forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

76 Commits

Author SHA1 Message Date
David Mak 0c9705f5f1 [meta] Apply clippy changes 2024-11-25 16:05:12 +08:00
David Mak 5f940f86d9 [artiq] Fix obtaining ndarray struct from NDArrayType 2024-11-25 15:01:39 +08:00
Sebastien Bourdeauducq 5651e00688 flake: add platformdirs artiq dependency 2024-11-22 20:30:30 +08:00
Sebastien Bourdeauducq f6745b987f bump sipyco and artiq used for profiling 2024-11-22 19:43:03 +08:00
mwojcik e0dedc6580 nac3artiq: support kernels sent by content 2024-11-22 19:38:52 +08:00
David Mak 28f574282c [core_derive] Ignore doctest in example
Causes linker errors for unknown reasons.
2024-11-22 00:00:05 +08:00
David Mak 144f0922db [core] coregen/types: Implement StructFields for NDArray
Also rename some fields to better align with their naming in numpy.
2024-11-21 14:27:00 +08:00
David Mak c58ce9c3a9 [core] codegen/types: Implement NDArray in terms of i8*
Better aligns with the future implementation of ndstrides.
2024-11-21 14:27:00 +08:00
David Mak f7e296da53 [core] irrt: Break IRRT into several impl files
Each IRRT file is now mapped to one Rust file.
2024-11-21 14:27:00 +08:00
David Mak b58c99369e [core] irrt: Update some IRRT implementation
- Change CSlice to use `void*` for better pointer compatibility
- Only include impl *.hpp files in irrt.cpp
- Refactor typedef to using declaration
- Add missing ``// namespace`
2024-11-21 14:26:58 +08:00
David Mak 1a535db558 [core] codegen: Add dtype to NDArrayType
We won't have this once NDArray is refactored to strided impl.
2024-11-20 15:35:57 +08:00
David Mak 1ba2e287a6 [core] codegen: Add Self::llvm_type to all type abstractions 2024-11-20 15:35:57 +08:00
lyken f95f979ad3 core/irrt: fix exception.hpp C++ castings 2024-11-20 15:35:57 +08:00
lyken 48e2148c0f core/toplevel/helper: add {extract,create}_ndims 2024-11-20 15:35:57 +08:00
David Mak 88e57f7120 [core_derive] Initial implementation 2024-11-20 15:35:55 +08:00
David Mak d7633c42bc [core] codegen/types: Implement StructField{,s}
Loosely based on FieldTraversal by lyken.
2024-11-19 13:46:25 +08:00
David Mak a4f53b6e6b [core] codegen: Refactor ProxyType and ProxyValue
Accepts generator+context object for generic type checking. Also
implements more default trait impl for easier delegation.
2024-11-19 13:46:25 +08:00
David Mak 9d9ead211e [core] Move Proxies to their own modules 2024-11-19 13:46:23 +08:00
David Mak 26a1b85206 [core] codegen/classes: Remove Underlying type
This is confusing and we want a better abstraction than this.
2024-11-19 13:45:55 +08:00
David Mak 2822074b2d [meta] Cleanup from upgrading Rust version
- Remove rust_2024_edition warnings, since it wouldn't be released for
another 3 months
- Fix new clippy warnings
2024-11-19 13:43:57 +08:00
David Mak fe67ed076c [meta] Update pre-commit configuration 2024-11-19 13:20:27 +08:00
David Mak 94e2414df0 [meta] Update cargo dependencies 2024-11-19 13:20:26 +08:00
Sebastien Bourdeauducq 2cee760404 turn rust_2024_compatibility lints into warnings 2024-11-16 13:41:49 +08:00
Sebastien Bourdeauducq 230982dc84 update dependencies 2024-11-16 12:40:11 +08:00
occheung 2bd3f63991 boolop: terminate both branches with *_end_bb 2024-11-16 12:06:20 +08:00
occheung b53266e9e6 artiq: use async RPC for attributes writeback 2024-11-12 12:04:01 +08:00
occheung 86eb22bbf3 artiq: main is always the last module 2024-11-12 12:03:38 +08:00
occheung beaa38047d artiq: suppress main module debug warning 2024-11-12 12:03:08 +08:00
occheung 705dc4ff1c artiq: lump return value into attributes writeback RPC 2024-11-12 12:02:35 +08:00
occheung 979209a526 binop: expand `not` operator as loglcal not 2024-11-08 17:12:01 +08:00
David Mak c3927d0ef6 [ast] Refactor lazy_static to LazyLock
It is available in Rust 1.80 and reduces a dependency.
2024-10-30 12:29:51 +08:00
David Mak 202a902cd0 [meta] Update dependencies 2024-10-30 12:29:51 +08:00
David Mak b6e2644391 [meta] Update cargo dependencies 2024-10-18 14:17:16 +08:00
David Mak 45cd01556b [meta] Apply cargo fmt 2024-10-18 14:16:42 +08:00
David Mak b6cd2a6993 [meta] Reorganize order of use declarations - Phase 3 2024-10-17 16:25:52 +08:00
David Mak a98f33e6d1 [meta] Reorganize order of use declarations - Phase 2
Some more rules:

- For module-level imports, prefer no prefix > super > crate.
- Use crate instead of super if super refers to the crate-level module
2024-10-17 15:57:33 +08:00
David Mak 5839badadd [standalone] Update globals.py with type-inferred global var 2024-10-07 20:44:08 +08:00
David Mak 56c845aac4 [standalone] Add support for registering globals without type decl 2024-10-07 20:44:06 +08:00
David Mak 65a12d9ab3 [core] Refactor registration of top-level variables 2024-10-07 17:05:48 +08:00
David Mak 9c6685fa8f [core] typecheck/function_check: Fix lookup of defined ids in scope 2024-10-07 16:51:37 +08:00
David Mak 2bb788e4bb [core] codegen/expr: Materialize implicit globals
Required for when globals are read without the use of a global
declaration.
2024-10-07 13:13:20 +08:00
David Mak 42a2f243b5 [core] typecheck: Disallow redeclaration of var shadowing global 2024-10-07 13:11:00 +08:00
David Mak 3ce2eddcdc [core] typecheck/type_inferencer: Infer whether variables are global 2024-10-07 13:10:46 +08:00
David Mak 51bf126a32 [core] typecheck/type_inferencer: Differentiate global symbols
Required for analyzing use of global symbols before global declaration.
2024-10-07 12:25:00 +08:00
David Mak 1a197c67f6 [core] toplevel/composer: Reduce lock scope while analyzing function 2024-10-05 15:53:20 +08:00
David Mak 581b2f7bb2 [standalone] Add demo for global variables 2024-10-04 13:24:30 +08:00
David Mak 746329ec5d [standalone] Implement symbol resolution for globals 2024-10-04 13:24:30 +08:00
David Mak e60e8e837f [core] Add support for global statements 2024-10-04 13:24:27 +08:00
David Mak 9fdbe9695d [core] Add generator to SymbolResolver::get_symbol_value
Needed in a future commit.
2024-10-04 13:20:29 +08:00
David Mak 8065e73598 [core] toplevel/composer: Add type analysis for global variables 2024-10-04 13:20:29 +08:00
David Mak 192290889b [core] Add IdentifierInfo
Keeps track of whether an identifier refers to a global or local
variable.
2024-10-04 13:20:24 +08:00
David Mak 1407553a2f [core] Implement parsing of global variables
Globals are now parsed into symbol resolver and top level definitions.
2024-10-04 13:18:29 +08:00
David Mak c7697606e1 [core] Add TopLevelDef::Variable 2024-10-04 13:09:25 +08:00
David Mak 88d0ccbf69 [standalone] Explicit panic when encountering a compilation error
Otherwise scripts will continue to execute.
2024-10-04 13:00:16 +08:00
David Mak a43b59539c [meta] Move variables declarations closer to where they are first used 2024-10-04 13:00:16 +08:00
David Mak fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00
David Mak 7f6c9a25ac [meta] Update Cargo dependencies 2024-10-04 12:52:01 +08:00
Sébastien Bourdeauducq 6c8382219f msys2: get python via numpy dependencies 2024-09-30 14:27:30 +08:00
Sebastien Bourdeauducq 9274a7b96b flake: update nixpkgs 2024-09-30 14:22:40 +08:00
Sébastien Bourdeauducq d1c0fe2900 cargo: update dependencies 2024-09-30 14:14:43 +08:00
mwojcik f2c047ba57 artiq: support async rpcs
Co-authored-by: mwojcik <mw@m-labs.hk>
Co-committed-by: mwojcik <mw@m-labs.hk>
2024-09-13 12:12:13 +08:00
David Mak 5e2e77a500 [meta] Bump inkwell to v0.5 2024-09-13 11:11:14 +08:00
David Mak f3cc4702b9 [meta] Update dependencies 2024-09-13 11:11:14 +08:00
David Mak 3e92c491f5 [standalone] Add tests creating ndarrays with tuple dims 2024-09-11 15:52:43 +08:00
lyken 7f629f1579 core: fix comment in unify_call 2024-09-11 15:46:19 +08:00
lyken 5640a793e2 core: allow np_full to take tuple shapes 2024-09-11 15:46:19 +08:00
David Mak abbaa506ad [standalone] Remove redundant recreation of TargetMachine 2024-09-09 14:27:10 +08:00
David Mak f3dc02d646 [meta] Apply cargo fmt 2024-09-09 14:24:52 +08:00
David Mak ea217eaea1 [meta] Update pre-commit config
Directly invoke cargo using nix develop to avoid using the system cargo.
2024-09-09 14:24:38 +08:00
Sébastien Bourdeauducq 5a34551905 allow the use of the LLVM shared library
Which in turns allows working around the incompatibility of the LLVM static library
with Rust link-args=-rdynamic, which produces binaries that either fail to link (OpenBSD)
or segfault on startup (Linux).

The year is 2024 and compiler toolchains are still a trash fire like this.
2024-09-09 11:17:31 +08:00
Sebastien Bourdeauducq 6098b1b853 fix previous commit 2024-09-06 11:32:08 +08:00
Sebastien Bourdeauducq 668ccb1c95 nac3core: expose inkwell and nac3parser 2024-09-06 11:06:26 +08:00
Sebastien Bourdeauducq a3c624d69d update all dependencies 2024-09-06 10:21:58 +08:00
Sébastien Bourdeauducq bd06155f34 irrt: compatibility with pre-C23 compilers 2024-09-05 18:54:55 +08:00
David Mak 9c33c4209c [core] Fix type of ndarray.element_type
Should be the element type of the NDArray itself, not the pointer to its
type.
2024-08-30 22:47:38 +08:00
Sebastien Bourdeauducq 122983f11c flake: update dependencies 2024-08-30 14:45:38 +08:00
121 changed files with 6464 additions and 8322 deletions

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information # See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks # See https://pre-commit.com/hooks.html for more hooks
default_stages: [commit] default_stages: [pre-commit]
repos: repos:
- repo: local - repo: local
hooks: hooks:
- id: nac3-cargo-fmt - id: nac3-cargo-fmt
name: nac3 cargo format name: nac3 cargo format
entry: cargo entry: nix
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo fmt on the codebase. description: Runs cargo fmt on the codebase.
args: [fmt] args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy - id: nac3-cargo-clippy
name: nac3 cargo clippy name: nac3 cargo clippy
entry: cargo entry: nix
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo clippy on the codebase. description: Runs cargo clippy on the codebase.
args: [clippy, --tests] args: [develop, -c, cargo, clippy, --tests]

