nalgebra/src/geometry/dual_quaternion.rs

1022 lines
33 KiB
Rust
Raw Normal View History

2021-06-18 15:45:37 +08:00
// The macros break if the references are taken out, for some reason.
#![allow(clippy::op_ref)]
use crate::{
Isometry3, Matrix4, Normed, OVector, Point3, Quaternion, Scalar, SimdRealField, Translation3,
Unit, UnitQuaternion, Vector3, Zero, U8,
};
2021-01-29 07:46:14 +08:00
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
#[cfg(feature = "serde-serialize-no-std")]
2020-12-19 01:19:38 +08:00
use serde::{Deserialize, Deserializer, Serialize, Serializer};
2021-01-29 07:46:14 +08:00
use std::fmt;
use simba::scalar::{ClosedNeg, RealField};
/// A dual quaternion.
///
/// # Indexing
///
2021-07-28 07:18:29 +08:00
/// `DualQuaternions` are stored as \[..real, ..dual\].
2020-12-18 23:09:56 +08:00
/// Both of the quaternion components are laid out in `i, j, k, w` order.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
2020-12-18 23:09:56 +08:00
/// assert_eq!(dq[0], 2.0);
/// assert_eq!(dq[1], 3.0);
///
/// assert_eq!(dq[4], 6.0);
/// assert_eq!(dq[7], 5.0);
/// ```
///
/// NOTE:
/// As of December 2020, dual quaternion support is a work in progress.
/// If a feature that you need is missing, feel free to open an issue or a PR.
2021-07-28 07:18:29 +08:00
/// See <https://github.com/dimforge/nalgebra/issues/487>
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
#[cfg_attr(
feature = "rkyv-serialize",
archive_attr(derive(bytecheck::CheckBytes))
)]
2022-03-17 01:07:29 +08:00
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
pub struct DualQuaternion<T> {
2020-12-18 23:09:56 +08:00
/// The real component of the quaternion
2021-04-11 17:00:38 +08:00
pub real: Quaternion<T>,
2020-12-18 23:09:56 +08:00
/// The dual component of the quaternion
2021-04-11 17:00:38 +08:00
pub dual: Quaternion<T>,
}
impl<T: Scalar + Eq> Eq for DualQuaternion<T> {}
impl<T: Scalar> PartialEq for DualQuaternion<T> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.real == right.real && self.dual == right.dual
}
}
impl<T: Scalar + Zero> Default for DualQuaternion<T> {
fn default() -> Self {
2021-11-20 22:12:45 +08:00
Self {
real: Quaternion::default(),
dual: Quaternion::default(),
}
}
}
2021-04-11 17:00:38 +08:00
impl<T: SimdRealField> DualQuaternion<T>
where
2021-04-11 17:00:38 +08:00
T::Element: SimdRealField,
{
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// let dq_normalized = dq.normalize();
///
2020-12-18 23:09:56 +08:00
/// relative_eq!(dq_normalized.real.norm(), 1.0);
/// ```
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> Self {
2020-12-18 23:09:56 +08:00
let real_norm = self.real.norm();
Self::from_real_and_dual(
self.real.clone() / real_norm.clone(),
self.dual.clone() / real_norm,
)
}
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// dq.normalize_mut();
///
2020-12-18 23:09:56 +08:00
/// relative_eq!(dq.real.norm(), 1.0);
/// ```
#[inline]
2021-04-11 17:00:38 +08:00
pub fn normalize_mut(&mut self) -> T {
let real_norm = self.real.norm();
self.real /= real_norm.clone();
self.dual /= real_norm.clone();
real_norm
}
/// The conjugate of this dual quaternion, containing the conjugate of
/// the real and imaginary parts..
