doc(hidden)]
|
||||
#[inline(always)]
|
||||
pub fn reflection_axis_mut<N: Complex, D: Dim, S: StorageMut<N, D>>(
|
||||
pub fn reflection_axis_mut<N: ComplexField, D: Dim, S: StorageMut<N, D>>(
|
||||
column: &mut Vector<N, D, S>,
|
||||
) -> (N, bool) {
|
||||
let reflection_sq_norm = column.norm_squared();
|
||||
@ -44,7 +44,7 @@ pub fn reflection_axis_mut<N: Complex, D: Dim, S: StorageMut<N, D>>(
|
||||
/// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th
|
||||
/// subdiagonal element.
|
||||
#[doc(hidden)]
|
||||
pub fn clear_column_unchecked<N: Complex, R: Dim, C: Dim>(
|
||||
pub fn clear_column_unchecked<N: ComplexField, R: Dim, C: Dim>(
|
||||
matrix: &mut MatrixMN<N, R, C>,
|
||||
diag_elt: &mut N,
|
||||
icol: usize,
|
||||
@ -72,7 +72,7 @@ pub fn clear_column_unchecked<N: Complex, R: Dim, C: Dim>(
|
||||
/// Uses an householder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th
|
||||
/// superdiagonal element.
|
||||
#[doc(hidden)]
|
||||
pub fn clear_row_unchecked<N: Complex, R: Dim, C: Dim>(
|
||||
pub fn clear_row_unchecked<N: ComplexField, R: Dim, C: Dim>(
|
||||
matrix: &mut MatrixMN<N, R, C>,
|
||||
diag_elt: &mut N,
|
||||
axis_packed: &mut VectorN<N, C>,
|
||||
@ -108,7 +108,7 @@ pub fn clear_row_unchecked<N: Complex, R: Dim, C: Dim>(
|
||||
/// the lower-diagonal element of the given matrix.
|
||||
/// matrices.
|
||||
#[doc(hidden)]
|
||||
pub fn assemble_q<N: Complex, D: Dim>(m: &MatrixN<N, D>, signs: &[N]) -> MatrixN<N, D>
|
||||
pub fn assemble_q<N: ComplexField, D: Dim>(m: &MatrixN<N, D>, signs: &[N]) -> MatrixN<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> {
|
||||
assert!(m.is_square());
|
||||
let dim = m.data.shape().0;
|
||||
|
@ -1,4 +1,4 @@
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::dimension::Dim;
|
||||
@ -7,7 +7,7 @@ use crate::base::{DefaultAllocator, MatrixN, SquareMatrix};
|
||||
|
||||
use crate::linalg::lu;
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Attempts to invert this matrix.
|
||||
#[inline]
|
||||
pub fn try_inverse(self) -> Option<MatrixN<N, D>>
|
||||
@ -21,7 +21,7 @@ impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Attempts to invert this matrix in-place. Returns `false` and leaves `self` untouched if
|
||||
/// inversion fails.
|
||||
#[inline]
|
||||
@ -115,7 +115,7 @@ impl<N: Complex, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
}
|
||||
|
||||
// NOTE: this is an extremely efficient, loop-unrolled matrix inverse from MESA (MIT licensed).
|
||||
fn do_inverse4<N: Complex, D: Dim, S: StorageMut<N, D, D>>(
|
||||
fn do_inverse4<N: ComplexField, D: Dim, S: StorageMut<N, D, D>>(
|
||||
m: &MatrixN<N, D>,
|
||||
out: &mut SquareMatrix<N, D, S>,
|
||||
) -> bool
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::{Field, Complex};
|
||||
use alga::general::{Field, ComplexField};
|
||||
use crate::allocator::{Allocator, Reallocator};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
@ -32,14 +32,14 @@ use crate::linalg::PermutationSequence;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LU<N: Complex, R: DimMin<C>, C: Dim>
|
||||
pub struct LU<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
lu: MatrixMN<N, R, C>,
|
||||
p: PermutationSequence<DimMinimum<R, C>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Copy for LU<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for LU<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
@ -49,7 +49,7 @@ where
|
||||
/// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`.