507
Cargo.lock generated
View File

@ -26,9 +26,9 @@ dependencies = [
[[package]] [[package]]
name = "anstream" name = "anstream"
version = "0.6.15" version = "0.6.18"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64e15c1ab1f89faffbf04a634d5e1962e9074f2741eef6d97f3c4e322426d526" checksum = "8acc5369981196006228e28809f761875c0327210a891e941f4c683b3a99529b"
dependencies = [ dependencies = [
"anstyle", "anstyle",
"anstyle-parse", "anstyle-parse",
@ -41,67 +41,67 @@ dependencies = [
[[package]] [[package]]
name = "anstyle" name = "anstyle"
version = "1.0.8" version = "1.0.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bec1de6f59aedf83baf9ff929c98f2ad654b97c9510f4e70cf6f661d49fd5b1" checksum = "55cc3b69f167a1ef2e161439aa98aed94e6028e5f9a59be9a6ffb47aef1651f9"
[[package]] [[package]]
name = "anstyle-parse" name = "anstyle-parse"
version = "0.2.5" version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb47de1e80c2b463c735db5b217a0ddc39d612e7ac9e2e96a5aed1f57616c1cb" checksum = "3b2d16507662817a6a20a9ea92df6652ee4f94f914589377d69f3b21bc5798a9"
dependencies = [ dependencies = [
"utf8parse", "utf8parse",
] ]
[[package]] [[package]]
name = "anstyle-query" name = "anstyle-query"
version = "1.1.1" version = "1.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d36fc52c7f6c869915e99412912f22093507da8d9e942ceaf66fe4b7c14422a" checksum = "79947af37f4177cfead1110013d678905c37501914fba0efea834c3fe9a8d60c"
dependencies = [ dependencies = [
"windows-sys 0.52.0", "windows-sys 0.59.0",
] ]
[[package]] [[package]]
name = "anstyle-wincon" name = "anstyle-wincon"
version = "3.0.4" version = "3.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5bf74e1b6e971609db8ca7a9ce79fd5768ab6ae46441c572e46cf596f59e57f8" checksum = "2109dbce0e72be3ec00bed26e6a7479ca384ad226efdd66db8fa2e3a38c83125"
dependencies = [ dependencies = [
"anstyle", "anstyle",
"windows-sys 0.52.0", "windows-sys 0.59.0",
] ]
[[package]] [[package]]
name = "ascii-canvas" name = "ascii-canvas"
version = "3.0.0" version = "4.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8824ecca2e851cec16968d54a01dd372ef8f95b244fb84b84e70128be347c3c6" checksum = "ef1e3e699d84ab1b0911a1010c5c106aa34ae89aeac103be5ce0c3859db1e891"
dependencies = [ dependencies = [
"term", "term",
] ]
[[package]] [[package]]
name = "autocfg" name = "autocfg"
version = "1.3.0" version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0" checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26"
[[package]] [[package]]
name = "bit-set" name = "bit-set"
version = "0.5.3" version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0700ddab506f33b20a03b13996eccd309a48e5ff77d0d95926aa0210fb4e95f1" checksum = "08807e080ed7f9d5433fa9b275196cfc35414f66a0c79d864dc51a0d825231a3"
dependencies = [ dependencies = [
"bit-vec", "bit-vec",
] ]
[[package]] [[package]]
name = "bit-vec" name = "bit-vec"
version = "0.6.3" version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "349f9b6a179ed607305526ca489b34ad0a41aed5f7980fa90eb03160b69598fb" checksum = "5e764a1d40d510daf35e07be9eb06e75770908c27d411ee6c92109c9840eaaf7"
[[package]] [[package]]
name = "bitflags" name = "bitflags"
@ -109,6 +109,15 @@ version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de" checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de"
[[package]]
name = "block-buffer"
version = "0.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
dependencies = [
"generic-array",
]
[[package]] [[package]]
name = "byteorder" name = "byteorder"
version = "1.5.0" version = "1.5.0"
@ -117,9 +126,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]] [[package]]
name = "cc" name = "cc"
version = "1.1.15" version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57b6a275aa2903740dc87da01c62040406b8812552e97129a63ea8850a17c6e6" checksum = "fd9de9f2205d5ef3fd67e685b0df337994ddd4495e2a28d185500d0e1edfea47"
dependencies = [ dependencies = [
"shlex", "shlex",
] ]
@ -132,9 +141,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]] [[package]]
name = "clap" name = "clap"
version = "4.5.16" version = "4.5.21"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019" checksum = "fb3b4b9e5a7c7514dfa52869339ee98b3156b0bfb4e8a77c4ff4babb64b1604f"
dependencies = [ dependencies = [
"clap_builder", "clap_builder",
"clap_derive", "clap_derive",
@ -142,9 +151,9 @@ dependencies = [
[[package]] [[package]]
name = "clap_builder" name = "clap_builder"
version = "4.5.15" version = "4.5.21"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6" checksum = "b17a95aa67cc7b5ebd32aa5370189aa0d79069ef1c64ce893bd30fb24bff20ec"
dependencies = [ dependencies = [
"anstream", "anstream",
"anstyle", "anstyle",
@ -154,27 +163,27 @@ dependencies = [
[[package]] [[package]]
name = "clap_derive" name = "clap_derive"
version = "4.5.13" version = "4.5.18"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0" checksum = "4ac6a0c7b1a9e9a5186361f67dfa1b88213572f427fb9ab038efb2bd8c582dab"
dependencies = [ dependencies = [
"heck 0.5.0", "heck 0.5.0",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
name = "clap_lex" name = "clap_lex"
version = "0.7.2" version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1462739cb27611015575c0c11df5df7601141071f07518d56fcc1be504cbec97" checksum = "afb84c814227b90d6895e01398aee0d8033c00e7466aca416fb6a8e0eb19d8a7"
[[package]] [[package]]
name = "colorchoice" name = "colorchoice"
version = "1.0.2" version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0" checksum = "5b63caa9aa9397e2d9480a9b13673856c78d8ac123288526c37d7839f2a86990"
[[package]] [[package]]
name = "console" name = "console"
@ -188,6 +197,15 @@ dependencies = [
"windows-sys 0.52.0", "windows-sys 0.52.0",
] ]
[[package]]
name = "cpufeatures"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ca741a962e1b0bff6d724a1a0958b686406e853bb14061f218562e1896f95e6"
dependencies = [
"libc",
]
[[package]] [[package]]
name = "crossbeam" name = "crossbeam"
version = "0.8.4" version = "0.8.4"
@ -245,32 +263,31 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80" checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
[[package]] [[package]]
name = "crunchy" name = "crypto-common"
version = "0.2.2" version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7" checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
[[package]]
name = "dirs-next"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b98cf8ebf19c3d1b223e151f99a4f9f0690dca41414773390fc824184ac833e1"
dependencies = [ dependencies = [
"cfg-if", "generic-array",
"dirs-sys-next", "typenum",
] ]
[[package]] [[package]]
name = "dirs-sys-next" name = "digest"
version = "0.1.2" version = "0.10.7"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ebda144c4fe02d1f7ea1a7d9641b6fc6b580adcfa024ae48797ecdeb6825b4d" checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
dependencies = [ dependencies = [
"libc", "block-buffer",
"redox_users", "crypto-common",
"winapi",
] ]
[[package]]
name = "dissimilar"
version = "1.0.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "59f8e79d1fbf76bdfbde321e902714bf6c49df88a7dda6fc682fc2979226962d"
[[package]] [[package]]
name = "either" name = "either"
version = "1.13.0" version = "1.13.0"
@ -310,9 +327,9 @@ dependencies = [
[[package]] [[package]]
name = "fastrand" name = "fastrand"
version = "2.1.1" version = "2.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6" checksum = "486f806e73c5707928240ddc295403b1b93c96a02038563881c4a2fd84b81ac4"
[[package]] [[package]]
name = "fixedbitset" name = "fixedbitset"
@ -329,6 +346,16 @@ dependencies = [
"byteorder", "byteorder",
] ]
[[package]]
name = "generic-array"
version = "0.14.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
dependencies = [
"typenum",
"version_check",
]
[[package]] [[package]]
name = "getopts" name = "getopts"
version = "0.2.21" version = "0.2.21"
@ -349,6 +376,12 @@ dependencies = [
"wasi", "wasi",
] ]
[[package]]
name = "glob"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b"
[[package]] [[package]]
name = "hashbrown" name = "hashbrown"
version = "0.12.3" version = "0.12.3"
@ -364,6 +397,12 @@ dependencies = [
"ahash", "ahash",
] ]
[[package]]
name = "hashbrown"
version = "0.15.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3a9bfc1af68b1726ea47d3d5109de126281def866b33970e10fbab11b5dafab3"
[[package]] [[package]]
name = "heck" name = "heck"
version = "0.4.1" version = "0.4.1"
@ -376,6 +415,15 @@ version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea" checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "home"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3d1354bf6b7235cb4a0576c2619fd4ed18183f689b12b006a0ee7329eeff9a5"
dependencies = [
"windows-sys 0.52.0",
]
[[package]] [[package]]
name = "indexmap" name = "indexmap"
version = "1.9.3" version = "1.9.3"
@ -388,12 +436,12 @@ dependencies = [
[[package]] [[package]]
name = "indexmap" name = "indexmap"
version = "2.4.0" version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c" checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
dependencies = [ dependencies = [
"equivalent", "equivalent",
"hashbrown 0.14.5", "hashbrown 0.15.1",
] ]
[[package]] [[package]]
@ -404,9 +452,9 @@ checksum = "b248f5224d1d606005e02c97f5aa4e88eeb230488bcc03bc9ca4d7991399f2b5"
[[package]] [[package]]
name = "inkwell" name = "inkwell"
version = "0.4.0" version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b597a7b2cdf279aeef6d7149071e35e4bc87c2cf05a5b7f2d731300bffe587ea" checksum = "40fb405537710d51f6bdbc8471365ddd4cd6d3a3c3ad6e0c8291691031ba94b2"
dependencies = [ dependencies = [
"either", "either",
"inkwell_internals", "inkwell_internals",
@ -418,13 +466,13 @@ dependencies = [
[[package]] [[package]]
name = "inkwell_internals" name = "inkwell_internals"
version = "0.9.0" version = "0.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2" checksum = "9dd28cfd4cfba665d47d31c08a6ba637eed16770abca2eccbbc3ca831fef1e44"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
@ -447,15 +495,6 @@ version = "1.70.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf" checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
[[package]]
name = "itertools"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1c173a5686ce8bfa551b3563d0c2170bf24ca44da99c7ca4bfdab5418c3fe57"
dependencies = [
"either",
]
[[package]] [[package]]
name = "itertools" name = "itertools"
version = "0.13.0" version = "0.13.0"
@ -472,34 +511,44 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b" checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
[[package]] [[package]]
name = "lalrpop" name = "keccak"
version = "0.20.2" version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "55cb077ad656299f160924eb2912aa147d7339ea7d69e1b5517326fdcec3c1ca" checksum = "ecc2af9a1119c51f12a14607e783cb977bde58bc069ff0c3da1095e635d70654"
dependencies = [
"cpufeatures",
]
[[package]]
name = "lalrpop"
version = "0.22.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06093b57658c723a21da679530e061a8c25340fa5a6f98e313b542268c7e2a1f"
dependencies = [ dependencies = [
"ascii-canvas", "ascii-canvas",
"bit-set", "bit-set",
"ena", "ena",
"itertools 0.11.0", "itertools",
"lalrpop-util", "lalrpop-util",
"petgraph", "petgraph",
"pico-args", "pico-args",
"regex", "regex",
"regex-syntax", "regex-syntax",
"sha3",
"string_cache", "string_cache",
"term", "term",
"tiny-keccak",
"unicode-xid", "unicode-xid",
"walkdir", "walkdir",
] ]
[[package]] [[package]]
name = "lalrpop-util" name = "lalrpop-util"
version = "0.20.2" version = "0.22.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "507460a910eb7b32ee961886ff48539633b788a36b65692b95f225b844c82553" checksum = "feee752d43abd0f4807a921958ab4131f692a44d4d599733d4419c5d586176ce"
dependencies = [ dependencies = [
"regex-automata", "regex-automata",
"rustversion",
] ]
[[package]] [[package]]
@ -510,9 +559,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]] [[package]]
name = "libc" name = "libc"
version = "0.2.158" version = "0.2.164"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439" checksum = "433bfe06b8c75da9b2e3fbea6e5329ff87748f0b144ef75306e674c3f6f7c13f"
[[package]] [[package]]
name = "libloading" name = "libloading"
@ -524,16 +573,6 @@ dependencies = [
"windows-targets", "windows-targets",
] ]
[[package]]
name = "libredox"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c0ff37bd590ca25063e35af745c343cb7a0271906fb7b37e4813e8f79f00268d"
dependencies = [
"bitflags",
"libc",
]
[[package]] [[package]]
name = "linked-hash-map" name = "linked-hash-map"
version = "0.5.6" version = "0.5.6"
@ -594,11 +633,9 @@ dependencies = [
name = "nac3artiq" name = "nac3artiq"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"inkwell", "itertools",
"itertools 0.13.0",
"nac3core", "nac3core",
"nac3ld", "nac3ld",
"nac3parser",
"parking_lot", "parking_lot",
"pyo3", "pyo3",
"tempfile", "tempfile",
@ -609,7 +646,6 @@ name = "nac3ast"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"fxhash", "fxhash",
"lazy_static",
"parking_lot", "parking_lot",
"string-interner", "string-interner",
] ]
@ -619,11 +655,12 @@ name = "nac3core"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"crossbeam", "crossbeam",
"indexmap 2.4.0", "indexmap 2.6.0",
"indoc", "indoc",
"inkwell", "inkwell",
"insta", "insta",
"itertools 0.13.0", "itertools",
"nac3core_derive",
"nac3parser", "nac3parser",
"parking_lot", "parking_lot",
"rayon", "rayon",
@ -633,6 +670,18 @@ dependencies = [
"test-case", "test-case",
] ]
[[package]]
name = "nac3core_derive"
version = "0.1.0"
dependencies = [
"nac3core",
"proc-macro-error",
"proc-macro2",
"quote",
"syn 2.0.87",
"trybuild",
]
[[package]] [[package]]
name = "nac3ld" name = "nac3ld"
version = "0.1.0" version = "0.1.0"
@ -661,9 +710,7 @@ name = "nac3standalone"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"clap", "clap",
"inkwell",
"nac3core", "nac3core",
"nac3parser",
"parking_lot", "parking_lot",
] ]
@ -675,9 +722,9 @@ checksum = "650eef8c711430f1a879fdd01d4745a7deea475becfb90269c06775983bbf086"
[[package]] [[package]]
name = "once_cell" name = "once_cell"
version = "1.19.0" version = "1.20.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92" checksum = "1261fe7e33c73b354eab43b1273a57c8f967d0391e80353e51f764ac02cf6775"
[[package]] [[package]]
name = "parking_lot" name = "parking_lot"
@ -709,7 +756,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db" checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
dependencies = [ dependencies = [
"fixedbitset", "fixedbitset",
"indexmap 2.4.0", "indexmap 2.6.0",
] ]
[[package]] [[package]]
@ -752,7 +799,7 @@ dependencies = [
"phf_shared 0.11.2", "phf_shared 0.11.2",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
@ -781,9 +828,9 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
[[package]] [[package]]
name = "portable-atomic" name = "portable-atomic"
version = "1.7.0" version = "1.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265" checksum = "cc9c68a3f6da06753e9335d63e27f6b9754dd1920d941135b7ea8224f141adb2"
[[package]] [[package]]
name = "ppv-lite86" name = "ppv-lite86"
@ -801,10 +848,34 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "925383efa346730478fb4838dbe9137d2a47675ad789c546d150a6e1dd4ab31c" checksum = "925383efa346730478fb4838dbe9137d2a47675ad789c546d150a6e1dd4ab31c"
[[package]] [[package]]
name = "proc-macro2" name = "proc-macro-error"
version = "1.0.86" version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5e719e8df665df0d1c8fbfd238015744736151d4445ec0836b8e628aae103b77" checksum = "da25490ff9892aab3fcf7c36f08cfb902dd3e71ca0f9f9517bea02a73a5ce38c"
dependencies = [
"proc-macro-error-attr",
"proc-macro2",
"quote",
"syn 1.0.109",
"version_check",
]
[[package]]
name = "proc-macro-error-attr"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1be40180e52ecc98ad80b184934baf3d0d29f979574e439af5a55274b35f869"
dependencies = [
"proc-macro2",
"quote",
"version_check",
]
[[package]]
name = "proc-macro2"
version = "1.0.89"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f139b0662de085916d1fb67d2b4169d1addddda1919e696f3252b740b629986e"
dependencies = [ dependencies = [
"unicode-ident", "unicode-ident",
] ]
@ -856,7 +927,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-macros-backend", "pyo3-macros-backend",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
@ -869,7 +940,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-build-config", "pyo3-build-config",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
@ -933,29 +1004,18 @@ dependencies = [
[[package]] [[package]]
name = "redox_syscall" name = "redox_syscall"
version = "0.5.3" version = "0.5.7"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4" checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f"
dependencies = [ dependencies = [
"bitflags", "bitflags",
] ]
[[package]]
name = "redox_users"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba009ff324d1fc1b900bd1fdb31564febe58a8ccc8a6fdbb93b543d33b13ca43"
dependencies = [
"getrandom",
"libredox",
"thiserror",
]
[[package]] [[package]]
name = "regex" name = "regex"
version = "1.10.6" version = "1.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619" checksum = "b544ef1b4eac5dc2db33ea63606ae9ffcfac26c1416a2806ae0bf5f56b201191"
dependencies = [ dependencies = [
"aho-corasick", "aho-corasick",
"memchr", "memchr",
@ -965,9 +1025,9 @@ dependencies = [
[[package]] [[package]]
name = "regex-automata" name = "regex-automata"
version = "0.4.7" version = "0.4.9"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38caf58cc5ef2fed281f89292ef23f6365465ed9a41b7a7754eb4e26496c92df" checksum = "809e8dc61f6de73b46c85f4c96486310fe304c434cfa43669d7b40f711150908"
dependencies = [ dependencies = [
"aho-corasick", "aho-corasick",
"memchr", "memchr",
@ -976,9 +1036,9 @@ dependencies = [
[[package]] [[package]]
name = "regex-syntax" name = "regex-syntax"
version = "0.8.4" version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b" checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c"
[[package]] [[package]]
name = "runkernel" name = "runkernel"
@ -989,9 +1049,9 @@ dependencies = [
[[package]] [[package]]
name = "rustix" name = "rustix"
version = "0.38.35" version = "0.38.41"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a85d50532239da68e9addb745ba38ff4612a242c1c7ceea689c4bc7c2f43c36f" checksum = "d7f649912bc1495e167a6edee79151c84b1bad49748cb4f1f1167f459f6224f6"
dependencies = [ dependencies = [
"bitflags", "bitflags",
"errno", "errno",
@ -1002,9 +1062,9 @@ dependencies = [
[[package]] [[package]]
name = "rustversion" name = "rustversion"
version = "1.0.17" version = "1.0.18"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "955d28af4278de8121b7ebeb796b6a45735dc01436d898801014aced2773a3d6" checksum = "0e819f2bc632f285be6d7cd36e25940d45b2391dd6d9b939e79de557f7014248"
[[package]] [[package]]
name = "ryu" name = "ryu"
@ -1035,29 +1095,29 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]] [[package]]
name = "serde" name = "serde"
version = "1.0.209" version = "1.0.215"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "99fce0ffe7310761ca6bf9faf5115afbc19688edd00171d81b1bb1b116c63e09" checksum = "6513c1ad0b11a9376da888e3e0baa0077f1aed55c17f50e7b2397136129fb88f"
dependencies = [ dependencies = [
"serde_derive", "serde_derive",
] ]
[[package]] [[package]]
name = "serde_derive" name = "serde_derive"
version = "1.0.209" version = "1.0.215"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a5831b979fd7b5439637af1752d535ff49f4860c0f341d1baeb6faf0f4242170" checksum = "ad1e866f866923f252f05c889987993144fb74e722403468a4ebd70c3cd756c0"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
name = "serde_json" name = "serde_json"
version = "1.0.127" version = "1.0.133"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8043c06d9f82bd7271361ed64f415fe5e12a77fdb52e573e7f06a516dea329ad" checksum = "c7fceb2473b9166b2294ef05efcb65a3db80803f0b03ef86a5fc88a2b85ee377"
dependencies = [ dependencies = [
"itoa", "itoa",
"memchr", "memchr",
@ -1065,6 +1125,15 @@ dependencies = [
"serde", "serde",
] ]
[[package]]
name = "serde_spanned"
version = "0.6.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87607cb1398ed59d48732e575a4c28a7a8ebf2454b964fe3f224f2afc07909e1"
dependencies = [
"serde",
]
[[package]] [[package]]
name = "serde_yaml" name = "serde_yaml"
version = "0.8.26" version = "0.8.26"
@ -1077,6 +1146,16 @@ dependencies = [
"yaml-rust", "yaml-rust",
] ]
[[package]]
name = "sha3"
version = "0.10.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75872d278a8f37ef87fa0ddbda7802605cb18344497949862c0d4dcb291eba60"
dependencies = [
"digest",
"keccak",
]
[[package]] [[package]]
name = "shlex" name = "shlex"
version = "1.3.0" version = "1.3.0"
@ -1147,7 +1226,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"rustversion", "rustversion",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
@ -1163,9 +1242,9 @@ dependencies = [
[[package]] [[package]]
name = "syn" name = "syn"
version = "2.0.76" version = "2.0.87"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "578e081a14e0cefc3279b0472138c513f37b41a08d5a3cca9b6e4e8ceb6cd525" checksum = "25aa4ce346d03a6dcd68dd8b4010bcb74e54e62c90c573f394c46eae99aba32d"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
@ -1179,10 +1258,16 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1" checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
[[package]] [[package]]
name = "tempfile" name = "target-triple"
version = "3.12.0" version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64" checksum = "42a4d50cdb458045afc8131fd91b64904da29548bcb63c7236e0844936c13078"
[[package]]
name = "tempfile"
version = "3.14.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "28cce251fcbc87fac86a866eeb0d6c2d536fc16d06f184bb61aeae11aa4cee0c"
dependencies = [ dependencies = [
"cfg-if", "cfg-if",
"fastrand", "fastrand",
@ -1193,13 +1278,21 @@ dependencies = [
[[package]] [[package]]
name = "term" name = "term"
version = "0.7.0" version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c59df8ac95d96ff9bede18eb7300b0fda5e5d8d90960e76f8e14ae765eedbf1f" checksum = "4df4175de05129f31b80458c6df371a15e7fc3fd367272e6bf938e5c351c7ea0"
dependencies = [ dependencies = [
"dirs-next", "home",
"rustversion", "windows-sys 0.52.0",
"winapi", ]
[[package]]
name = "termcolor"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06794f8f6c5c898b3275aebefa6b8a1cb24cd2c6c79397ab15774837a0bc5755"
dependencies = [
"winapi-util",
] ]
[[package]] [[package]]
@ -1217,33 +1310,80 @@ dependencies = [
[[package]] [[package]]
name = "thiserror" name = "thiserror"
version = "1.0.63" version = "1.0.69"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724" checksum = "b6aaf5339b578ea85b50e080feb250a3e8ae8cfcdff9a461c9ec2904bc923f52"
dependencies = [ dependencies = [
"thiserror-impl", "thiserror-impl",
] ]
[[package]] [[package]]
name = "thiserror-impl" name = "thiserror-impl"
version = "1.0.63" version = "1.0.69"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261" checksum = "4fee6c4efc90059e10f81e6d42c60a18f76588c3d74cb83a0b242a2b6c7504c1"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]
[[package]] [[package]]
name = "tiny-keccak" name = "toml"
version = "2.0.2" version = "0.8.19"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2c9d3793400a45f954c52e73d068316d76b6f4e36977e3fcebb13a2721e80237" checksum = "a1ed1f98e3fdc28d6d910e6737ae6ab1a93bf1985935a1193e68f93eeb68d24e"
dependencies = [ dependencies = [
"crunchy", "serde",
"serde_spanned",
"toml_datetime",
"toml_edit",
] ]
[[package]]
name = "toml_datetime"
version = "0.6.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0dd7358ecb8fc2f8d014bf86f6f638ce72ba252a2c3a2572f2a795f1d23efb41"
dependencies = [
"serde",
]
[[package]]
name = "toml_edit"
version = "0.22.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ae48d6208a266e853d946088ed816055e556cc6028c5e8e2b84d9fa5dd7c7f5"
dependencies = [
"indexmap 2.6.0",
"serde",
"serde_spanned",
"toml_datetime",
"winnow",
]
[[package]]
name = "trybuild"
version = "1.0.101"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8dcd332a5496c026f1e14b7f3d2b7bd98e509660c04239c58b0ba38a12daded4"
dependencies = [
"dissimilar",
"glob",
"serde",
"serde_derive",
"serde_json",
"target-triple",
"termcolor",
"toml",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
[[package]] [[package]]
name = "unic-char-property" name = "unic-char-property"
version = "0.9.0" version = "0.9.0"
@ -1298,27 +1438,27 @@ dependencies = [
[[package]] [[package]]
name = "unicode-ident" name = "unicode-ident"
version = "1.0.12" version = "1.0.13"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b" checksum = "e91b56cd4cadaeb79bbf1a5645f6b4f8dc5bde8834ad5894a8db35fda9efa1fe"
[[package]] [[package]]
name = "unicode-width" name = "unicode-width"
version = "0.1.13" version = "0.1.14"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d" checksum = "7dd6e30e90baa6f72411720665d41d89b9a3d039dc45b8faea1ddd07f617f6af"
[[package]] [[package]]
name = "unicode-xid" name = "unicode-xid"
version = "0.2.5" version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "229730647fbc343e3a80e463c1db7f78f3855d3f3739bee0dda773c9a037c90a" checksum = "ebc1c04c71510c7f702b52b7c350734c9ff1295c464a03335b00bb84fc54f853"
[[package]] [[package]]
name = "unicode_names2" name = "unicode_names2"
version = "1.2.2" version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "addeebf294df7922a1164f729fb27ebbbcea99cc32b3bf08afab62757f707677" checksum = "d1673eca9782c84de5f81b82e4109dcfb3611c8ba0d52930ec4a9478f547b2dd"
dependencies = [ dependencies = [
"phf", "phf",
"unicode_names2_generator", "unicode_names2_generator",
@ -1326,9 +1466,9 @@ dependencies = [
[[package]] [[package]]
name = "unicode_names2_generator" name = "unicode_names2_generator"
version = "1.2.2" version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f444b8bba042fe3c1251ffaca35c603f2dc2ccc08d595c65a8c4f76f3e8426c0" checksum = "b91e5b84611016120197efd7dc93ef76774f4e084cd73c9fb3ea4a86c570c56e"
dependencies = [ dependencies = [
"getopts", "getopts",
"log", "log",
@ -1370,22 +1510,6 @@ version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423" checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]] [[package]]
name = "winapi-util" name = "winapi-util"
version = "0.1.9" version = "0.1.9"
@ -1395,12 +1519,6 @@ dependencies = [
"windows-sys 0.59.0", "windows-sys 0.59.0",
] ]
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
[[package]] [[package]]
name = "windows-sys" name = "windows-sys"
version = "0.52.0" version = "0.52.0"
@ -1483,6 +1601,15 @@ version = "0.52.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec" checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec"
[[package]]
name = "winnow"
version = "0.6.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "36c1fec1a2bb5866f07c25f68c26e565c4c200aebb96d7e55710c19d3e8ac49b"
dependencies = [
"memchr",
]
[[package]] [[package]]
name = "yaml-rust" name = "yaml-rust"
version = "0.4.5" version = "0.4.5"
@ -1510,5 +1637,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.76", "syn 2.0.87",
] ]