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// let conj = dq.conjugate();
/// assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
/// assert!(conj.real.w == 1.0);
/// assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
/// assert!(conj.dual.w == 5.0);
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::from_real_and_dual(self.real.conjugate(), self.dual.conjugate())
}
/// Replaces this quaternion by its conjugate.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// dq.conjugate_mut();
/// assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
/// assert!(dq.real.w == 1.0);
/// assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
/// assert!(dq.dual.w == 5.0);
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
self.real.conjugate_mut();
self.dual.conjugate_mut();
}
/// Inverts this dual quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// let inverse = dq.try_inverse();
///
/// assert!(inverse.is_some());
/// assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());
///
/// //Non-invertible case
/// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let dq = DualQuaternion::from_real_and_dual(zero, zero);
/// let inverse = dq.try_inverse();
///
/// assert!(inverse.is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Self>
where
2021-04-11 17:00:38 +08:00
T: RealField,
{
let mut res = self.clone();
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Inverts this dual quaternion in-place if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// let mut dq_inverse = dq;
/// dq_inverse.try_inverse_mut();
///
/// assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());
///
/// //Non-invertible case
/// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
/// assert!(!dq.try_inverse_mut());
/// ```
#[inline]
pub fn try_inverse_mut(&mut self) -> bool
where
2021-04-11 17:00:38 +08:00
T: RealField,
{
let inverted = self.real.try_inverse_mut();
if inverted {
self.dual = -self.real.clone() * self.dual.clone() * self.real.clone();
true
} else {
false
}
}
/// Linear interpolation between two dual quaternions.
///
/// Computes `self * (1 - t) + other * t`.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let dq1 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.0, 0.0, 0.0, 4.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// );
/// let dq2 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(2.0, 0.0, 1.0, 0.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// );
/// assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.25, 0.0, 0.25, 3.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// ));
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn lerp(&self, other: &Self, t: T) -> Self {
self * (T::one() - t.clone()) + other * t
}
}
2020-12-19 01:19:38 +08:00
2021-06-29 09:36:28 +08:00
#[cfg(feature = "bytemuck")]
2021-07-10 04:23:08 +08:00
unsafe impl<T> bytemuck::Zeroable for DualQuaternion<T>
where
T: Scalar + bytemuck::Zeroable,
Quaternion<T>: bytemuck::Zeroable,
{
}
2021-06-29 09:36:28 +08:00
#[cfg(feature = "bytemuck")]
2021-07-10 04:23:08 +08:00
unsafe impl<T> bytemuck::Pod for DualQuaternion<T>
where
T: Scalar + bytemuck::Pod,
Quaternion<T>: bytemuck::Pod,
{
}
2021-06-29 09:36:28 +08:00
#[cfg(feature = "serde-serialize-no-std")]
impl<T: SimdRealField> Serialize for DualQuaternion<T>
where
T: Serialize,
{
2020-12-19 01:19:38 +08:00
fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where
S: Serializer,
{
self.as_ref().serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: SimdRealField> Deserialize<'a> for DualQuaternion<T>
where
T: Deserialize<'a>,
{
2020-12-19 01:19:38 +08:00
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
2021-04-11 17:00:38 +08:00
type Dq<T> = [T; 8];
2020-12-19 01:19:38 +08:00
2021-04-11 17:00:38 +08:00
let dq: Dq<T> = Dq::<T>::deserialize(deserializer)?;
2020-12-19 01:19:38 +08:00
Ok(Self {
real: Quaternion::new(dq[3].clone(), dq[0].clone(), dq[1].clone(), dq[2].clone()),
dual: Quaternion::new(dq[7].clone(), dq[4].clone(), dq[5].clone(), dq[6].clone()),
2020-12-19 01:19:38 +08:00
})
}
}
impl<T: RealField> DualQuaternion<T> {
fn to_vector(self) -> OVector<T, U8> {
self.as_ref().clone().into()
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for DualQuaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.clone().to_vector().abs_diff_eq(&other.clone().to_vector(), epsilon.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for DualQuaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.clone().to_vector().relative_eq(&other.clone().to_vector(), epsilon.clone(), max_relative.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
2021-04-11 17:00:38 +08:00
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps) ||
// Account for the double-covering of S², i.e. q = -q.