|
||||
///
|
||||
/// If `matrix` is not invertible, `false` is returned and `out` may contain invalid data.
|
||||
pub fn try_invert_to<N: Complex, D: Dim, S>(
|
||||
pub fn try_invert_to<N: ComplexField, D: Dim, S>(
|
||||
mut matrix: MatrixN<N, D>,
|
||||
out: &mut Matrix<N, D, D, S>,
|
||||
) -> bool
|
||||
@ -86,7 +86,7 @@ where
|
||||
matrix.solve_upper_triangular_mut(out)
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> LU<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> LU<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
@ -197,7 +197,7 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimu
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimMin<D, Output = D>> LU<N, D, D>
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> LU<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
@ -368,7 +368,7 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
||||
|
@ -2,7 +2,7 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::{Allocator, Reallocator};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
@ -33,21 +33,21 @@ use crate::linalg::householder;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct QR<N: Complex, R: DimMin<C>, C: Dim>
|
||||
pub struct QR<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
|
||||
{
|
||||
qr: MatrixMN<N, R, C>,
|
||||
diag: VectorN<N, DimMinimum<R, C>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Copy for QR<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for QR<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
|
||||
MatrixMN<N, R, C>: Copy,
|
||||
VectorN<N, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the QR decomposition using householder reflections.
|
||||
@ -159,7 +159,7 @@ where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimM
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimMin<D, Output = D>> QR<N, D, D>
|
||||
impl<N: ComplexField, D: DimMin<D, Output = D>> QR<N, D, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
{
|
||||
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||||
@ -291,7 +291,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
||||
// }
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>
|
||||
{
|
||||
/// Computes the QR decomposition of this matrix.
|
||||
|
@ -2,7 +2,7 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use approx::AbsDiffEq;
|
||||
use alga::general::{Complex, Real};
|
||||
use alga::general::{ComplexField, Real};
|
||||
use num_complex::Complex as NumComplex;
|
||||
use std::cmp;
|
||||
|
||||
@ -35,20 +35,20 @@ use crate::linalg::givens::GivensRotation;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Schur<N: Complex, D: Dim>
|
||||
pub struct Schur<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
q: MatrixN<N, D>,
|
||||
t: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> Copy for Schur<N, D>
|
||||
impl<N: ComplexField, D: Dim> Copy for Schur<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, D: Dim> Schur<N, D>
|
||||
impl<N: ComplexField, D: Dim> Schur<N, D>
|
||||
where
|
||||
D: DimSub<U1>, // For Hessenberg.
|
||||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||||
@ -398,7 +398,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
fn decompose_2x2<N: Complex, D: Dim>(
|
||||
fn decompose_2x2<N: ComplexField, D: Dim>(
|
||||
mut m: MatrixN<N, D>,
|
||||
compute_q: bool,
|
||||
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
|
||||
@ -435,7 +435,7 @@ where
|
||||
Some((q, m))
|
||||
}
|
||||
|
||||
fn compute_2x2_eigvals<N: Complex, S: Storage<N, U2, U2>>(
|
||||
fn compute_2x2_eigvals<N: ComplexField, S: Storage<N, U2, U2>>(
|
||||
m: &SquareMatrix<N, U2, S>,
|
||||
) -> Option<(N, N)> {
|
||||
// Solve the 2x2 eigenvalue subproblem.
|
||||
@ -461,7 +461,7 @@ fn compute_2x2_eigvals<N: Complex, S: Storage<N, U2, U2>>(
|
||||
///
|
||||
/// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case,
|
||||
/// the basis is the identity.
|
||||
fn compute_2x2_basis<N: Complex, S: Storage<N, U2, U2>>(
|
||||
fn compute_2x2_basis<N: ComplexField, S: Storage<N, U2, U2>>(
|
||||
m: &SquareMatrix<N, U2, S>,
|
||||
) -> Option<GivensRotation<N>> {
|
||||
let h10 = m[(1, 0)];
|
||||
@ -487,7 +487,7 @@ fn compute_2x2_basis<N: Complex, S: Storage<N, U2, U2>>(
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
D: DimSub<U1>, // For Hessenberg.