View File

@ -4,6 +4,7 @@ members = [
"nac3ast", "nac3ast",
"nac3parser", "nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3artiq", "nac3artiq",
"runkernel", "runkernel",

View File

@ -2,11 +2,11 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1723637854, "lastModified": 1731319897,
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=", "narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9", "rev": "dc460ec76cbff0e66e269457d7b728432263166c",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -107,18 +107,18 @@
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "sipyco"; repo = "sipyco";
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e"; rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc="; sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
}) })
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "artiq"; repo = "artiq";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0"; rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw="; sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
}) })
]; ];
buildInputs = [ buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ])) (python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out pkgs.llvmPackages_14.llvm.out
]; ];
phases = [ "buildPhase" "installPhase" ]; phases = [ "buildPhase" "installPhase" ];

View File

@ -12,16 +12,10 @@ crate-type = ["cdylib"]
itertools = "0.13" itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] } pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12" parking_lot = "0.12"
tempfile = "3.10" tempfile = "3.13"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" } nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" } nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features] [features]
init-llvm-profile = [] init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"] no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -112,10 +112,15 @@ def extern(function):
register_function(function) register_function(function)
return function return function
def rpc(function):
"""Decorates a function declaration defined by the core device runtime.""" def rpc(arg=None, flags={}):
register_function(function) """Decorates a function or method to be executed on the host interpreter."""
return function if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method): def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device.""" """Decorates a function or method to be executed on the core device."""
@ -201,7 +206,7 @@ class Core:
embedding = EmbeddingMap() embedding = EmbeddingMap()
if allow_registration: if allow_registration:
compiler.analyze(registered_functions, registered_classes) compiler.analyze(registered_functions, registered_classes, set())
allow_registration = False allow_registration = False
if hasattr(method, "__self__"): if hasattr(method, "__self__"):