2021-08-16 00:12:17 +08:00
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps))
}
}
2021-10-28 12:05:50 +08:00
/// A unit dual quaternion. May be used to represent a rotation followed by a
/// translation.
2021-04-11 17:00:38 +08:00
pub type UnitDualQuaternion<T> = Unit<DualQuaternion<T>>;
impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq for UnitDualQuaternion<T> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.as_ref().eq(rhs.as_ref())
}
}
impl<T: Scalar + ClosedNeg + Eq + SimdRealField> Eq for UnitDualQuaternion<T> {}
2021-04-11 17:00:38 +08:00
impl<T: SimdRealField> Normed for DualQuaternion<T> {
type Norm = T::SimdRealField;
#[inline]
2021-04-11 17:00:38 +08:00
fn norm(&self) -> T::SimdRealField {
self.real.norm()
}
#[inline]
2021-04-11 17:00:38 +08:00
fn norm_squared(&self) -> T::SimdRealField {
self.real.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.real.scale_mut(n.clone());
self.dual.scale_mut(n);
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.real.unscale_mut(n.clone());
self.dual.unscale_mut(n);
}
}
impl<T: SimdRealField> UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
/// The underlying dual quaternion.
///
/// Same as `self.as_ref()`.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, UnitDualQuaternion, Quaternion};
/// let id = UnitDualQuaternion::identity();
/// assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.0, 0.0, 0.0, 0.0),
/// Quaternion::new(0.0, 0.0, 0.0, 0.0)
/// ));
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn dual_quaternion(&self) -> &DualQuaternion<T> {
self.as_ref()
}
/// Compute the conjugate of this unit quaternion.
///
/// # Example
/// ```
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(qr, qd)
/// );
/// let conj = unit.conjugate();
/// assert_eq!(conj.real, unit.real.conjugate());
/// assert_eq!(conj.dual, unit.dual.conjugate());
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::new_unchecked(self.as_ref().conjugate())
}
/// Compute the conjugate of this unit quaternion in-place.
///
/// # Example
/// ```
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(qr, qd)
/// );
/// let mut conj = unit.clone();
/// conj.conjugate_mut();
/// assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate());
/// assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// Inverts this dual quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let inv = unit.inverse();
/// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
2021-11-20 22:12:45 +08:00
let real = Unit::new_unchecked(self.as_ref().real.clone())
.inverse()
.into_inner();
let dual = -real.clone() * self.as_ref().dual.clone() * real.clone();
UnitDualQuaternion::new_unchecked(DualQuaternion { real, dual })
}
/// Inverts this dual quaternion in place if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let mut inv = unit.clone();
/// inv.inverse_mut();
/// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
let quat = self.as_mut_unchecked();
2021-11-20 22:12:45 +08:00
quat.real = Unit::new_unchecked(quat.real.clone())
.inverse()
.into_inner();
quat.dual = -quat.real.clone() * quat.dual.clone() * quat.real.clone();
}
/// The unit dual quaternion needed to make `self` and `other` coincide.
///
/// The result is such that: `self.isometry_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr));
/// let dq_to = dq1.isometry_to(&dq2);
/// assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn isometry_to(&self, other: &Self) -> Self {
other / self
}
/// Linear interpolation between two unit dual quaternions.
///
/// The result is not normalized.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.5, 0.0),
/// Quaternion::new(0.0, 0.5, 0.0, 0.5)
/// ));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.0, 0.5),
/// Quaternion::new(0.5, 0.0, 0.5, 0.0)
/// ));
/// assert_relative_eq!(
/// UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)),
/// UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.25, 0.25),
/// Quaternion::new(0.25, 0.25, 0.25, 0.25)
/// )
/// ),
/// epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T> {
self.as_ref().lerp(other.as_ref(), t)
}
/// Normalized linear interpolation between two unit quaternions.
