nalgebra/src/geometry/quaternion_construction.rs

451 lines
15 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
2018-05-23 05:58:14 +08:00
use base::dimension::U4;
#[cfg(feature = "arbitrary")]
use base::storage::Owned;
#[cfg(feature = "arbitrary")]
2018-05-23 05:58:14 +08:00
use quickcheck::{Arbitrary, Gen};
2018-02-02 19:26:35 +08:00
use num::{One, Zero};
2018-07-20 05:56:07 +08:00
use rand::distributions::{Distribution, OpenClosed01, Standard};
2018-05-23 05:58:14 +08:00
use rand::Rng;
use alga::general::Real;
use base::dimension::U3;
2018-05-23 05:58:14 +08:00
use base::storage::Storage;
2018-07-20 05:56:07 +08:00
#[cfg(feature = "arbitrary")]
use base::Vector3;
use base::{Unit, Vector, Vector4};
2018-02-02 19:26:35 +08:00
use geometry::{Quaternion, Rotation, UnitQuaternion};
impl<N: Real> Quaternion<N> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]
pub fn from_vector(vector: Vector4<N>) -> Self {
2018-02-02 19:26:35 +08:00
Quaternion { coords: vector }
}
/// Creates a new quaternion from its individual components. Note that the arguments order does
/// **not** follow the storage order.
///
2017-02-13 01:17:09 +08:00
/// The storage order is `[ x, y, z, w ]`.
#[inline]
pub fn new(w: N, x: N, y: N, z: N) -> Self {
let v = Vector4::<N>::new(x, y, z, w);
Self::from_vector(v)
}
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is [ vector, scalar ].
#[inline]
// FIXME: take a reference to `vector`?
pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
Self::new(scalar, vector[0], vector[1], vector[2])
}
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
// FIXME: take a reference to `axis`?
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * ::convert(2.0f64));
rot.unwrap() * scale
}
/// The quaternion multiplicative identity.
#[inline]
pub fn identity() -> Self {
Self::new(N::one(), N::zero(), N::zero(), N::zero())
}
}
impl<N: Real> One for Quaternion<N> {
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N: Real> Zero for Quaternion<N> {
#[inline]
fn zero() -> Self {
Self::new(N::zero(), N::zero(), N::zero(), N::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.coords.is_zero()
}
}
2018-05-23 05:58:14 +08:00
impl<N: Real> Distribution<Quaternion<N>> for Standard
2018-11-07 01:32:20 +08:00
where Standard: Distribution<N>
2018-05-23 05:58:14 +08:00
{
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<N> {
Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Quaternion<N>
2018-11-07 01:32:20 +08:00
where Owned<N, U4>: Send
2018-02-02 19:26:35 +08:00
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
2018-02-02 19:26:35 +08:00
Quaternion::new(
N::arbitrary(g),
N::arbitrary(g),
N::arbitrary(g),
N::arbitrary(g),
)
}
}
impl<N: Real> UnitQuaternion<N> {
/// The quaternion multiplicative identity.
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(Quaternion::identity())
}
/// Creates a new quaternion from a unit vector (the rotation axis) and an angle
/// (the rotation angle).
#[inline]
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
let (sang, cang) = (angle / ::convert(2.0f64)).sin_cos();
let q = Quaternion::from_parts(cang, axis.as_ref() * sang);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn from_quaternion(q: Quaternion<N>) -> Self {
Self::new_normalize(q)
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
#[inline]
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
2018-02-02 19:26:35 +08:00
let (sr, cr) = (roll * ::convert(0.5f64)).sin_cos();
let (sp, cp) = (pitch * ::convert(0.5f64)).sin_cos();
2018-02-02 19:26:35 +08:00
let (sy, cy) = (yaw * ::convert(0.5f64)).sin_cos();
let q = Quaternion::new(
2018-02-02 19:26:35 +08:00
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy,
);
Self::new_unchecked(q)
}
/// Builds an unit quaternion from a rotation matrix.
#[inline]
pub fn from_rotation_matrix(rotmat: &Rotation<N, U3>) -> Self {
2017-02-13 01:17:09 +08:00
// Robust matrix to quaternion transformation.
// See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
let res;
let _0_25: N = ::convert(0.25);
if tr > N::zero() {
2018-02-02 19:26:35 +08:00
let denom = (tr + N::one()).sqrt() * ::convert(2.0);
res = Quaternion::new(
_0_25 * denom,
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
);
} else if rotmat[(0, 0)] > rotmat[(1, 1)] && rotmat[(0, 0)] > rotmat[(2, 2)] {
let denom = (N::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)]).sqrt()
* ::convert(2.0);
res = Quaternion::new(
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
_0_25 * denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
);
} else if rotmat[(1, 1)] > rotmat[(2, 2)] {
let denom = (N::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)]).sqrt()
* ::convert(2.0);
res = Quaternion::new(
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
_0_25 * denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
);
} else {
let denom = (N::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)]).sqrt()
* ::convert(2.0);
res = Quaternion::new(
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
_0_25 * denom,
);
}
2017-02-13 01:17:09 +08:00
Self::new_unchecked(res)
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self>
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
s: N,
) -> Option<Self>
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
// FIXME: code duplication with Rotation.