View File

@ -1,39 +1,3 @@
use nac3core::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use inkwell::values::IntValue;
use itertools::Itertools;
use std::{ use std::{
collections::{hash_map::DefaultHasher, HashMap}, collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher}, hash::{Hash, Hasher},
@ -42,6 +6,40 @@ use std::{
sync::Arc, sync::Arc,
}; };
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
types::{NDArrayType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, ProxyValue,
RangeValue, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block. /// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)] #[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode { enum ParallelMode {
@ -461,9 +459,9 @@ fn format_rpc_arg<'ctx>(
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_arg_ty = let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
NDArrayType::new(generator, ctx.ctx, ctx.get_llvm_type(generator, elem_ty)); let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None); let llvm_arg = llvm_arg_ty.map_value(arg.into_pointer_value(), None);
let llvm_usize_sizeof = ctx let llvm_usize_sizeof = ctx
.builder .builder
@ -472,7 +470,7 @@ fn format_rpc_arg<'ctx>(
let llvm_pdata_sizeof = ctx let llvm_pdata_sizeof = ctx
.builder .builder
.build_int_truncate_or_bit_cast( .build_int_truncate_or_bit_cast(
llvm_arg_ty.element_type().ptr_type(AddressSpace::default()).size_of(), llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize, llvm_usize,
"", "",
) )
@ -500,7 +498,7 @@ fn format_rpc_arg<'ctx>(
call_memcpy_generic( call_memcpy_generic(
ctx, ctx,
pbuffer_dims_begin, pbuffer_dims_begin,
llvm_arg.dim_sizes().base_ptr(ctx, generator), llvm_arg.shape().base_ptr(ctx, generator),
dims_buf_sz, dims_buf_sz,
llvm_i1.const_zero(), llvm_i1.const_zero(),
); );
@ -515,7 +513,7 @@ fn format_rpc_arg<'ctx>(
ctx.builder.build_store(arg_slot, arg).unwrap(); ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder ctx.builder
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg") .build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
} }
@ -614,7 +612,7 @@ fn format_rpc_ret<'ctx>(
// Set `ndarray.ndims` // Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false)); ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims] // Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx)); ndarray.create_shape(ctx, llvm_usize, ndarray.load_ndims(ctx));
/* /*
ndarray now: ndarray now:
@ -630,7 +628,7 @@ fn format_rpc_ret<'ctx>(
let llvm_pdata_sizeof = ctx let llvm_pdata_sizeof = ctx
.builder .builder
.build_int_truncate_or_bit_cast( .build_int_truncate_or_bit_cast(
llvm_ret_ty.element_type().size_of().unwrap(), llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize, llvm_usize,
"", "",
) )
@ -662,7 +660,7 @@ fn format_rpc_ret<'ctx>(
.unwrap(); .unwrap();
let buffer = ctx let buffer = ctx
.builder .builder
.build_bitcast(buffer, llvm_pi8, "") .build_bit_cast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None); let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
@ -704,7 +702,7 @@ fn format_rpc_ret<'ctx>(
call_memcpy_generic( call_memcpy_generic(
ctx, ctx,
ndarray.dim_sizes().base_ptr(ctx, generator), ndarray.shape().base_ptr(ctx, generator),
pbuffer_dims, pbuffer_dims,
sizeof_dims, sizeof_dims,
llvm_i1.const_zero(), llvm_i1.const_zero(),
@ -716,7 +714,7 @@ fn format_rpc_ret<'ctx>(
// `ndarray.shape` must be initialized beforehand in this implementation // `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate) // (for ndarray.create_data() to know how many elements to allocate)
let num_elements = let num_elements =
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None)); call_ndarray_calc_size(generator, ctx, &ndarray.shape(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes) // debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
@ -785,7 +783,7 @@ fn format_rpc_ret<'ctx>(
_ => { _ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap(); let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, llvm_pi8, "rpc.ret.ptr").unwrap(); let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap(); ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb); ctx.builder.position_at_end(head_bb);
@ -806,7 +804,7 @@ fn format_rpc_ret<'ctx>(
let alloc_ptr = let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap(); ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = let alloc_ptr =
ctx.builder.build_bitcast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap(); ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]); phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap(); ctx.builder.build_unconditional_branch(head_bb).unwrap();
@ -824,6 +822,7 @@ fn rpc_codegen_callback_fn<'ctx>(
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> { ) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type(); let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type(); let int32 = ctx.ctx.i32_type();
@ -932,42 +931,72 @@ fn rpc_codegen_callback_fn<'ctx>(
} }
// call // call
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| { if is_async {
ctx.module.add_function( let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
"rpc_send", ctx.module.add_function(
ctx.ctx.void_type().fn_type( "rpc_send_async",
&[ ctx.ctx.void_type().fn_type(
int32.into(), &[
tag_ptr_type.ptr_type(AddressSpace::default()).into(), int32.into(),
ptr_type.ptr_type(AddressSpace::default()).into(), tag_ptr_type.ptr_type(AddressSpace::default()).into(),
], ptr_type.ptr_type(AddressSpace::default()).into(),
false, ],
), false,
None, ),
) None,
}); )
ctx.builder });
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send") ctx.builder
.unwrap(); .build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
// reclaim stack space used by arguments // reclaim stack space used by arguments
call_stackrestore(ctx, stackptr); call_stackrestore(ctx, stackptr);
let result = format_rpc_ret(generator, ctx, fun.0.ret); if is_async {
// async RPCs do not return any values
Ok(None)
} else {
let result = format_rpc_ret(generator, ctx, fun.0.ret);
if !result.is_some_and(|res| res.get_type().is_pointer_type()) { if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here. // An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr); call_stackrestore(ctx, stackptr);
}
Ok(result)
} }
Ok(result)
} }
pub fn attributes_writeback( pub fn attributes_writeback<'ctx>(
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
inner_resolver: &InnerResolver, inner_resolver: &InnerResolver,
host_attributes: &PyObject, host_attributes: &PyObject,
return_obj: Option<(Type, ValueEnum<'ctx>)>,
) -> Result<(), String> { ) -> Result<(), String> {
Python::with_gil(|py| -> PyResult<Result<(), String>> { Python::with_gil(|py| -> PyResult<Result<(), String>> {
let host_attributes: &PyList = host_attributes.downcast(py)?; let host_attributes: &PyList = host_attributes.downcast(py)?;
@ -977,6 +1006,11 @@ pub fn attributes_writeback(
let zero = int32.const_zero(); let zero = int32.const_zero();
let mut values = Vec::new(); let mut values = Vec::new();
let mut scratch_buffer = Vec::new(); let mut scratch_buffer = Vec::new();
if let Some((ty, obj)) = return_obj {
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
}
for val in (*globals).values() { for val in (*globals).values() {
let val = val.as_ref(py); let val = val.as_ref(py);
let ty = inner_resolver.get_obj_type( let ty = inner_resolver.get_obj_type(
@ -1055,7 +1089,7 @@ pub fn attributes_writeback(
let args: Vec<_> = let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect(); values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) = if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator) rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
{ {
return Ok(Err(e)); return Ok(Err(e));
} }
@ -1065,9 +1099,9 @@ pub fn attributes_writeback(
Ok(()) Ok(())
} }
pub fn rpc_codegen_callback() -> Arc<GenCall> { pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator) rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
}))) })))
} }
@ -1281,7 +1315,8 @@ fn polymorphic_print<'ctx>(
fmt.push('['); fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None); let val =
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None); let len = val.load_size(ctx, None);
let last = let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap(); ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1333,12 +1368,18 @@ fn polymorphic_print<'ctx>(
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
fmt.push_str("array(["); fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None); let val = NDArrayValue::from_pointer_value(
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None)); value.into_pointer_value(),
llvm_elem_ty,
llvm_usize,
None,
);
let len = call_ndarray_calc_size(generator, ctx, &val.shape(), (None, None));
let last = let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap(); ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1391,7 +1432,7 @@ fn polymorphic_print<'ctx>(
fmt.push_str("range("); fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None); let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
let (start, stop, step) = destructure_range(ctx, val); let (start, stop, step) = destructure_range(ctx, val);

View File

@ -1,10 +1,4 @@
#![deny( #![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
unsafe_op_in_unsafe_fn, unsafe_op_in_unsafe_fn,
@ -16,64 +10,65 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
use std::collections::{HashMap, HashSet}; use std::{
use std::fs; collections::{HashMap, HashSet},
use std::io::Write; fs,
use std::process::Command; io::Write,
use std::rc::Rc; process::Command,
use std::sync::Arc; rc::Rc,
sync::Arc,
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock}; use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
};
use tempfile::{self, TempDir};
use nac3core::{ use nac3core::{
codegen::irrt::load_irrt, codegen::{
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry}, concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
symbol_resolver::SymbolResolver, symbol_resolver::SymbolResolver,
toplevel::{ toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer}, composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef, DefinitionId, GenCall, TopLevelDef,
}, },
typecheck::typedef::{FunSignature, FuncArg}, typecheck::{
typecheck::{type_inferencer::PrimitiveStore, typedef::Type}, type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
}; };
use nac3ld::Linker; use nac3ld::Linker;
use crate::{ use codegen::{
codegen::{ attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
}; };
use tempfile::{self, TempDir}; use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
mod codegen; mod codegen;
mod symbol_resolver; mod symbol_resolver;
mod timeline; mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)] #[derive(PartialEq, Clone, Copy)]
enum Isa { enum Isa {
Host, Host,
@ -147,14 +142,32 @@ impl Nac3 {
module: &PyObject, module: &PyObject,
registered_class_ids: &HashSet<u64>, registered_class_ids: &HashSet<u64>,
) -> PyResult<()> { ) -> PyResult<()> {
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> { let (module_name, source_file, source) =
let module: &PyAny = module.extract(py)?; Python::with_gil(|py| -> PyResult<(String, String, String)> {
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?)) let module: &PyAny = module.extract(py)?;
})?; let source_file = module.getattr("__file__");
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
})?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into()) let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?; .map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -194,10 +207,8 @@ impl Nac3 {
body.retain(|stmt| { body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node { if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node { if let Some(id) = decorator_id_string(decorator) {
id.to_string() == "kernel" id == "kernel" || id == "portable" || id == "rpc"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else { } else {
false false
} }
@ -210,9 +221,8 @@ impl Nac3 {
} }
StmtKind::FunctionDef { ref decorator_list, .. } => { StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node { if let Some(id) = decorator_id_string(decorator) {
let id = id.to_string(); id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else { } else {
false false
} }
@ -478,9 +488,25 @@ impl Nac3 {
match &stmt.node { match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => { StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) { if decorator_list
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap(); .iter()
rpc_ids.push((None, def_id)); .any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
} }
} }
StmtKind::ClassDef { name, body, .. } => { StmtKind::ClassDef { name, body, .. } => {
@ -488,19 +514,26 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap(); let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body { for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node { if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) { if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if name == &"__init__".into() { if name == &"__init__".into() {
return Err(CompileError::new_err(format!( return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})", "compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location class_name, stmt.location
))); )));
} }
rpc_ids.push((Some((class_obj.clone(), *name)), def_id)); rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
} }
} }
} }
} }
_ => () _ => (),
} }
let id = *name_to_pyid.get(&name).unwrap(); let id = *name_to_pyid.get(&name).unwrap();
@ -556,7 +589,7 @@ impl Nac3 {
.unwrap(); .unwrap();
// Process IRRT // Process IRRT
let context = inkwell::context::Context::create(); let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref()); let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature = let fun_signature =
@ -596,13 +629,12 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
{ {
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read(); let defs = top_level.definitions.read();
for (class_data, id) in &rpc_ids { for (class_data, id, is_async) in &rpc_ids {
let mut def = defs[id.0].write(); let mut def = defs[id.0].write();
match &mut *def { match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => { TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen.clone()); *codegen_callback = Some(rpc_codegen_callback(*is_async));
} }
TopLevelDef::Class { methods, .. } => { TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap(); let (class_def, method_name) = class_data.as_ref().unwrap();
@ -613,7 +645,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } = if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write() &mut *defs[id.0].write()
{ {
*codegen_callback = Some(rpc_codegen.clone()); *codegen_callback = Some(rpc_codegen_callback(*is_async));
store_fun store_fun
.call1( .call1(
py, py,
@ -628,6 +660,11 @@ impl Nac3 {
} }
} }
} }
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
} }
} }
} }
@ -648,33 +685,12 @@ impl Nac3 {
let task = CodeGenTask { let task = CodeGenTask {
subst: Vec::default(), subst: Vec::default(),
symbol_name: "__modinit__".to_string(), symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()), body: Arc::new(Vec::default()),
signature, signature,
resolver, resolver,
store, store,
unifier_index: instance.unifier_id, unifier_index: instance.unifier_id,
calls: Arc::new(HashMap::default()), calls: instance.calls,
id: 0, id: 0,
}; };
@ -687,7 +703,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into(); let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}))); })));
let size_t = Context::create() let size_t = context
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None) .ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width(); .get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 }; let num_threads = if is_multithreaded() { 4 } else { 1 };
@ -698,19 +714,27 @@ impl Nac3 {
.collect(); .collect();
let membuffer = membuffers.clone(); let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| { py.allow_threads(|| {
let (registry, handles) = let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f); WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator = let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns); let context = Context::create();
let context = inkwell::context::Context::create(); let module = context.create_module("main");
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap(); let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout()); module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple()); module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder(); let builder = context.create_builder();
let (_, module, _) = gen_func_impl( let (_, module, _) = gen_func_impl(
&context, &context,
@ -718,9 +742,27 @@ impl Nac3 {
&registry, &registry,
builder, builder,
module, module,
attributes_writeback_task, task,
|generator, ctx| { |generator, ctx| {
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes) assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
}, },
) )
.unwrap(); .unwrap();
@ -729,35 +771,23 @@ impl Nac3 {
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}); });
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`. // Link all modules into `main`.
let buffers = membuffers.lock(); let buffers = membuffers.lock();
let main = context let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(
buffers.last().unwrap(),
"main",
))
.unwrap(); .unwrap();
for buffer in buffers.iter().skip(1) { for buffer in buffers.iter().rev().skip(1) {
let other = context let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap(); .unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?; main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
} }
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?; main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function(); let mut function_iter = main.get_first_function();
@ -844,6 +874,41 @@ impl Nac3 {
} }
} }
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> { fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![ let linker_args = vec![
"-shared".to_string(), "-shared".to_string(),
@ -1025,7 +1090,12 @@ impl Nac3 {
}) })
} }
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> { fn analyze(
&mut self,
functions: &PySet,
classes: &PySet,
content_modules: &PySet,
) -> PyResult<()> {
let (modules, class_ids) = let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> { Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: HashMap<u64, PyObject> = HashMap::new(); let mut modules: HashMap<u64, PyObject> = HashMap::new();
@ -1035,14 +1105,22 @@ impl Nac3 {
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?; let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions { for function in functions {
let module = getmodule_fn.call1((function,))?.extract()?; let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module); if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
} }
for class in classes { for class in classes {
let module = getmodule_fn.call1((class,))?.extract()?; let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module); if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?); class_ids.insert(id_fn.call1((class,))?.extract()?);
} }
for module in content_modules {
let module: PyObject = module.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
Ok((modules, class_ids)) Ok((modules, class_ids))
})?; })?;

