nalgebra/src/geometry/dual_quaternion.rs
2022-10-13 12:22:45 +00:00

1022 lines
33 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// The macros break if the references are taken out, for some reason.
#![allow(clippy::op_ref)]
use crate::{
Isometry3, Matrix4, Normed, OVector, Point3, Quaternion, Scalar, SimdRealField, Translation3,
Unit, UnitQuaternion, Vector3, Zero, U8,
};
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use simba::scalar::{ClosedNeg, RealField};
/// A dual quaternion.
///
/// # Indexing
///
/// `DualQuaternions` are stored as \[..real, ..dual\].
/// Both of the quaternion components are laid out in `i, j, k, w` order.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// assert_eq!(dq[0], 2.0);
/// assert_eq!(dq[1], 3.0);
///
/// assert_eq!(dq[4], 6.0);
/// assert_eq!(dq[7], 5.0);
/// ```
///
/// NOTE:
/// As of December 2020, dual quaternion support is a work in progress.
/// If a feature that you need is missing, feel free to open an issue or a PR.
/// See <https://github.com/dimforge/nalgebra/issues/487>
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
#[cfg_attr(
feature = "rkyv-serialize",
archive_attr(derive(bytecheck::CheckBytes))
)]
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
pub struct DualQuaternion<T> {
/// The real component of the quaternion
pub real: Quaternion<T>,
/// The dual component of the quaternion
pub dual: Quaternion<T>,
}
impl<T: Scalar + Eq> Eq for DualQuaternion<T> {}
impl<T: Scalar> PartialEq for DualQuaternion<T> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.real == right.real && self.dual == right.dual
}
}
impl<T: Scalar + Zero> Default for DualQuaternion<T> {
fn default() -> Self {
Self {
real: Quaternion::default(),
dual: Quaternion::default(),
}
}
}
impl<T: SimdRealField> DualQuaternion<T>
where
T::Element: SimdRealField,
{
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// let dq_normalized = dq.normalize();
///
/// relative_eq!(dq_normalized.real.norm(), 1.0);
/// ```
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> Self {
let real_norm = self.real.norm();
Self::from_real_and_dual(
self.real.clone() / real_norm.clone(),
self.dual.clone() / real_norm,
)
}
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// dq.normalize_mut();
///
/// relative_eq!(dq.real.norm(), 1.0);
/// ```
#[inline]
pub fn normalize_mut(&mut self) -> T {
let real_norm = self.real.norm();
self.real /= real_norm.clone();
self.dual /= real_norm.clone();
real_norm
}
/// The conjugate of this dual quaternion, containing the conjugate of
/// the real and imaginary parts..
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// let conj = dq.conjugate();
/// assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
/// assert!(conj.real.w == 1.0);
/// assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
/// assert!(conj.dual.w == 5.0);
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::from_real_and_dual(self.real.conjugate(), self.dual.conjugate())
}
/// Replaces this quaternion by its conjugate.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// dq.conjugate_mut();
/// assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
/// assert!(dq.real.w == 1.0);
/// assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
/// assert!(dq.dual.w == 5.0);
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
self.real.conjugate_mut();
self.dual.conjugate_mut();
}
/// Inverts this dual quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// let inverse = dq.try_inverse();
///
/// assert!(inverse.is_some());
/// assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());
///
/// //Non-invertible case
/// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let dq = DualQuaternion::from_real_and_dual(zero, zero);
/// let inverse = dq.try_inverse();
///
/// assert!(inverse.is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Self>
where
T: RealField,
{
let mut res = self.clone();
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Inverts this dual quaternion in-place if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// let mut dq_inverse = dq;
/// dq_inverse.try_inverse_mut();
///
/// assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());
///
/// //Non-invertible case
/// let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
/// assert!(!dq.try_inverse_mut());
/// ```
#[inline]
pub fn try_inverse_mut(&mut self) -> bool
where
T: RealField,
{
let inverted = self.real.try_inverse_mut();
if inverted {
self.dual = -self.real.clone() * self.dual.clone() * self.real.clone();
true
} else {
false
}
}
/// Linear interpolation between two dual quaternions.