///
/// This is the same as `self.lerp` except that the result is normalized.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.5, 0.0),
/// Quaternion::new(0.0, 0.5, 0.0, 0.5)
/// ));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.0, 0.5),
/// Quaternion::new(0.5, 0.0, 0.5, 0.0)
/// ));
/// assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.4, 0.1),
/// Quaternion::new(0.1, 0.4, 0.1, 0.4)
/// )
/// ), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn nlerp(&self, other: &Self, t: T) -> Self {
let mut res = self.lerp(other, t);
let _ = res.normalize_mut();
Self::new_unchecked(res)
}
/// Screw linear interpolation between two unit quaternions. This creates a
/// smooth arc from one dual-quaternion to another.
///
/// Panics if the angle between both quaternion is 180 degrees (in which
/// case the interpolation is not well-defined). Use `.try_sclerp`
/// instead to avoid the panic.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, UnitQuaternion, Vector3};
///
/// let dq1 = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0),
/// );
///
/// let dq2 = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 0.0, 3.0).into(),
/// UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0),
/// );
///
/// let dq = dq1.sclerp(&dq2, 1.0 / 3.0);
///
/// assert_relative_eq!(
/// dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6
/// );
/// assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn sclerp(&self, other: &Self, t: T) -> Self
where
T: RealField,
{
2021-04-11 17:00:38 +08:00
self.try_sclerp(other, t, T::default_epsilon())
.expect("DualQuaternion sclerp: ambiguous configuration.")
}
/// Computes the screw-linear interpolation between two unit quaternions or
/// returns `None` if both quaternions are approximately 180 degrees
/// apart (in which case the interpolation is not well-defined).
///
/// # Arguments
/// * `self`: the first quaternion to interpolate from.
/// * `other`: the second quaternion to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating
/// both quaternion
/// must be to return `None`.
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
where
T: RealField,
{
2021-04-11 17:00:38 +08:00
let two = T::one() + T::one();
let half = T::one() / two.clone();
// Invert one of the quaternions if we've got a longest-path
// interpolation.
let other = {
let dot_product = self.as_ref().real.coords.dot(&other.as_ref().real.coords);
if relative_eq!(dot_product, T::zero(), epsilon = epsilon.clone()) {
return None;
}
2021-04-11 17:00:38 +08:00
if dot_product < T::zero() {
-other.clone()
} else {
other.clone()
}
};
let difference = self.as_ref().conjugate() * other.as_ref();
let norm_squared = difference.real.vector().norm_squared();
2021-04-11 17:00:38 +08:00
if relative_eq!(norm_squared, T::zero(), epsilon = epsilon) {
return Some(Self::from_parts(
2021-11-20 22:12:45 +08:00
self.translation()
.vector
.lerp(&other.translation().vector, t)
.into(),
self.rotation(),
));
}
let scalar: T = difference.real.scalar();
let mut angle = two.clone() * scalar.acos();
let inverse_norm_squared: T = T::one() / norm_squared;
let inverse_norm = inverse_norm_squared.sqrt();
let mut pitch = -two * difference.dual.scalar() * inverse_norm.clone();
let direction = difference.real.vector() * inverse_norm.clone();
let moment = (difference.dual.vector()
2021-11-20 22:12:45 +08:00
- direction.clone() * (pitch.clone() * difference.real.scalar() * half.clone()))
* inverse_norm;
angle *= t.clone();
pitch *= t;
let sin = (half.clone() * angle.clone()).sin();
let cos = (half.clone() * angle).cos();
let real = Quaternion::from_parts(cos.clone(), direction.clone() * sin.clone());
let dual = Quaternion::from_parts(
-pitch.clone() * half.clone() * sin.clone(),
moment * sin + direction * (pitch * half * cos),
);
2021-01-29 07:46:14 +08:00
Some(
self * UnitDualQuaternion::new_unchecked(DualQuaternion::from_real_and_dual(
real, dual,
)),
)
}
/// Return the rotation part of this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
/// );
///
/// assert_relative_eq!(
/// dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn rotation(&self) -> UnitQuaternion<T> {
Unit::new_unchecked(self.as_ref().real.clone())
}
/// Return the translation part of this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
/// );
///
/// assert_relative_eq!(
/// dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn translation(&self) -> Translation3<T> {
let two = T::one() + T::one();
Translation3::from(
((self.as_ref().dual.clone() * self.as_ref().real.clone().conjugate()) * two)
.vector()
.into_owned(),
)
}
/// Builds an isometry from this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0);
/// let translation = Vector3::new(1.0, 3.0, 2.5);
/// let dq = UnitDualQuaternion::from_parts(
/// translation.into(),
/// rotation
/// );
/// let iso = dq.to_isometry();
///
/// assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6);
/// assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
2021-07-06 05:51:27 +08:00
pub fn to_isometry(self) -> Isometry3<T> {
Isometry3::from_parts(self.translation(), self.rotation())
}
/// Rotate and translate a point by this unit dual quaternion interpreted
/// as an isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T> {
self * pt
}
/// Rotate a vector by this unit dual quaternion, ignoring the translational
/// component.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Vector3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self * v
}
/// Rotate and translate a point by the inverse of this unit quaternion.
///
/// This may be cheaper than inverting the unit dual quaternion and
/// transforming the point.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T> {
self.inverse() * pt
}
/// Rotate a vector by the inverse of this unit quaternion, ignoring the
/// translational component.
///
/// This may be cheaper than inverting the unit dual quaternion and
/// transforming the vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Vector3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self.inverse() * v
}
/// Rotate a unit vector by the inverse of this unit quaternion, ignoring
/// the translational component. This may be
/// cheaper than inverting the unit dual quaternion and transforming the
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Unit, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0));
///
/// assert_relative_eq!(
/// dq.inverse_transform_unit_vector(&vector),
/// Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)),
/// epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
2021-04-11 17:00:38 +08:00
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<T>>) -> Unit<Vector3<T>> {
self.inverse() * v
}
}
2021-04-11 17:00:38 +08:00
impl<T: SimdRealField + RealField> UnitDualQuaternion<T>
where
2021-04-11 17:00:38 +08:00
T::Element: SimdRealField,
{
/// Converts this unit dual quaternion interpreted as an isometry
/// into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix4, UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(1.0, 3.0, 2.0).into(),
/// UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6)
/// );
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0,
/// 0.5, 0.8660254, 0.0, 3.0,
/// 0.0, 0.0, 1.0, 2.0,
/// 0.0, 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
2021-07-06 05:51:27 +08:00
pub fn to_homogeneous(self) -> Matrix4<T> {
self.to_isometry().to_homogeneous()
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField> Default for UnitDualQuaternion<T> {
fn default() -> Self {
Self::identity()
}
}
2021-07-18 02:01:03 +08:00
impl<T: RealField + fmt::Display> fmt::Display for UnitDualQuaternion<T> {
2021-07-26 01:06:14 +08:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(axis) = self.rotation().axis() {
let axis = axis.into_inner();
write!(
f,
"UnitDualQuaternion translation: {} angle: {} axis: ({}, {}, {})",
self.translation().vector,
self.rotation().angle(),
axis[0],
axis[1],
axis[2]
)
} else {
write!(
f,
"UnitDualQuaternion translation: {} angle: {} axis: (undefined)",
self.translation().vector,
self.rotation().angle()
)
}
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for UnitDualQuaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for UnitDualQuaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
2021-04-11 17:00:38 +08:00
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
2021-11-20 22:12:45 +08:00
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
2021-04-11 17:00:38 +08:00
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for UnitDualQuaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
2021-04-11 17:00:38 +08:00
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}