View File

@ -1,16 +1,30 @@
use crate::PrimitivePythonId; use std::{
use inkwell::{ collections::{HashMap, HashSet},
module::Linkage, sync::{
types::{BasicType, BasicTypeEnum}, atomic::{AtomicBool, Ordering::Relaxed},
values::BasicValueEnum, Arc,
AddressSpace, },
}; };
use itertools::Itertools; use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use nac3core::{ use nac3core::{
codegen::{ codegen::{
classes::{NDArrayType, ProxyType}, types::{NDArrayType, ProxyType},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum}, symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{ toplevel::{
helper::PrimDef, helper::PrimDef,
@ -22,19 +36,8 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap}, typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
}, },
}; };
use nac3parser::ast::{self, StrRef};
use parking_lot::RwLock; use super::PrimitivePythonId;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
pub enum PrimitiveValue { pub enum PrimitiveValue {
I32(i32), I32(i32),
@ -1093,7 +1096,7 @@ impl InnerResolver {
if self.global_value_ids.read().contains_key(&id) { if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global( ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(), ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
) )
@ -1187,20 +1190,24 @@ impl InnerResolver {
data_global.set_initializer(&data); data_global.set_initializer(&data);
// create a global for the ndarray object and initialize it // create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[ let value = ndarray_llvm_ty
llvm_usize.const_int(ndarray_ndims, false).into(), .as_base_type()
shape_global .get_element_type()
.as_pointer_value() .into_struct_type()
.const_cast(llvm_usize.ptr_type(AddressSpace::default())) .const_named_struct(&[
.into(), llvm_usize.const_int(ndarray_ndims, false).into(),
data_global shape_global
.as_pointer_value() .as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default())) .const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(), .into(),
]); data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
let ndarray = ctx.module.add_global( let ndarray = ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(), ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
); );
@ -1467,6 +1474,7 @@ impl SymbolResolver for Resolver {
&self, &self,
id: StrRef, id: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
let sym_value = { let sym_value = {
let id_to_val = self.0.id_to_pyval.read(); let id_to_val = self.0.id_to_pyval.read();

View File

@ -1,9 +1,12 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either; use itertools::Either;
use nac3core::codegen::CodeGenContext;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline. /// Functions for manipulating the timeline.
pub trait TimeFns { pub trait TimeFns {
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap(); let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();

View File

@ -10,7 +10,6 @@ constant-optimization = ["fold"]
fold = [] fold = []
[dependencies] [dependencies]
lazy_static = "1.5"
parking_lot = "0.12" parking_lot = "0.12"
string-interner = "0.17" string-interner = "0.17"
fxhash = "0.2" fxhash = "0.2"

View File

@ -5,14 +5,12 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher; use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard}; use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt}; use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner}; use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>; pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
lazy_static! { static INTERNER: LazyLock<Mutex<Interner>> =
static ref INTERNER: Mutex<Interner> = LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! { thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default(); static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,10 +1,4 @@
#![deny( #![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
clippy::missing_errors_doc, clippy::missing_errors_doc,
@ -14,9 +8,6 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
#[macro_use]
extern crate lazy_static;
mod ast_gen; mod ast_gen;
mod constant; mod constant;
#[cfg(feature = "fold")] #[cfg(feature = "fold")]

View File

@ -5,22 +5,25 @@ authors = ["M-Labs"]
edition = "2021" edition = "2021"
[features] [features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = [] no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.13" itertools = "0.13"
crossbeam = "0.8" crossbeam = "0.8"
indexmap = "2.2" indexmap = "2.6"
parking_lot = "0.12" parking_lot = "0.12"
rayon = "1.8" rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
nac3parser = { path = "../nac3parser" } nac3parser = { path = "../nac3parser" }
strum = "0.26" strum = "0.26"
strum_macros = "0.26" strum_macros = "0.26"
[dependencies.inkwell] [dependencies.inkwell]
version = "0.4" version = "0.5"
default-features = false default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"] features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies] [dev-dependencies]
test-case = "1.2.0" test-case = "1.2.0"

View File

@ -1,4 +1,3 @@
use regex::Regex;
use std::{ use std::{
env, env,
fs::File, fs::File,
@ -7,6 +6,8 @@ use std::{
process::{Command, Stdio}, process::{Command, Stdio},
}; };
use regex::Regex;
fn main() { fn main() {
let out_dir = env::var("OUT_DIR").unwrap(); let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir); let out_dir = Path::new(&out_dir);
@ -55,9 +56,8 @@ fn main() {
let output = Command::new("clang-irrt") let output = Command::new("clang-irrt")
.args(flags) .args(flags)
.output() .output()
.map(|o| { .inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap()); assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
}) })
.unwrap(); .unwrap();

View File

@ -1,11 +1,5 @@
#include "irrt/exception.hpp" #include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp" #include "irrt/list.hpp"
#include "irrt/math.hpp" #include "irrt/math.hpp"
#include "irrt/ndarray.hpp" #include "irrt/ndarray.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp" #include "irrt/slice.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"

View File

@ -4,6 +4,6 @@
template<typename SizeT> template<typename SizeT>
struct CSlice { struct CSlice {
uint8_t* base; void* base;
SizeT len; SizeT len;
}; };

View File

@ -6,7 +6,7 @@
/** /**
* @brief The int type of ARTIQ exception IDs. * @brief The int type of ARTIQ exception IDs.
*/ */
typedef int32_t ExceptionId; using ExceptionId = int32_t;
/* /*
* Set of exceptions C++ IRRT can use. * Set of exceptions C++ IRRT can use.
@ -55,14 +55,14 @@ void _raise_exception_helper(ExceptionId id,
int64_t param2) { int64_t param2) {
Exception<SizeT> e = { Exception<SizeT> e = {
.id = id, .id = id,
.filename = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(filename)), .filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<int32_t>(__builtin_strlen(filename))}, .len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line, .line = line,
.column = 0, .column = 0,
.function = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(function)), .function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.len = static_cast<int32_t>(__builtin_strlen(function))}, .len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(msg)), .msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<int32_t>(__builtin_strlen(msg))}, .len = static_cast<SizeT>(__builtin_strlen(msg))},
}; };
e.params[0] = param0; e.params[0] = param0;
e.params[1] = param1; e.params[1] = param1;
@ -70,6 +70,7 @@ void _raise_exception_helper(ExceptionId id,
__nac3_raise(reinterpret_cast<void*>(&e)); __nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable(); __builtin_unreachable();
} }
} // namespace
/** /**
* @brief Raise an exception with location details (location in the IRRT source files). * @brief Raise an exception with location details (location in the IRRT source files).
@ -82,4 +83,3 @@ void _raise_exception_helper(ExceptionId id,
*/ */
#define raise_exception(SizeT, id, msg, param0, param1, param2) \ #define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2) _raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace

View File

@ -1,13 +1,27 @@
#pragma once #pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8); using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8); using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32); using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32); using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64); using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64); using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// NDArray indices are always `uint32_t`. // NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t; using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`. // The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t; using SliceIndex = int32_t;

View File

@ -13,12 +13,12 @@ extern "C" {
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end, SliceIndex dest_end,
SliceIndex dest_step, SliceIndex dest_step,
uint8_t* dest_arr, void* dest_arr,
SliceIndex dest_arr_len, SliceIndex dest_arr_len,
SliceIndex src_start, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_end,
SliceIndex src_step, SliceIndex src_step,
uint8_t* src_arr, void* src_arr,
SliceIndex src_arr_len, SliceIndex src_arr_len,
const SliceIndex size) { const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */ /* if dest_arr_len == 0, do nothing since we do not support extending list */
@ -29,11 +29,13 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0; const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0; const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) { if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size); __builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
} }
if (dest_len > 0) { if (dest_len > 0) {
/* dropping */ /* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size, __builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size); (dest_arr_len - dest_end - 1) * size);
} }
/* shrink size */ /* shrink size */
@ -44,7 +46,7 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
&& !(max(dest_start, dest_end) < min(src_start, src_end) && !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)); || max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) { if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size)); void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size); __builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp; src_arr = tmp;
} }
@ -53,20 +55,24 @@ SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) { for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */ /* for constant optimization */
if (size == 1) { if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1); __builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) { } else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4); __builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) { } else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8); __builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else { } else {
/* memcpy for var size, cannot overlap after previous alloca */ /* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size); __builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
} }
} }
/* only dest_step == 1 can we shrink the dest list. */ /* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */ /* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) { if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size, __builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size); (dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1; return dest_arr_len - (dest_end - dest_ind) - 1;
} }

View File

@ -90,4 +90,4 @@ double __nac3_j0(double x) {
return j0(x); return j0(x);
} }
} } // namespace

View File

@ -2,8 +2,6 @@
#include "irrt/int_types.hpp" #include "irrt/int_types.hpp"
// TODO: To be deleted since NDArray with strides is done.
namespace { namespace {
template<typename SizeT> template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) { SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
@ -19,7 +17,7 @@ SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, Size
} }
template<typename SizeT> template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndexInt* idxs) { void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1; SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) { for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1; SizeT i = num_dims - dim - 1;
@ -30,10 +28,7 @@ void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT n
} }
template<typename SizeT> template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT num_dims,
const NDIndexInt* indices,
SizeT num_indices) {
SizeT idx = 0; SizeT idx = 0;
SizeT stride = 1; SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) { for (SizeT i = 0; i < num_dims; ++i) {
@ -80,8 +75,8 @@ void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
template<typename SizeT> template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims, void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims, SizeT src_ndims,
const NDIndexInt* in_idx, const NDIndex* in_idx,
NDIndexInt* out_idx) { NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) { for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1; SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i]; out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
@ -99,23 +94,21 @@ __nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx); return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
} }
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndexInt* idxs) { void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs); __nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
} }
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndexInt* idxs) { void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs); __nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
} }
uint32_t uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndexInt* indices, uint32_t num_indices) { __nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices); return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
} }
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t
uint64_t num_dims, __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
const NDIndexInt* indices,
uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices); return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
} }
@ -137,15 +130,15 @@ void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims, void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims, uint32_t src_ndims,
const NDIndexInt* in_idx, const NDIndex* in_idx,
NDIndexInt* out_idx) { NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx); __nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
} }
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims, void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims, uint64_t src_ndims,
const NDIndexInt* in_idx, const NDIndex* in_idx,
NDIndexInt* out_idx) { NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx); __nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
} }
} } // namespace

View File

@ -1,341 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray {
namespace basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0) {
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
} else {
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
uint8_t* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -1,45 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
uint8_t* data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
};
} // namespace

View File

@ -1,220 +0,0 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see the comment of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray {
namespace indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access and more.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`.
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace indexing
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -1,146 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
uint8_t* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element -= strides[axis] * (shape[axis] - 1);
} else {
element += strides[axis];
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -1,47 +0,0 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,145 +1,6 @@
#pragma once #pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp" #include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else {
lower = 0;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C" { extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) { SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
@ -153,4 +14,15 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
} }
return i; return i;
} }
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
} }
} // namespace

View File

@ -0,0 +1,21 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -0,0 +1,320 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -0,0 +1,9 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -0,0 +1,20 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,10 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