///
/// Computes `self * (1 - t) + other * t`.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let dq1 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.0, 0.0, 0.0, 4.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// );
/// let dq2 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(2.0, 0.0, 1.0, 0.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// );
/// assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.25, 0.0, 0.25, 3.0),
/// Quaternion::new(0.0, 2.0, 0.0, 0.0)
/// ));
/// ```
#[inline]
#[must_use]
pub fn lerp(&self, other: &Self, t: T) -> Self {
self * (T::one() - t.clone()) + other * t
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for DualQuaternion<T>
where
T: Scalar + bytemuck::Zeroable,
Quaternion<T>: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for DualQuaternion<T>
where
T: Scalar + bytemuck::Pod,
Quaternion<T>: bytemuck::Pod,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: SimdRealField> Serialize for DualQuaternion<T>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where
S: Serializer,
{
self.as_ref().serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: SimdRealField> Deserialize<'a> for DualQuaternion<T>
where
T: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
type Dq<T> = [T; 8];
let dq: Dq<T> = Dq::<T>::deserialize(deserializer)?;
Ok(Self {
real: Quaternion::new(dq[3].clone(), dq[0].clone(), dq[1].clone(), dq[2].clone()),
dual: Quaternion::new(dq[7].clone(), dq[4].clone(), dq[5].clone(), dq[6].clone()),
})
}
}
impl<T: RealField> DualQuaternion<T> {
fn to_vector(self) -> OVector<T, U8> {
self.as_ref().clone().into()
}
}
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for DualQuaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.clone().to_vector().abs_diff_eq(&other.clone().to_vector(), epsilon.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
}
}
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for DualQuaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.clone().to_vector().relative_eq(&other.clone().to_vector(), epsilon.clone(), max_relative.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
}
}
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for DualQuaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.clone().to_vector().ulps_eq(&other.clone().to_vector(), epsilon.clone(), max_ulps) ||
// Account for the double-covering of S², i.e. q = -q.
self.clone().to_vector().iter().zip(other.clone().to_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps))
}
}
/// A unit dual quaternion. May be used to represent a rotation followed by a
/// translation.
pub type UnitDualQuaternion<T> = Unit<DualQuaternion<T>>;
impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq for UnitDualQuaternion<T> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.as_ref().eq(rhs.as_ref())
}
}
impl<T: Scalar + ClosedNeg + Eq + SimdRealField> Eq for UnitDualQuaternion<T> {}
impl<T: SimdRealField> Normed for DualQuaternion<T> {
type Norm = T::SimdRealField;
#[inline]
fn norm(&self) -> T::SimdRealField {
self.real.norm()
}
#[inline]
fn norm_squared(&self) -> T::SimdRealField {
self.real.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.real.scale_mut(n.clone());
self.dual.scale_mut(n);
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.real.unscale_mut(n.clone());
self.dual.unscale_mut(n);
}
}
impl<T: SimdRealField> UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
/// The underlying dual quaternion.
///
/// Same as `self.as_ref()`.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, UnitDualQuaternion, Quaternion};
/// let id = UnitDualQuaternion::identity();
/// assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.0, 0.0, 0.0, 0.0),
/// Quaternion::new(0.0, 0.0, 0.0, 0.0)
/// ));
/// ```
#[inline]
#[must_use]
pub fn dual_quaternion(&self) -> &DualQuaternion<T> {
self.as_ref()
}
/// Compute the conjugate of this unit quaternion.
///
/// # Example
/// ```
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(qr, qd)
/// );
/// let conj = unit.conjugate();
/// assert_eq!(conj.real, unit.real.conjugate());
/// assert_eq!(conj.dual, unit.dual.conjugate());
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::new_unchecked(self.as_ref().conjugate())
}
/// Compute the conjugate of this unit quaternion in-place.
///
/// # Example
/// ```
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(qr, qd)
/// );
/// let mut conj = unit.clone();
/// conj.conjugate_mut();
/// assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate());
/// assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// Inverts this dual quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let inv = unit.inverse();
/// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
let real = Unit::new_unchecked(self.as_ref().real.clone())
.inverse()
.into_inner();
let dual = -real.clone() * self.as_ref().dual.clone() * real.clone();
UnitDualQuaternion::new_unchecked(DualQuaternion { real, dual })
}
/// Inverts this dual quaternion in place if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, Quaternion, DualQuaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let mut inv = unit.clone();
/// inv.inverse_mut();
/// assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
let quat = self.as_mut_unchecked();
quat.real = Unit::new_unchecked(quat.real.clone())
.inverse()
.into_inner();
quat.dual = -quat.real.clone() * quat.dual.clone() * quat.real.clone();
}
/// The unit dual quaternion needed to make `self` and `other` coincide.