2018-02-02 19:26:35 +08:00
if let (Some(na), Some(nb)) = (
Unit::try_new(a.clone_owned(), N::zero()),
Unit::try_new(b.clone_owned(), N::zero()),
) {
Self::scaled_rotation_between_axis(&na, &nb, s)
2018-02-02 19:26:35 +08:00
} else {
Some(Self::identity())
}
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
#[inline]
2018-02-02 19:26:35 +08:00
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<N, U3, SB>>,
b: &Unit<Vector<N, U3, SC>>,
) -> Option<Self>
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::scaled_rotation_between_axis(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
2018-02-02 19:26:35 +08:00
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<N, U3, SB>>,
nb: &Unit<Vector<N, U3, SC>>,
s: N,
) -> Option<Self>
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
// FIXME: code duplication with Rotation.
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
let cos = na.dot(&nb);
2018-09-24 12:48:42 +08:00
// The cosinus may be out of [-1, 1] because of inaccuracies.
if cos <= -N::one() {
2018-02-02 19:26:35 +08:00
return None;
} else if cos >= N::one() {
return Some(Self::identity());
} else {
return Some(Self::from_axis_angle(&axis, cos.acos() * s));
}
2018-02-02 19:26:35 +08:00
} else if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
2018-02-02 19:26:35 +08:00
} else {
// Zero
Some(Self::identity())
}
}
/// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the view direction `dir` to the positive `z` axis.
///
/// # Arguments
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
/// * up - The vertical direction. The only requirement of this parameter is to not be
/// collinear
/// to `dir`. Non-collinearity is not checked.
#[inline]
pub fn new_observer_frame<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::from_rotation_matrix(&Rotation::<N, U3>::new_observer_frame(dir, up))
}
/// Builds a right-handed look-at view matrix without translation.
///
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::new_observer_frame(&-dir, up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
2018-02-02 19:26:35 +08:00
where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
{
Self::new_observer_frame(dir, up).inverse()
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
#[inline]
pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
let two: N = ::convert(2.0f64);
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp();
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
#[inline]
pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
let two: N = ::convert(2.0f64);
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp_eps(eps);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
/// Same as `Self::new(axisangle)`.
#[inline]
pub fn from_scaled_axis<SB>(axisangle: Vector<N, U3, SB>) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
Self::new(axisangle)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
2018-05-04 17:22:24 +08:00
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
/// Same as `Self::new(axisangle)`.
#[inline]
pub fn from_scaled_axis_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
2018-11-07 01:32:20 +08:00
where SB: Storage<N, U3> {
Self::new_eps(axisangle, eps)
}
}
impl<N: Real> One for UnitQuaternion<N> {
#[inline]
fn one() -> Self {
Self::identity()
}
}
2018-05-23 05:58:14 +08:00
impl<N: Real> Distribution<UnitQuaternion<N>> for Standard
2018-11-07 01:32:20 +08:00
where OpenClosed01: Distribution<N>
2018-05-23 05:58:14 +08:00
{
/// Generate a uniformly distributed random rotation quaternion.
#[inline]
2018-05-23 05:58:14 +08:00
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<N> {
// Ken Shoemake's Subgroup Algorithm
// Uniform random rotations.
// In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992.
let x0 = rng.sample(OpenClosed01);
let x1 = rng.sample(OpenClosed01);
let x2 = rng.sample(OpenClosed01);
let theta1 = N::two_pi() * x1;
let theta2 = N::two_pi() * x2;
let s1 = theta1.sin();
let c1 = theta1.cos();
let s2 = theta2.sin();
let c2 = theta2.cos();
let r1 = (N::one() - x0).sqrt();
let r2 = x0.sqrt();
Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
}
}
2018-02-02 19:26:35 +08:00
#[cfg(feature = "arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for UnitQuaternion<N>
2018-02-02 19:26:35 +08:00
where
Owned<N, U4>: Send,
Owned<N, U3>: Send,
{
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let axisangle = Vector3::arbitrary(g);
UnitQuaternion::from_scaled_axis(axisangle)
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{self, SeedableRng};
#[test]
fn random_unit_quats_are_unit() {
let mut rng = rand::prng::XorShiftRng::from_seed([0xAB; 16]);
for _ in 0..1000 {
let x = rng.gen::<UnitQuaternion<f32>>();
assert!(relative_eq!(x.unwrap().norm(), 1.0))
}
}
}