2017-08-03 01:37:44 +08:00
|
|
|
//! Construction of givens rotations.
|
|
|
|
|
2019-03-03 02:33:49 +08:00
|
|
|
use alga::general::{Complex, Real};
|
|
|
|
use num_complex::Complex as NumComplex;
|
2017-08-03 01:37:44 +08:00
|
|
|
|
2019-03-03 02:33:49 +08:00
|
|
|
use base::dimension::{Dim, U2};
|
|
|
|
use base::constraint::{ShapeConstraint, DimEq};
|
|
|
|
use base::storage::{Storage, StorageMut};
|
|
|
|
use base::{Vector, Matrix};
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
use geometry::UnitComplex;
|
|
|
|
|
2019-03-03 02:33:49 +08:00
|
|
|
/// A Givens rotation.
|
|
|
|
pub struct GivensRotation<N: Complex> {
|
|
|
|
c: N,
|
|
|
|
s: N
|
|
|
|
}
|
|
|
|
|
|
|
|
// XXX: remove this
|
2017-08-03 01:37:44 +08:00
|
|
|
/// Computes the rotation `R` required such that the `y` component of `R * v` is zero.
|
|
|
|
///
|
|
|
|
/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm
|
|
|
|
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
|
|
|
|
pub fn cancel_y<N: Real, S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(UnitComplex<N>, N)> {
|
|
|
|
if !v[1].is_zero() {
|
2019-03-03 02:33:49 +08:00
|
|
|
let c = NumComplex::new(v[0], -v[1]);
|
2017-08-03 01:37:44 +08:00
|
|
|
Some(UnitComplex::from_complex_and_get(c))
|
2018-02-02 19:26:35 +08:00
|
|
|
} else {
|
2017-08-03 01:37:44 +08:00
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-03 02:33:49 +08:00
|
|
|
// XXX: remove this
|
2017-08-03 01:37:44 +08:00
|
|
|
/// Computes the rotation `R` required such that the `x` component of `R * v` is zero.
|
|
|
|
///
|
|
|
|
/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm
|
|
|
|
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
|
|
|
|
pub fn cancel_x<N: Real, S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(UnitComplex<N>, N)> {
|
|
|
|
if !v[0].is_zero() {
|
2019-03-03 02:33:49 +08:00
|
|
|
let c = NumComplex::new(v[1], v[0]);
|
2017-08-03 01:37:44 +08:00
|
|
|
Some(UnitComplex::from_complex_and_get(c))
|
2018-02-02 19:26:35 +08:00
|
|
|
} else {
|
2017-08-03 01:37:44 +08:00
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
2019-03-03 02:33:49 +08:00
|
|
|
|
|
|
|
|
|
|
|
// Matrix = UnitComplex * Matrix
|
|
|
|
impl<N: Complex> GivensRotation<N> {
|
|
|
|
/// Initializes a Givens rotation form its non-normalized cosine an sine components.
|
|
|
|
pub fn new(c: N, s: N) -> Self {
|
|
|
|
let denom = (c.modulus_squared() + s.modulus_squared()).sqrt();
|
|
|
|
Self {
|
|
|
|
c: c.unscale(denom),
|
|
|
|
s: s.unscale(denom)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Initializes a Givens rotation form its non-normalized cosine an sine components.
|
|
|
|
pub fn try_new(c: N, s: N, eps: N::Real) -> Option<Self> {
|
|
|
|
let denom = (c.modulus_squared() + s.modulus_squared()).sqrt();
|
|
|
|
|
|
|
|
if denom > eps {
|
|
|
|
Some(Self {
|
|
|
|
c: c.unscale(denom),
|
|
|
|
s: s.unscale(denom)
|
|
|
|
})
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the rotation `R` required such that the `y` component of `R * v` is zero.
|
|
|
|
///
|
|
|
|
/// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm
|
|
|
|
/// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`.