View File

@ -1,26 +1,32 @@
use inkwell::types::BasicTypeEnum; use inkwell::{
use inkwell::values::{BasicValue, BasicValueEnum, IntValue, PointerValue}; types::BasicTypeEnum,
use inkwell::{FloatPredicate, IntPredicate, OptimizationLevel}; values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
FloatPredicate, IntPredicate, OptimizationLevel,
};
use itertools::Itertools; use itertools::Itertools;
use crate::codegen::classes::{ use super::{
NDArrayValue, ProxyValue, RangeValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator, expr::destructure_range,
extern_fns, irrt,
irrt::calculate_len_for_slice_range,
llvm_intrinsics,
macros::codegen_unreachable,
numpy,
numpy::ndarray_elementwise_unaryop_impl,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeValue, NDArrayValue, ProxyValue, RangeValue, TypedArrayLikeAccessor,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
use crate::{
toplevel::{
helper::{arraylike_flatten_element_type, PrimDef},
numpy::unpack_ndarray_var_tys,
},
typecheck::typedef::{Type, TypeEnum},
}; };
use crate::codegen::expr::destructure_range;
use crate::codegen::irrt::calculate_len_for_slice_range;
use crate::codegen::macros::codegen_unreachable;
use crate::codegen::numpy::ndarray_elementwise_unaryop_impl;
use crate::codegen::stmt::gen_for_callback_incrementing;
use crate::codegen::{extern_fns, irrt, llvm_intrinsics, numpy, CodeGenContext, CodeGenerator};
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{Type, TypeEnum};
use super::model::*;
use super::object::any::AnyObject;
use super::object::list::ListObject;
use super::object::ndarray::NDArrayObject;
use super::object::tuple::TupleObject;
/// Shorthand for [`unreachable!()`] when a type of argument is not supported. /// Shorthand for [`unreachable!()`] when a type of argument is not supported.
/// ///
@ -39,33 +45,59 @@ pub fn call_len<'ctx, G: CodeGenerator + ?Sized>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
n: (Type, BasicValueEnum<'ctx>), n: (Type, BasicValueEnum<'ctx>),
) -> Result<IntValue<'ctx>, String> { ) -> Result<IntValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let range_ty = ctx.primitives.range;
let (arg_ty, arg) = n; let (arg_ty, arg) = n;
Ok(if ctx.unifier.unioned(arg_ty, ctx.primitives.range) {
let arg = RangeValue::from_ptr_val(arg.into_pointer_value(), Some("range")); Ok(if ctx.unifier.unioned(arg_ty, range_ty) {
let arg = RangeValue::from_pointer_value(arg.into_pointer_value(), Some("range"));
let (start, end, step) = destructure_range(ctx, arg); let (start, end, step) = destructure_range(ctx, arg);
calculate_len_for_slice_range(generator, ctx, start, end, step) calculate_len_for_slice_range(generator, ctx, start, end, step)
} else { } else {
let arg = AnyObject { ty: arg_ty, value: arg }; match &*ctx.unifier.get_ty_immutable(arg_ty) {
let len: Instance<'ctx, Int<Int32>> = match &*ctx.unifier.get_ty(arg_ty) { TypeEnum::TTuple { ty, .. } => llvm_i32.const_int(ty.len() as u64, false),
TypeEnum::TTuple { .. } => { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
let tuple = TupleObject::from_object(ctx, arg); let zero = llvm_i32.const_zero();
tuple.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32) let len = ctx
.build_gep_and_load(
arg.into_pointer_value(),
&[zero, llvm_i32.const_int(1, false)],
None,
)
.into_int_value();
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
} }
TypeEnum::TObj { obj_id, .. } TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() => let elem_ty = arraylike_flatten_element_type(&mut ctx.unifier, arg_ty);
{ let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
ndarray.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32) let arg = NDArrayValue::from_pointer_value(
arg.into_pointer_value(),
ctx.get_llvm_type(generator, elem_ty),
llvm_usize,
None,
);
let ndims = arg.shape().size(ctx, generator);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(IntPredicate::NE, ndims, llvm_usize.const_zero(), "")
.unwrap(),
"0:TypeError",
"len() of unsized object",
[None, None, None],
ctx.current_loc,
);
let len = unsafe {
arg.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder.build_int_truncate_or_bit_cast(len, llvm_i32, "len").unwrap()
} }
TypeEnum::TObj { obj_id, .. } _ => codegen_unreachable!(ctx),
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() => }
{
let list = ListObject::from_object(generator, ctx, arg);
list.len(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32)
}
_ => unsupported_type(ctx, "len", &[arg_ty]),
};
len.value
}) })
} }
@ -114,13 +146,14 @@ pub fn call_int32<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.int32, ctx.primitives.int32,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_int32(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_int32(generator, ctx, (elem_ty, val)),
)?; )?;
@ -176,13 +209,14 @@ pub fn call_int64<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.int64, ctx.primitives.int64,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_int64(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_int64(generator, ctx, (elem_ty, val)),
)?; )?;
@ -254,13 +288,14 @@ pub fn call_uint32<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.uint32, ctx.primitives.uint32,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_uint32(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_uint32(generator, ctx, (elem_ty, val)),
)?; )?;
@ -321,13 +356,14 @@ pub fn call_uint64<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.uint64, ctx.primitives.uint64,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_uint64(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_uint64(generator, ctx, (elem_ty, val)),
)?; )?;
@ -387,13 +423,14 @@ pub fn call_float<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.float, ctx.primitives.float,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_float(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_float(generator, ctx, (elem_ty, val)),
)?; )?;
@ -433,13 +470,14 @@ pub fn call_round<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ret_elem_ty, ret_elem_ty,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_round(generator, ctx, (elem_ty, val), ret_elem_ty), |generator, ctx, val| call_round(generator, ctx, (elem_ty, val), ret_elem_ty),
)?; )?;
@ -473,13 +511,14 @@ pub fn call_numpy_round<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.float, ctx.primitives.float,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_numpy_round(generator, ctx, (elem_ty, val)), |generator, ctx, val| call_numpy_round(generator, ctx, (elem_ty, val)),
)?; )?;
@ -538,13 +577,14 @@ pub fn call_bool<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.bool, ctx.primitives.bool,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| { |generator, ctx, val| {
let elem = call_bool(generator, ctx, (elem_ty, val))?; let elem = call_bool(generator, ctx, (elem_ty, val))?;
@ -592,13 +632,14 @@ pub fn call_floor<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ret_elem_ty, ret_elem_ty,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_floor(generator, ctx, (elem_ty, val), ret_elem_ty), |generator, ctx, val| call_floor(generator, ctx, (elem_ty, val), ret_elem_ty),
)?; )?;
@ -642,13 +683,14 @@ pub fn call_ceil<'ctx, G: CodeGenerator + ?Sized>(
if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if n_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, n_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
generator, generator,
ctx, ctx,
ret_elem_ty, ret_elem_ty,
None, None,
NDArrayValue::from_ptr_val(n, llvm_usize, None), NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None),
|generator, ctx, val| call_ceil(generator, ctx, (elem_ty, val), ret_elem_ty), |generator, ctx, val| call_ceil(generator, ctx, (elem_ty, val), ret_elem_ty),
)?; )?;
@ -777,8 +819,8 @@ pub fn call_numpy_minimum<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_minimum(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_minimum(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -877,10 +919,10 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
{ {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty); let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None); let n = NDArrayValue::from_pointer_value(n, llvm_elem_ty, llvm_usize, None);
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None)); let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.shape(), (None, None));
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let n_sz_eqz = ctx let n_sz_eqz = ctx
.builder .builder
@ -897,7 +939,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
); );
} }
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?; let accumulator_addr = generator.gen_var_alloc(ctx, llvm_elem_ty, None)?;
let res_idx = generator.gen_var_alloc(ctx, llvm_int64.into(), None)?; let res_idx = generator.gen_var_alloc(ctx, llvm_int64.into(), None)?;
unsafe { unsafe {
@ -1039,8 +1081,8 @@ pub fn call_numpy_maximum<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_maximum(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_maximum(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1085,6 +1127,7 @@ where
{ {
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (arg_elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty); let (arg_elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_arg_elem_ty = ctx.get_llvm_type(generator, arg_elem_ty);
let ret_elem_ty = get_ret_elem_type(ctx, arg_elem_ty); let ret_elem_ty = get_ret_elem_type(ctx, arg_elem_ty);
let ndarray = ndarray_elementwise_unaryop_impl( let ndarray = ndarray_elementwise_unaryop_impl(
@ -1092,7 +1135,7 @@ where
ctx, ctx,
ret_elem_ty, ret_elem_ty,
None, None,
NDArrayValue::from_ptr_val(x, llvm_usize, None), NDArrayValue::from_pointer_value(x, llvm_arg_elem_ty, llvm_usize, None),
|generator, ctx, elem_val| { |generator, ctx, elem_val| {
helper_call_numpy_unary_elementwise( helper_call_numpy_unary_elementwise(
generator, generator,
@ -1479,8 +1522,8 @@ pub fn call_numpy_arctan2<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_arctan2(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_arctan2(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1546,8 +1589,8 @@ pub fn call_numpy_copysign<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_copysign(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_copysign(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1613,8 +1656,8 @@ pub fn call_numpy_fmax<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_fmax(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_fmax(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1680,8 +1723,8 @@ pub fn call_numpy_fmin<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_fmin(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_fmin(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1736,8 +1779,8 @@ pub fn call_numpy_ldexp<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_ldexp(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_ldexp(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1803,8 +1846,8 @@ pub fn call_numpy_hypot<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_hypot(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_hypot(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1870,8 +1913,8 @@ pub fn call_numpy_nextafter<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
dtype, dtype,
None, None,
(x1, !is_ndarray1), (x1_ty, x1, !is_ndarray1),
(x2, !is_ndarray2), (x2_ty, x2, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
call_numpy_nextafter(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs)) call_numpy_nextafter(generator, ctx, (x1_scalar_ty, lhs), (x2_scalar_ty, rhs))
}, },
@ -1931,14 +1974,14 @@ pub fn call_np_linalg_cholesky<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -1973,14 +2016,14 @@ pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>(
unimplemented!("{FN_NAME} operates on float type NdArrays only"); unimplemented!("{FN_NAME} operates on float type NdArrays only");
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2023,15 +2066,15 @@ pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2078,14 +2121,14 @@ pub fn call_np_linalg_inv<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2120,15 +2163,15 @@ pub fn call_np_linalg_pinv<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2163,15 +2206,15 @@ pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let dim1 = unsafe { let dim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2216,7 +2259,7 @@ pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty, x2_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
// Changing second parameter to a `NDArray` for uniformity in function call // Changing second parameter to a `NDArray` for uniformity in function call
let n2_array = numpy::create_ndarray_const_shape( let n2_array = numpy::create_ndarray_const_shape(
generator, generator,
@ -2236,12 +2279,12 @@ pub fn call_np_linalg_matrix_power<'ctx, G: CodeGenerator + ?Sized>(
let n2_array = n2_array.as_base_value().as_basic_value_enum(); let n2_array = n2_array.as_base_value().as_basic_value_enum();
let outdim0 = unsafe { let outdim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
let outdim1 = unsafe { let outdim1 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None) .get_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
.into_int_value() .into_int_value()
}; };
@ -2311,10 +2354,10 @@ pub fn call_sp_linalg_schur<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };
@ -2354,10 +2397,10 @@ pub fn call_sp_linalg_hessenberg<'ctx, G: CodeGenerator + ?Sized>(
unsupported_type(ctx, FN_NAME, &[x1_ty]); unsupported_type(ctx, FN_NAME, &[x1_ty]);
}; };
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1 = NDArrayValue::from_pointer_value(n1, n1_elem_ty, llvm_usize, None);
let dim0 = unsafe { let dim0 = unsafe {
n1.dim_sizes() n1.shape()
.get_unchecked(ctx, generator, &llvm_usize.const_zero(), None) .get_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
.into_int_value() .into_int_value()
}; };

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,9 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{ use crate::{
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::DefinitionId, toplevel::DefinitionId,
@ -9,10 +15,6 @@ use crate::{
}, },
}; };
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore { pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>, store: Vec<ConcreteTypeEnum>,
} }