|
||||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||||
|
@ -1,4 +1,4 @@
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
@ -6,7 +6,7 @@ use crate::base::dimension::{Dim, U1};
|
||||
use crate::base::storage::{Storage, StorageMut};
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector, DVectorSlice};
|
||||
|
||||
impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
||||
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
|
@ -4,7 +4,7 @@ use serde::{Deserialize, Serialize};
|
||||
use num::{Zero, One};
|
||||
use approx::AbsDiffEq;
|
||||
|
||||
use alga::general::{Real, Complex};
|
||||
use alga::general::{Real, ComplexField};
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, Matrix2x3, MatrixMN, Vector2, VectorN};
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
@ -40,7 +40,7 @@ use crate::linalg::givens::GivensRotation;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SVD<N: Complex, R: DimMin<C>, C: Dim>
|
||||
pub struct SVD<N: ComplexField, R: DimMin<C>, C: Dim>
|
||||
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
+ Allocator<N::Real, DimMinimum<R, C>>
|
||||
@ -53,7 +53,7 @@ where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>
|
||||
pub singular_values: VectorN<N::Real, DimMinimum<R, C>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>
|
||||
+ Allocator<N, R, DimMinimum<R, C>>
|
||||
@ -63,7 +63,7 @@ where
|
||||
VectorN<N::Real, DimMinimum<R, C>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
@ -546,7 +546,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
where
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<N, R, C>
|
||||
|
@ -4,7 +4,7 @@ use serde::{Deserialize, Serialize};
|
||||
use num::Zero;
|
||||
use approx::AbsDiffEq;
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix2, MatrixN, SquareMatrix, Vector2, VectorN};
|
||||
use crate::dimension::{Dim, DimDiff, DimSub, U1, U2};
|
||||
@ -34,7 +34,7 @@ use crate::linalg::SymmetricTridiagonal;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricEigen<N: Complex, D: Dim>
|
||||
pub struct SymmetricEigen<N: ComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N::Real, D>
|
||||
{
|
||||
/// The eigenvectors of the decomposed matrix.
|
||||
@ -44,14 +44,14 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::Real, D>
|
||||
pub eigenvalues: VectorN<N::Real, D>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: Dim> Copy for SymmetricEigen<N, D>
|
||||
impl<N: ComplexField, D: Dim> Copy for SymmetricEigen<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Real, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N::Real, D>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, D: Dim> SymmetricEigen<N, D>
|
||||
impl<N: ComplexField, D: Dim> SymmetricEigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N::Real, D>
|
||||
{
|
||||
/// Computes the eigendecomposition of the given symmetric matrix.
|
||||
@ -288,7 +288,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N::Real, D>
|
||||
/// The inputs are interpreted as the 2x2 matrix:
|
||||
/// tmm tmn
|
||||
/// tmn tnn
|
||||
pub fn wilkinson_shift<N: Complex>(tmm: N, tnn: N, tmn: N) -> N {
|
||||
pub fn wilkinson_shift<N: ComplexField>(tmm: N, tnn: N, tmn: N) -> N {
|
||||
let sq_tmn = tmn * tmn;
|
||||
if !sq_tmn.is_zero() {
|
||||
// We have the guarantee that the denominator won't be zero.
|
||||
@ -304,7 +304,7 @@ pub fn wilkinson_shift<N: Complex>(tmm: N, tnn: N, tmn: N) -> N {
|
||||
* Computations of eigenvalues for symmetric matrices.