|
|
|
|
pub fn cancel_y<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
|
|
|
|
if !v[1].is_zero() {
|
|
|
|
let (mod0, sign0) = v[0].to_exp();
|
|
|
|
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
|
|
|
|
let c = N::from_real(mod0 / denom);
|
|
|
|
let s = (sign0 * v[1].conjugate()).unscale(-denom);
|
|
|
|
let r = sign0.scale(denom);
|
|
|
|
Some((Self { c, s }, r))
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the rotation `R` required such that the `x` component of `R * v` is zero.
|
|
|
|
///
|
|
|
|
/// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm
|
|
|
|
/// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`.
|
|
|
|
pub fn cancel_x<S: Storage<N, U2>>(v: &Vector<N, U2, S>) -> Option<(Self, N)> {
|
|
|
|
if !v[0].is_zero() {
|
|
|
|
let (mod0, sign0) = v[0].to_exp();
|
|
|
|
let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt();
|
|
|
|
let c = N::from_real(mod0 / denom);
|
|
|
|
let s = (sign0 * v[1].conjugate()).unscale(denom);
|
|
|
|
let r = sign0.scale(denom);
|
|
|
|
Some((Self { c, s }, r))
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The cos part of this roration.
|
|
|
|
pub fn c(&self) -> N {
|
|
|
|
self.c
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The sin part of this roration.
|
|
|
|
pub fn s(&self) -> N {
|
|
|
|
self.s
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The inverse of this givens rotation.
|
|
|
|
pub fn inverse(&self) -> Self {
|
|
|
|
Self { c: self.c, s: -self.s.conjugate() }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs the multiplication `rhs = self * rhs` in-place.
|
|
|
|
pub fn rotate<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
|
|
|
|
&self,
|
|
|
|
rhs: &mut Matrix<N, R2, C2, S2>,
|
|
|
|
) where
|
|
|
|
ShapeConstraint: DimEq<R2, U2>,
|
|
|
|
{
|
|
|
|
assert_eq!(
|
|
|
|
rhs.nrows(),
|
|
|
|
2,
|
|
|
|
"Unit complex rotation: the input matrix must have exactly two rows."
|
|
|
|
);
|
|
|
|
let s = self.s;
|
|
|
|
let c = self.c;
|
|
|
|
|
|
|
|
for j in 0..rhs.ncols() {
|
|
|
|
unsafe {
|
|
|
|
let a = *rhs.get_unchecked((0, j));
|
|
|
|
let b = *rhs.get_unchecked((1, j));
|
|
|
|
|
|
|
|
*rhs.get_unchecked_mut((0, j)) = c * a - s.conjugate() * b;
|
|
|
|
*rhs.get_unchecked_mut((1, j)) = s * a + c.conjugate() * b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs the multiplication `lhs = lhs * self` in-place.
|
|
|
|
pub fn rotate_rows<R2: Dim, C2: Dim, S2: StorageMut<N, R2, C2>>(
|
|
|
|
&self,
|
|
|
|
lhs: &mut Matrix<N, R2, C2, S2>,
|
|
|
|
) where
|
|
|
|
ShapeConstraint: DimEq<C2, U2>,
|
|
|
|
{
|
|
|
|
assert_eq!(
|
|
|
|
lhs.ncols(),
|
|
|
|
2,
|
|
|
|
"Unit complex rotation: the input matrix must have exactly two columns."
|
|
|
|
);
|
|
|
|
let s = self.s;
|
|
|
|
let c = self.c;
|
|
|
|
|
|
|
|
// FIXME: can we optimize that to iterate on one column at a time ?
|
|
|
|
for j in 0..lhs.nrows() {
|
|
|
|
unsafe {
|
|
|
|
let a = *lhs.get_unchecked((j, 0));
|
|
|
|
let b = *lhs.get_unchecked((j, 1));
|
|
|
|
|
|
|
|
*lhs.get_unchecked_mut((j, 0)) = c * a + s * b;
|
|
|
|
*lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + c.conjugate() * b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|