View File

@ -1,31 +1,10 @@
use crate::{ use std::{
codegen::{ cmp::min,
classes::{ collections::HashMap,
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType, convert::TryInto,
ProxyValue, RangeValue, UntypedArrayLikeAccessor, iter::{once, repeat, repeat_with, zip},
},
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
irrt::*,
llvm_intrinsics::{
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
call_int_umin, call_memcpy_generic,
},
macros::codegen_unreachable,
need_sret, numpy,
stmt::{
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
gen_var,
},
CodeGenContext, CodeGenTask, CodeGenerator,
},
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
typecheck::{
magic_methods::{Binop, BinopVariant, HasOpInfo},
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
}; };
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
types::{AnyType, BasicType, BasicTypeEnum}, types::{AnyType, BasicType, BasicTypeEnum},
@ -33,17 +12,44 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::{chain, izip, Either, Itertools}; use itertools::{chain, izip, Either, Itertools};
use nac3parser::ast::{ use nac3parser::ast::{
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef, self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
Unaryop, Unaryop,
}; };
use std::cmp::min;
use std::iter::{repeat, repeat_with};
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
use super::object::{ use super::{
any::AnyObject, concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject}, gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
irrt::*,
llvm_intrinsics::{
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
call_int_umin, call_memcpy_generic,
},
macros::codegen_unreachable,
need_sret, numpy,
stmt::{
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
gen_var,
},
types::{ListType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue, RangeValue,
TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenTask, CodeGenerator,
};
use crate::{
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, TopLevelDef,
},
typecheck::{
magic_methods::{Binop, BinopVariant, HasOpInfo},
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
}; };
pub fn get_subst_key( pub fn get_subst_key(
@ -552,7 +558,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
&& val_ty.get_element_type().is_struct_type() && val_ty.get_element_type().is_struct_type()
} => } =>
{ {
self.builder.build_bitcast(*val, arg_ty, "call_arg_cast").unwrap() self.builder.build_bit_cast(*val, arg_ty, "call_arg_cast").unwrap()
} }
_ => *val, _ => *val,
}) })
@ -972,6 +978,7 @@ pub fn gen_call<'ctx, G: CodeGenerator>(
TopLevelDef::Class { .. } => { TopLevelDef::Class { .. } => {
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?)) return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
} }
TopLevelDef::Variable { .. } => unreachable!(),
} }
} }
.or_else(|_: String| { .or_else(|_: String| {
@ -1161,7 +1168,8 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
TypeEnum::TObj { obj_id, .. } TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() => if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{ {
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range")); let iter_val =
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
let (start, stop, step) = destructure_range(ctx, iter_val); let (start, stop, step) = destructure_range(ctx, iter_val);
let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap(); let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap();
// add 1 to the length as the value is rounded to zero // add 1 to the length as the value is rounded to zero
@ -1392,8 +1400,10 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty1); let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty1);
let sizeof_elem = llvm_elem_ty.size_of().unwrap(); let sizeof_elem = llvm_elem_ty.size_of().unwrap();
let lhs = ListValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None); let lhs =
let rhs = ListValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None); ListValue::from_pointer_value(left_val.into_pointer_value(), llvm_usize, None);
let rhs =
ListValue::from_pointer_value(right_val.into_pointer_value(), llvm_usize, None);
let size = ctx let size = ctx
.builder .builder
@ -1476,7 +1486,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
codegen_unreachable!(ctx) codegen_unreachable!(ctx)
}; };
let list_val = let list_val =
ListValue::from_ptr_val(list_val.into_pointer_value(), llvm_usize, None); ListValue::from_pointer_value(list_val.into_pointer_value(), llvm_usize, None);
let int_val = ctx let int_val = ctx
.builder .builder
.build_int_s_extend(int_val.into_int_value(), llvm_usize, "") .build_int_s_extend(int_val.into_int_value(), llvm_usize, "")
@ -1554,10 +1564,21 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2)); assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let left_val = let llvm_ndarray_dtype1 = ctx.get_llvm_type(generator, ndarray_dtype1);
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None); let llvm_ndarray_dtype2 = ctx.get_llvm_type(generator, ndarray_dtype2);
let right_val =
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None); let left_val = NDArrayValue::from_pointer_value(
left_val.into_pointer_value(),
llvm_ndarray_dtype1,
llvm_usize,
None,
);
let right_val = NDArrayValue::from_pointer_value(
right_val.into_pointer_value(),
llvm_ndarray_dtype2,
llvm_usize,
None,
);
let res = if op.base == Operator::MatMult { let res = if op.base == Operator::MatMult {
// MatMult is the only binop which is not an elementwise op // MatMult is the only binop which is not an elementwise op
@ -1581,8 +1602,8 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
BinopVariant::Normal => None, BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(left_val), BinopVariant::AugAssign => Some(left_val),
}, },
(left_val.as_base_value().into(), false), (ty1, left_val.as_base_value().into(), false),
(right_val.as_base_value().into(), false), (ty2, right_val.as_base_value().into(), false),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values( gen_binop_expr_with_values(
generator, generator,
@ -1606,8 +1627,10 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else { } else {
let (ndarray_dtype, _) = let (ndarray_dtype, _) =
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 }); unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
let ndarray_val = NDArrayValue::from_ptr_val( let llvm_ndarray_dtype = ctx.get_llvm_type(generator, ndarray_dtype);
let ndarray_val = NDArrayValue::from_pointer_value(
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(), if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
llvm_ndarray_dtype,
llvm_usize, llvm_usize,
None, None,
); );
@ -1619,8 +1642,8 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
BinopVariant::Normal => None, BinopVariant::Normal => None,
BinopVariant::AugAssign => Some(ndarray_val), BinopVariant::AugAssign => Some(ndarray_val),
}, },
(left_val, !is_ndarray1), (ty1, left_val, !is_ndarray1),
(right_val, !is_ndarray2), (ty2, right_val, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
gen_binop_expr_with_values( gen_binop_expr_with_values(
generator, generator,
@ -1771,7 +1794,12 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").map(Into::into).unwrap(), ast::Unaryop::Invert => ctx.builder.build_not(val, "not").map(Into::into).unwrap(),
ast::Unaryop::Not => ctx ast::Unaryop::Not => ctx
.builder .builder
.build_xor(val, val.get_type().const_all_ones(), "not") .build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.map(Into::into) .map(Into::into)
.unwrap(), .unwrap(),
ast::Unaryop::UAdd => val.into(), ast::Unaryop::UAdd => val.into(),
@ -1795,8 +1823,14 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) { } else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty); let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_ndarray_dtype = ctx.get_llvm_type(generator, ndarray_dtype);
let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None); let val = NDArrayValue::from_pointer_value(
val.into_pointer_value(),
llvm_ndarray_dtype,
llvm_usize,
None,
);
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before // ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
// passing it to the elementwise codegen function // passing it to the elementwise codegen function
@ -1887,15 +1921,21 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2)); assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
let left_val = let llvm_ndarray_dtype1 = ctx.get_llvm_type(generator, ndarray_dtype1);
NDArrayValue::from_ptr_val(lhs.into_pointer_value(), llvm_usize, None);
let left_val = NDArrayValue::from_pointer_value(
lhs.into_pointer_value(),
llvm_ndarray_dtype1,
llvm_usize,
None,
);
let res = numpy::ndarray_elementwise_binop_impl( let res = numpy::ndarray_elementwise_binop_impl(
generator, generator,
ctx, ctx,
ctx.primitives.bool, ctx.primitives.bool,
None, None,
(left_val.as_base_value().into(), false), (left_ty, left_val.as_base_value().into(), false),
(rhs, false), (right_ty, rhs, false),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values( let val = gen_cmpop_expr_with_values(
generator, generator,
@ -1926,8 +1966,8 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
ctx, ctx,
ctx.primitives.bool, ctx.primitives.bool,
None, None,
(lhs, !is_ndarray1), (left_ty, lhs, !is_ndarray1),
(rhs, !is_ndarray2), (right_ty, rhs, !is_ndarray2),
|generator, ctx, (lhs, rhs)| { |generator, ctx, (lhs, rhs)| {
let val = gen_cmpop_expr_with_values( let val = gen_cmpop_expr_with_values(
generator, generator,
@ -2190,9 +2230,9 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
} }
let left_val = let left_val =
ListValue::from_ptr_val(lhs.into_pointer_value(), llvm_usize, None); ListValue::from_pointer_value(lhs.into_pointer_value(), llvm_usize, None);
let right_val = let right_val =
ListValue::from_ptr_val(rhs.into_pointer_value(), llvm_usize, None); ListValue::from_pointer_value(rhs.into_pointer_value(), llvm_usize, None);
Ok(gen_if_else_expr_callback( Ok(gen_if_else_expr_callback(
generator, generator,
@ -2499,6 +2539,343 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
) )
} }
/// Generates code for a subscript expression on an `ndarray`.
///
/// * `ty` - The `Type` of the `NDArray` elements.
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
/// * `v` - The `NDArray` value.
/// * `slice` - The slice expression used to subscript into the `ndarray`.
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
ndims: Type,
v: NDArrayValue<'ctx>,
slice: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
codegen_unreachable!(ctx)
};
let ndims = values
.iter()
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
.collect::<Result<Vec<_>, _>>()
.map_err(|val| {
format!(
"Expected non-negative literal for ndarray.ndims, got {}",
i128::try_from(val).unwrap()
)
})?;
assert!(!ndims.is_empty());
// The number of dimensions subscripted by the index expression.
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
// dimension will remove a dimension.
let subscripted_dims = match &slice.node {
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
if let ExprKind::Slice { .. } = &value_subexpr.node {
acc
} else {
acc + 1
}
}),
ExprKind::Slice { .. } => 0,
_ => 1,
};
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
None,
);
let ndarray_ty =
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
// Check that len is non-zero
let len = v.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
"0:IndexError",
"too many indices for array: array is {0}-dimensional but 1 were indexed",
[Some(len), None, None],
slice.location,
);
// Normalizes a possibly-negative index to its corresponding positive index
let normalize_index = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
dim: u64| {
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
.unwrap())
},
|_, _| Ok(Some(index)),
|generator, ctx| {
let llvm_i32 = ctx.ctx.i32_type();
let len = unsafe {
v.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, true),
None,
)
};
let index = ctx
.builder
.build_int_add(
len,
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
"",
)
.unwrap();
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
},
)
.map(|v| v.map(BasicValueEnum::into_int_value))
};
// Converts a slice expression into a slice-range tuple
let expr_to_slice = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
node: &ExprKind<Option<Type>>,
dim: u64| {
match node {
ExprKind::Constant { value: Constant::Int(v), .. } => {
let Some(index) =
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
ExprKind::Slice { lower, upper, step } => {
let dim_sz = unsafe {
v.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(dim, false),
None,
)
};
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
}
_ => {
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
let index = index
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
return Ok(None);
};
Ok(Some((index, index, llvm_i32.const_int(1, true))))
}
}
};
let make_indices_arr = |generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>|
-> Result<_, String> {
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
let index_addr = generator.gen_array_var_alloc(
ctx,
llvm_int_ty,
llvm_usize.const_int(elts.len() as u64, false),
None,
)?;
for (i, elt) in elts.iter().enumerate() {
let Some(index) = generator.gen_expr(ctx, elt)? else {
return Ok(None);
};
let index = index
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
return Ok(None);
};
let store_ptr = unsafe {
index_addr.ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
None,
)
};
ctx.builder.build_store(store_ptr, index).unwrap();
}
Some(index_addr)
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
let index_addr = generator.gen_array_var_alloc(
ctx,
llvm_int_ty,
llvm_usize.const_int(1u64, false),
None,
)?;
let index =
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
let store_ptr = unsafe {
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder.build_store(store_ptr, index).unwrap();
Some(index_addr)
} else {
None
})
};
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
v.data().get(ctx, generator, &index_addr, None).into()
} else {
match &slice.node {
ExprKind::Tuple { elts, .. } => {
let slices = elts
.iter()
.enumerate()
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
.collect::<Result<Vec<_>, _>>()?;
if slices.len() < elts.len() {
return Ok(None);
}
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
}
ExprKind::Slice { .. } => {
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
return Ok(None);
};
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
}
_ => {
// Accessing an element from a multi-dimensional `ndarray`
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
// elements over
let subscripted_ndarray =
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
let ndarray = NDArrayValue::from_pointer_value(
subscripted_ndarray,
llvm_ndarray_data_t,
llvm_usize,
None,
);
let num_dims = v.load_ndims(ctx);
ndarray.store_ndims(
ctx,
generator,
ctx.builder
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
.unwrap(),
);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
let ndarray_num_dims = ctx
.builder
.build_int_z_extend_or_bit_cast(
ndarray.load_ndims(ctx),
llvm_usize.size_of().get_type(),
"",
)
.unwrap();
let v_dims_src_ptr = unsafe {
v.shape().ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
call_memcpy_generic(
ctx,
ndarray.shape().base_ptr(ctx, generator),
v_dims_src_ptr,
ctx.builder
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.shape().as_slice_value(ctx, generator),
(None, None),
);
let ndarray_num_elems = ctx
.builder
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
.unwrap();
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
call_memcpy_generic(
ctx,
ndarray.data().base_ptr(ctx, generator),
v_data_src_ptr,
ctx.builder
.build_int_mul(
ndarray_num_elems,
llvm_ndarray_data_t.size_of().unwrap(),
"",
)
.map(Into::into)
.unwrap(),
llvm_i1.const_zero(),
);
ndarray.as_base_value().into()
}
}
}))
}
/// See [`CodeGenerator::gen_expr`]. /// See [`CodeGenerator::gen_expr`].
pub fn gen_expr<'ctx, G: CodeGenerator>( pub fn gen_expr<'ctx, G: CodeGenerator>(
generator: &mut G, generator: &mut G,
@ -2548,7 +2925,31 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()), Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
None => { None => {
let resolver = ctx.resolver.clone(); let resolver = ctx.resolver.clone();
resolver.get_symbol_value(*id, ctx).unwrap() let value = resolver.get_symbol_value(*id, ctx, generator).unwrap();
let globals = ctx
.top_level
.definitions
.read()
.iter()
.filter_map(|def| {
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
Some((*simple_name, *ty))
} else {
None
}
})
.collect_vec();
if let Some((_, ty)) = globals.iter().find(|(name, _)| name == id) {
let ptr = value
.to_basic_value_enum(ctx, generator, *ty)
.map(BasicValueEnum::into_pointer_value)?;
ctx.builder.build_load(ptr, id.to_string().as_str()).map(Into::into).unwrap()
} else {
value
}
} }
}, },
ExprKind::List { elts, .. } => { ExprKind::List { elts, .. } => {
@ -2741,48 +3142,53 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
}; };
let left = generator.bool_to_i1(ctx, left); let left = generator.bool_to_i1(ctx, left);
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = ctx.ctx.append_basic_block(current, "a"); let a_begin_bb = ctx.ctx.append_basic_block(current, "a_begin");
let b_bb = ctx.ctx.append_basic_block(current, "b"); let a_end_bb = ctx.ctx.append_basic_block(current, "a_end");
let b_begin_bb = ctx.ctx.append_basic_block(current, "b_begin");
let b_end_bb = ctx.ctx.append_basic_block(current, "b_end");
let cont_bb = ctx.ctx.append_basic_block(current, "cont"); let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(left, a_bb, b_bb).unwrap(); ctx.builder.build_conditional_branch(left, a_begin_bb, b_begin_bb).unwrap();
ctx.builder.position_at_end(a_end_bb);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(b_end_bb);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
let (a, b) = match op { let (a, b) = match op {
Boolop::Or => { Boolop::Or => {
ctx.builder.position_at_end(a_bb); ctx.builder.position_at_end(a_begin_bb);
let a = ctx.ctx.i8_type().const_int(1, false); let a = ctx.ctx.i8_type().const_int(1, false);
ctx.builder.build_unconditional_branch(cont_bb).unwrap(); ctx.builder.build_unconditional_branch(a_end_bb).unwrap();
ctx.builder.position_at_end(b_bb); ctx.builder.position_at_end(b_begin_bb);
let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? { let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
let b = v let b = v
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())? .to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value(); .into_int_value();
let b = generator.bool_to_i8(ctx, b); let b = generator.bool_to_i8(ctx, b);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
Some(b) Some(b)
} else { } else {
None None
}; };
ctx.builder.build_unconditional_branch(b_end_bb).unwrap();
(Some(a), b) (Some(a), b)
} }
Boolop::And => { Boolop::And => {
ctx.builder.position_at_end(a_bb); ctx.builder.position_at_end(a_begin_bb);
let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? { let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
let a = v let a = v
.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())? .to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?
.into_int_value(); .into_int_value();
let a = generator.bool_to_i8(ctx, a); let a = generator.bool_to_i8(ctx, a);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
Some(a) Some(a)
} else { } else {
None None
}; };
ctx.builder.build_unconditional_branch(a_end_bb).unwrap();
ctx.builder.position_at_end(b_bb); ctx.builder.position_at_end(b_begin_bb);
let b = ctx.ctx.i8_type().const_zero(); let b = ctx.ctx.i8_type().const_zero();
ctx.builder.build_unconditional_branch(cont_bb).unwrap(); ctx.builder.build_unconditional_branch(b_end_bb).unwrap();
(a, Some(b)) (a, Some(b))
} }
@ -2792,7 +3198,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
match (a, b) { match (a, b) {
(Some(a), Some(b)) => { (Some(a), Some(b)) => {
let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "").unwrap(); let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "").unwrap();
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]); phi.add_incoming(&[(&a, a_end_bb), (&b, b_end_bb)]);
phi.as_basic_value().into() phi.as_basic_value().into()
} }
(Some(a), None) => a.into(), (Some(a), None) => a.into(),
@ -3030,7 +3436,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
} else { } else {
return Ok(None); return Ok(None);
}; };
let v = ListValue::from_ptr_val(v, usize, Some("arr")); let v = ListValue::from_pointer_value(v, usize, Some("arr"));
let ty = ctx.get_llvm_type(generator, *ty); let ty = ctx.get_llvm_type(generator, *ty);
if let ExprKind::Slice { lower, upper, step } = &slice.node { if let ExprKind::Slice { lower, upper, step } = &slice.node {
let one = int32.const_int(1, false); let one = int32.const_int(1, false);
@ -3131,26 +3537,19 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
v.data().get(ctx, generator, &index, None).into() v.data().get(ctx, generator, &index, None).into()
} }
} }
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
let Some(ndarray) = generator.gen_expr(ctx, value)? else { let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
let llvm_ty = ctx.get_llvm_type(generator, *ty);
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
.into_pointer_value()
} else {
return Ok(None); return Ok(None);
}; };
let v = NDArrayValue::from_pointer_value(v, llvm_ty, usize, None);
let ndarray_ty = value.custom.unwrap(); return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
let ndarray = ndarray.to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayObject::from_object(
generator,
ctx,
AnyObject { ty: ndarray_ty, value: ndarray },
);
let indices = gen_ndarray_subscript_ndindices(generator, ctx, slice)?;
let result = ndarray
.index(generator, ctx, &indices)
.split_unsized(generator, ctx)
.to_basic_value_enum();
return Ok(Some(ValueEnum::Dynamic(result)));
} }
TypeEnum::TTuple { .. } => { TypeEnum::TTuple { .. } => {
let index: u32 = let index: u32 =