|
||||
*
|
||||
*/
|
||||
impl<N: Complex, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>> +
|
||||
Allocator<N::Real, D> + Allocator<N::Real, DimDiff<D, U1>>
|
||||
{
|
||||
|
@ -1,7 +1,7 @@
|
||||
#[cfg(feature = "serde-serialize")]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use alga::general::Complex;
|
||||
use alga::general::ComplexField;
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN};
|
||||
use crate::dimension::{DimDiff, DimSub, U1};
|
||||
@ -30,21 +30,21 @@ use crate::linalg::householder;
|
||||
))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SymmetricTridiagonal<N: Complex, D: DimSub<U1>>
|
||||
pub struct SymmetricTridiagonal<N: ComplexField, D: DimSub<U1>>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
tri: MatrixN<N, D>,
|
||||
off_diagonal: VectorN<N, DimDiff<D, U1>>,
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>> Copy for SymmetricTridiagonal<N, D>
|
||||
impl<N: ComplexField, D: DimSub<U1>> Copy for SymmetricTridiagonal<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
|
||||
MatrixN<N, D>: Copy,
|
||||
VectorN<N, DimDiff<D, U1>>: Copy,
|
||||
{}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>> SymmetricTridiagonal<N, D>
|
||||
impl<N: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
/// Computes the tridiagonalization of the symmetric matrix `m`.
|
||||
@ -145,7 +145,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Complex, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
impl<N: ComplexField, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
|
||||
{
|
||||
/// Computes the tridiagonalization of this symmetric matrix.
|
||||
|
@ -1022,7 +1022,7 @@ mod finite_dim_inner_space_tests {
|
||||
*
|
||||
*/
|
||||
#[cfg(feature = "arbitrary")]
|
||||
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64, Complex = f64> + Display>(vs: &[T]) -> bool {
|
||||
fn is_subspace_basis<T: FiniteDimInnerSpace<Real = f64, ComplexField = f64> + Display>(vs: &[T]) -> bool {
|
||||
for i in 0..vs.len() {
|
||||
// Basis elements must be normalized.
|
||||
if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) {
|
||||
|
@ -4,11 +4,11 @@
|
||||
macro_rules! gen_tests(
|
||||
($module: ident, $scalar: ty) => {
|
||||
mod $module {
|
||||
use na::{Matrix4, Matrix4x5, Complex};
|
||||
use na::{Matrix4, Matrix4x5, ComplexField};
|
||||
#[allow(unused_imports)]
|
||||
use crate::core::helper::{RandScalar, RandComplex};
|
||||
|
||||
fn unzero_diagonal<N: Complex>(a: &mut Matrix4<N>) {
|
||||
fn unzero_diagonal<N: ComplexField>(a: &mut Matrix4<N>) {
|
||||
for i in 0..4 {
|
||||
if a[(i, i)].norm1() < na::convert(1.0e-7) {
|
||||
a[(i, i)] = N::one();
|
||||
|
@ -8,7 +8,7 @@ mod quickcheck_tests {
|
||||
mod $module {
|
||||
use na::{
|
||||
DMatrix, DVector, Matrix2, Matrix2x5, Matrix3, Matrix3x5, Matrix4, Matrix5x2, Matrix5x3,
|
||||
Complex
|
||||
ComplexField
|
||||
};
|
||||
use std::cmp;
|
||||
#[allow(unused_imports)]
|
||||
@ -21,7 +21,7 @@ mod quickcheck_tests {
|
||||
let svd = m.clone().svd(true, true);
|
||||
let recomp_m = svd.clone().recompose().unwrap();
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = DMatrix::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = DMatrix::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5) &&
|
||||
@ -36,7 +36,7 @@ mod quickcheck_tests {
|
||||
let m = m.map(|e| e.0);
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix3::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
@ -48,7 +48,7 @@ mod quickcheck_tests {
|
||||
let m = m.map(|e| e.0);
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) &&
|
||||
@ -61,7 +61,7 @@ mod quickcheck_tests {
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
|
||||
let ds = Matrix3::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
@ -71,7 +71,7 @@ mod quickcheck_tests {
|
||||
let m = m.map(|e| e.0);
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)
|
||||
@ -81,7 +81,7 @@ mod quickcheck_tests {
|
||||
let m = m.map(|e| e.0);
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix4::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix4::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
@ -93,7 +93,7 @@ mod quickcheck_tests {
|
||||
let m = m.map(|e| e.0);
|
||||
let svd = m.svd(true, true);
|
||||
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e)));
|
||||
let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e)));
|
||||
|
||||
s.iter().all(|e| *e >= 0.0) &&
|
||||
relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) &&
|
||||
|
Loading…
Reference in New Issue
Block a user