///
/// The result is such that: `self.isometry_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr));
/// let dq_to = dq1.isometry_to(&dq2);
/// assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn isometry_to(&self, other: &Self) -> Self {
other / self
}
/// Linear interpolation between two unit dual quaternions.
///
/// The result is not normalized.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.5, 0.0),
/// Quaternion::new(0.0, 0.5, 0.0, 0.5)
/// ));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.0, 0.5),
/// Quaternion::new(0.5, 0.0, 0.5, 0.0)
/// ));
/// assert_relative_eq!(
/// UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)),
/// UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.25, 0.25),
/// Quaternion::new(0.25, 0.25, 0.25, 0.25)
/// )
/// ),
/// epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T> {
self.as_ref().lerp(other.as_ref(), t)
}
/// Normalized linear interpolation between two unit quaternions.
///
/// This is the same as `self.lerp` except that the result is normalized.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, Quaternion};
/// let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.5, 0.0),
/// Quaternion::new(0.0, 0.5, 0.0, 0.5)
/// ));
/// let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.0, 0.5),
/// Quaternion::new(0.5, 0.0, 0.5, 0.0)
/// ));
/// assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize(
/// DualQuaternion::from_real_and_dual(
/// Quaternion::new(0.5, 0.0, 0.4, 0.1),
/// Quaternion::new(0.1, 0.4, 0.1, 0.4)
/// )
/// ), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn nlerp(&self, other: &Self, t: T) -> Self {
let mut res = self.lerp(other, t);
let _ = res.normalize_mut();
Self::new_unchecked(res)
}
/// Screw linear interpolation between two unit quaternions. This creates a
/// smooth arc from one dual-quaternion to another.
///
/// Panics if the angle between both quaternion is 180 degrees (in which
/// case the interpolation is not well-defined). Use `.try_sclerp`
/// instead to avoid the panic.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, DualQuaternion, UnitQuaternion, Vector3};
///
/// let dq1 = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0),
/// );
///
/// let dq2 = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 0.0, 3.0).into(),
/// UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0),
/// );
///
/// let dq = dq1.sclerp(&dq2, 1.0 / 3.0);
///
/// assert_relative_eq!(
/// dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6
/// );
/// assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn sclerp(&self, other: &Self, t: T) -> Self
where
T: RealField,
{
self.try_sclerp(other, t, T::default_epsilon())
.expect("DualQuaternion sclerp: ambiguous configuration.")
}
/// Computes the screw-linear interpolation between two unit quaternions or
/// returns `None` if both quaternions are approximately 180 degrees
/// apart (in which case the interpolation is not well-defined).
///
/// # Arguments
/// * `self`: the first quaternion to interpolate from.
/// * `other`: the second quaternion to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating
/// both quaternion
/// must be to return `None`.
#[inline]
#[must_use]
pub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
where
T: RealField,
{
let two = T::one() + T::one();
let half = T::one() / two.clone();
// Invert one of the quaternions if we've got a longest-path
// interpolation.
let other = {
let dot_product = self.as_ref().real.coords.dot(&other.as_ref().real.coords);
if relative_eq!(dot_product, T::zero(), epsilon = epsilon.clone()) {
return None;
}
if dot_product < T::zero() {
-other.clone()
} else {
other.clone()
}
};
let difference = self.as_ref().conjugate() * other.as_ref();
let norm_squared = difference.real.vector().norm_squared();
if relative_eq!(norm_squared, T::zero(), epsilon = epsilon) {
return Some(Self::from_parts(
self.translation()
.vector
.lerp(&other.translation().vector, t)
.into(),
self.rotation(),
));
}
let scalar: T = difference.real.scalar();
let mut angle = two.clone() * scalar.acos();
let inverse_norm_squared: T = T::one() / norm_squared;
let inverse_norm = inverse_norm_squared.sqrt();
let mut pitch = -two * difference.dual.scalar() * inverse_norm.clone();
let direction = difference.real.vector() * inverse_norm.clone();
let moment = (difference.dual.vector()
- direction.clone() * (pitch.clone() * difference.real.scalar() * half.clone()))
* inverse_norm;
angle *= t.clone();
pitch *= t;
let sin = (half.clone() * angle.clone()).sin();
let cos = (half.clone() * angle).cos();
let real = Quaternion::from_parts(cos.clone(), direction.clone() * sin.clone());
let dual = Quaternion::from_parts(
-pitch.clone() * half.clone() * sin.clone(),
moment * sin + direction * (pitch * half * cos),
);
Some(
self * UnitDualQuaternion::new_unchecked(DualQuaternion::from_real_and_dual(
real, dual,
)),
)
}
/// Return the rotation part of this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
/// );
///
/// assert_relative_eq!(
/// dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn rotation(&self) -> UnitQuaternion<T> {
Unit::new_unchecked(self.as_ref().real.clone())
}
/// Return the translation part of this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
/// );
///
/// assert_relative_eq!(
/// dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn translation(&self) -> Translation3<T> {
let two = T::one() + T::one();
Translation3::from(
((self.as_ref().dual.clone() * self.as_ref().real.clone().conjugate()) * two)
.vector()
.into_owned(),
)
}
/// Builds an isometry from this unit dual quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0);
/// let translation = Vector3::new(1.0, 3.0, 2.5);
/// let dq = UnitDualQuaternion::from_parts(
/// translation.into(),
/// rotation
/// );
/// let iso = dq.to_isometry();
///
/// assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6);
/// assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_isometry(self) -> Isometry3<T> {
Isometry3::from_parts(self.translation(), self.rotation())
}
/// Rotate and translate a point by this unit dual quaternion interpreted
/// as an isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T> {
self * pt
}
/// Rotate a vector by this unit dual quaternion, ignoring the translational
/// component.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Vector3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self * v
}
/// Rotate and translate a point by the inverse of this unit quaternion.
///
/// This may be cheaper than inverting the unit dual quaternion and
/// transforming the point.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T> {
self.inverse() * pt
}
/// Rotate a vector by the inverse of this unit quaternion, ignoring the
/// translational component.
///
/// This may be cheaper than inverting the unit dual quaternion and
/// transforming the vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Vector3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(
/// dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self.inverse() * v
}
/// Rotate a unit vector by the inverse of this unit quaternion, ignoring
/// the translational component. This may be
/// cheaper than inverting the unit dual quaternion and transforming the
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Unit, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0));
///
/// assert_relative_eq!(
/// dq.inverse_transform_unit_vector(&vector),
/// Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)),
/// epsilon = 1.0e-6
/// );
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<T>>) -> Unit<Vector3<T>> {
self.inverse() * v
}
}
impl<T: SimdRealField + RealField> UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
/// Converts this unit dual quaternion interpreted as an isometry
/// into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix4, UnitDualQuaternion, UnitQuaternion, Vector3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(1.0, 3.0, 2.0).into(),
/// UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6)
/// );
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0,
/// 0.5, 0.8660254, 0.0, 3.0,
/// 0.0, 0.0, 1.0, 2.0,
/// 0.0, 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(self) -> Matrix4<T> {
self.to_isometry().to_homogeneous()
}
}
impl<T: RealField> Default for UnitDualQuaternion<T> {
fn default() -> Self {
Self::identity()
}
}
impl<T: RealField + fmt::Display> fmt::Display for UnitDualQuaternion<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(axis) = self.rotation().axis() {
let axis = axis.into_inner();
write!(
f,
"UnitDualQuaternion translation: {} angle: {} axis: ({}, {}, {})",
self.translation().vector,
self.rotation().angle(),
axis[0],
axis[1],
axis[2]
)
} else {
write!(
f,
"UnitDualQuaternion translation: {} angle: {} axis: (undefined)",
self.translation().vector,
self.rotation().angle()
)
}
}
}
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for UnitDualQuaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for UnitDualQuaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for UnitDualQuaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}