View File

@ -1,8 +1,10 @@
use inkwell::attributes::{Attribute, AttributeLoc}; use inkwell::{
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue}; attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either; use itertools::Either;
use crate::codegen::CodeGenContext; use super::CodeGenContext;
/// Macro to generate extern function /// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue` /// Both function return type and function parameter type are `FloatValue`

View File

@ -1,16 +1,18 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{BasicTypeEnum, IntType}, types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue}, values::{BasicValueEnum, IntValue, PointerValue},
}; };
use nac3parser::ast::{Expr, Stmt, StrRef}; use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator { pub trait CodeGenerator {
/// Return the module name for the code generator. /// Return the module name for the code generator.
fn get_name(&self) -> &str; fn get_name(&self) -> &str;

View File

@ -0,0 +1,162 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -0,0 +1,152 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,30 +1,26 @@
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics,
macros::codegen_unreachable,
model::*,
object::ndarray::{indexing::NDIndex, nditer::NDIter, NDArray},
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use function::FnCall;
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
context::Context, context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::Module, module::Module,
types::{BasicTypeEnum, IntType}, values::{BasicValue, BasicValueEnum, IntValue},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue}, IntPredicate,
AddressSpace, IntPredicate,
}; };
use itertools::Either;
use nac3parser::ast::Expr; use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use ndarray::*;
pub use slice::*;
mod list;
mod math;
mod ndarray;
mod slice;
#[must_use] #[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> { pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range( let bitcode_buf = MemoryBuffer::create_from_memory_range(
@ -64,88 +60,6 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
irrt_mod irrt_mod
} }
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***, /// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to /// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python. /// NO numeric slice in python.
@ -311,821 +225,3 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
} }
})) }))
} }
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
FnCall::builder(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
output_ndims: Instance<'ctx, Int<SizeT>>,
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
FnCall::builder(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
.arg(output_shape)
.returning_void();
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
FnCall::builder(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
FnCall::builder(generator, ctx, &name).arg(iter).returning_auto("has_element")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
FnCall::builder(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_indices: Instance<'ctx, Int<SizeT>>,
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
FnCall::builder(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
.arg(dst_ndarray)
.returning_void();
}

View File

@ -0,0 +1,384 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -0,0 +1,76 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,12 +1,14 @@
use crate::codegen::CodeGenContext; use inkwell::{
use inkwell::context::Context; context::Context,
use inkwell::intrinsics::Intrinsic; intrinsics::Intrinsic,
use inkwell::types::AnyTypeEnum::IntType; types::{AnyTypeEnum::IntType, FloatType},
use inkwell::types::FloatType; values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue}; AddressSpace,
use inkwell::AddressSpace; };
use itertools::Either; use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic /// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions. /// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str { fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
@ -183,7 +185,7 @@ pub fn call_memcpy_generic<'ctx>(
dest dest
} else { } else {
ctx.builder ctx.builder
.build_bitcast(dest, llvm_p0i8, "") .build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };
@ -191,7 +193,7 @@ pub fn call_memcpy_generic<'ctx>(
src src
} else { } else {
ctx.builder ctx.builder
.build_bitcast(src, llvm_p0i8, "") .build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };

View File

@ -1,12 +1,12 @@
use crate::{ use std::{
codegen::classes::{ListType, ProxyType, RangeType}, collections::{HashMap, HashSet},
symbol_resolver::{StaticValue, SymbolResolver}, sync::{
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef}, atomic::{AtomicBool, Ordering},
typecheck::{ Arc,
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
}, },
thread,
}; };
use crossbeam::channel::{unbounded, Receiver, Sender}; use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
@ -24,36 +24,37 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use object::ndarray::NDArray;
use parking_lot::{Condvar, Mutex}; use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{ use nac3parser::ast::{Location, Stmt, StrRef};
atomic::{AtomicBool, Ordering},
Arc, use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
}; };
use std::thread; use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ListType, NDArrayType, ProxyType, RangeType};
pub mod builtin_fns; pub mod builtin_fns;
pub mod classes;
pub mod concrete_type; pub mod concrete_type;
pub mod expr; pub mod expr;
pub mod extern_fns; pub mod extern_fns;
mod generator; mod generator;
pub mod irrt; pub mod irrt;
pub mod llvm_intrinsics; pub mod llvm_intrinsics;
pub mod model;
pub mod numpy; pub mod numpy;
pub mod object;
pub mod stmt; pub mod stmt;
pub mod types;
pub mod values;
#[cfg(test)] #[cfg(test)]
mod test; mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros { mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as /// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location /// its first argument to provide Python source information to indicate the codegen location
@ -509,7 +510,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
} }
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
Ptr(Struct(NDArray)).llvm_type(generator, ctx).as_basic_type_enum() let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
} }
_ => unreachable!( _ => unreachable!(
@ -847,10 +853,9 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb); builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body"); let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new(); let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret); let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) { for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap(); let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type( let local_type = get_llvm_type(

View File

@ -1,42 +0,0 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use crate::codegen::CodeGenerator;
use super::*;
/// A [`Model`] of any [`BasicTypeEnum`].
///
/// Use this when it is infeasible to use model abstractions.
#[derive(Debug, Clone, Copy)]
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -1,147 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::{ArrayValue, IntValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// Trait for Rust structs identifying length values for [`Array`].
pub trait ArrayLen: fmt::Debug + Clone + Copy {
fn length(&self) -> u32;
}
/// A statically known length.
#[derive(Debug, Clone, Copy, Default)]
pub struct Len<const N: u32>;
/// A dynamically known length.
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> ArrayLen for Len<N> {
fn length(&self) -> u32 {
N
}
}
impl ArrayLen for AnyLen {
fn length(&self) -> u32 {
self.0
}
}
/// A Model for an [`ArrayType`].
///
/// `Len` should be of a [`LenKind`] and `Item` should be a of [`Model`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Array<Len, Item> {
/// Length of this array.
pub len: Len,
/// [`Model`] of the array items.
pub item: Item,
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.item.llvm_type(generator, ctx).array_type(self.len.length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.length()
)));
}
self.item
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
unsafe { Ptr(self.model.0.item).believe_value(ptr) }
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.length()
);
let i = ctx.ctx.i32_type().const_int(i, false);
self.gep(ctx, i)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.gep(ctx, i).load(generator, ctx)
}
/// Like `get` but `i` is a constant.
pub fn get_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u64,
) -> Instance<'ctx, Item> {
self.gep_const(ctx, i).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.gep(ctx, i).store(ctx, value);
}
/// Like `set` but `i` is a constant.
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
self.gep_const(ctx, i).store(ctx, value);
}
}

View File

@ -1,207 +0,0 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
/// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
///
/// For instance,
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
///
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
///
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with [`BasicType`] identified by model `M`.
///
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints for programmers.
///
/// ### Notes on `Default` trait
///
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at their types, it is possible
/// to tell the [`BasicType`]s they are identifying.
///
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
/// writing debug assertions to check, for example, if the programmer has passed in an [`IntValue`] with the wrong bit-width.
/// ```ignore
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
/// // code...
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model/ge.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
/// ```ignore
/// let my_value: IntValue<'ctx>;
///
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
///
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
/// let my_value = Int(Int32).believe_value(my_value);
/// ```
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// The [`BasicType`] *variant* this model is identifying.
type Type: BasicType<'ctx>;
/// The [`BasicValue`] type of the [`BasicType`] of this model.
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn llvm_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context)
-> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn size_of<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.llvm_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value.
///
/// # Safety
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
unsafe fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap the [`BasicValue`] into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
unsafe { Ok(self.believe_value(value)) }
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p =
ctx.builder.build_array_alloca(self.llvm_type(generator, ctx.ctx), len, "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
unsafe { Ok(Ptr(*self).believe_value(p)) }
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
unsafe { Ok(Ptr(*self).believe_value(PointerValue::from(p))) }
}
/// Allocate a constant array.
fn const_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
values: &[Instance<'ctx, Self>],
) -> Instance<'ctx, Array<AnyLen, Self>> {
macro_rules! make {
($t:expr, $into_value:expr) => {
$t.const_array(
&values
.iter()
.map(|x| $into_value(x.value.as_basic_value_enum()))
.collect_vec(),
)
};
}
let value = match self.llvm_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
};
Array { len: AnyLen(values.len() as u32), item: *self }
.check_value(generator, ctx, value)
.unwrap()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.
pub value: M::Value,
}

View File

@ -1,94 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, FloatType},
values::FloatValue,
};
use crate::codegen::CodeGenerator;
use super::*;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float<N>(pub N);
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -1,122 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A convenience structure to construct & call an LLVM function.
///
/// ### Usage
///
/// The syntax is like this:
/// ```ignore
/// let result = CallFunction::begin("my_function_name")
/// .attrs(...)
/// .arg(arg1)
/// .arg(arg2)
/// .arg(arg3)
/// .returning("my_function_result", Int32);
/// ```
///
/// The function `my_function_name` is called when `.returning()` (or its variants) is called, returning
/// the result as an `Instance<'ctx, Int<Int32>>`.
///
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
/// the argument types and returning type.
pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn builder(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
FnCall { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.llvm_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.llvm_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
}
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -1,422 +0,0 @@
use std::{cmp::Ordering, fmt};
use inkwell::{
context::Context,
types::{BasicType, IntType},
values::IntValue,
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> Int<N> {
pub fn const_int<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
sign_extend: bool,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_int(value, sign_extend);
unsafe { self.believe_value(value) }
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_zero();
unsafe { self.believe_value(value) }
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_all_ones();
unsafe { self.believe_value(value) }
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
}
impl Int<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0, false)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
}
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend(generator, ctx, self.value)
}
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend(generator, ctx, self.value)
}
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate(generator, ctx, self.value)
}
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
}
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
}
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
}

View File

@ -1,17 +0,0 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -1,214 +0,0 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
use super::*;
/// A model for [`PointerType`].
///
/// `Item` is the element type this pointer is pointing to, and should be of a [`Model`].
///
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
#[derive(Debug, Clone, Copy, Default)]
pub struct Ptr<Item>(pub Item);
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
///
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
pub type OpaquePtr = Ptr<()>;
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
//
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.llvm_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.llvm_type(generator, ctx).const_null();
unsafe { self.believe_value(ptr) }
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
// TODO: LLVM 15: This function will only have to be:
// ```
// return self.believe_value(ptr);
// ```
let t = self.llvm_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
unsafe { self.believe_value(ptr) }
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
unsafe { self.model.believe_value(p) }
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: i64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset as u64, true);
self.offset(ctx, offset)
}
pub fn set_index(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.offset(ctx, index).store(ctx, value);
}
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
}
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.offset(ctx, index).load(generator, ctx)
}
pub fn get_index_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Item> {
let value = ctx.builder.build_load(self.value, "").unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_item: NewItem,
) -> Instance<'ctx, Ptr<NewItem>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
Ptr(new_item).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
}
/// `memcpy` from another pointer.
pub fn copy_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
source: Self,
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.size_of(generator, ctx.ctx);
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(SizeT).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
}
}

View File

@ -1,364 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValueEnum, StructValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Output<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Output<M> {
self.add(name, M::default())
}
}
/// Descriptor of an LLVM struct field.
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u32,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
pub model: M,
}
/// A traversal to calculate the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u32,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Output<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Output { gep_index, name, model }
}
}
/// A traversal to collect the field types of a struct.
///
/// This is used to collect field types and construct the LLVM struct type with [`Context::struct_type`].
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
/// The collected field types so far in exact order.
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Output<M> {
let t = model.llvm_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
/// A traversal to check the types of fields.
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
/// The current GEP index, so we can tell the index of the field we are checking
/// and report the GEP index.
gep_index_counter: u32,
/// The [`StructType`] to check.
scrutinee: StructType<'ctx>,
/// The list of collected errors so far.
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(gep_index) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
}
}
// Otherwise, it will be caught by Struct's `check_type`.
}
}
/// A trait for Rust structs identifying LLVM structures.
///
/// ### Example
///
/// Suppose you want to define this structure:
/// ```c
/// template <typename T>
/// struct ContiguousNDArray {
/// size_t ndims;
/// size_t* shape;
/// T* data;
/// }
/// ```
///
/// This is how it should be done:
/// ```ignore
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// pub ndims: F::Out<Int<SizeT>>,
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
/// pub data: F::Out<Ptr<Item>>,
/// }
///
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
/// #[derive(Debug, Clone, Copy)]
/// pub struct ContiguousNDArray<M> {
/// /// [`Model`] of the items.
/// pub item: M,
/// }
///
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
///
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
/// // The order of `traversal.add*` is important
/// Self::Fields {
/// ndims: traversal.add_auto("ndims"),
/// shape: traversal.add_auto("shape"),
/// data: traversal.add("data", Ptr(self.item)),
/// }
/// }
/// }
/// ```
///
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
/// traversed to do useful work such as:
///
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
///
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
/// with dtype `float64` in LLVM, this is how you do it:
/// ```ignore
/// type F64NDArray = Struct<ContiguousNDArray<Float<Float64>>>; // Type alias for leaner documentation
/// let model: F64NDArray = Struct(ContigousNDArray { item: Float(Float64) });
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
/// ```
///
/// ...and here is how you may manipulate/access `ndarray`:
///
/// (NOTE: some arguments have been omitted)
///
/// ```ignore
/// // Get `&ndarray->data`
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
///
/// // Get `ndarray->ndims`
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->ndims`
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Get `ndarray->shape[0]`
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->shape[2]`
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Do `ndarray->ndims = 3;`
/// let num_3 = Int(SizeT).const_int(3);
/// ndarray.set(|f| f.ndims, num_3);
/// ```
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// The associated fields of this struct.
type Fields<F: FieldTraversal<'ctx>>;
/// Traverse through all fields of this [`StructKind`].
///
/// Only used internally in this module for implementing other components.
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
///
/// Only used internally in this module for implementing other components.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.iter_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.iter_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
/// A model for LLVM struct.
///
/// `S` should be of a [`StructKind`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Struct<S>(pub S);
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
/// Create a constant struct value from its fields.
///
/// This function also validates `fields` and panic when there is something wrong.
pub fn const_struct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
fields: &[BasicValueEnum<'ctx>],
) -> Instance<'ctx, Self> {
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
// and if you try doing that Rust would force you put lifetimes everywhere.
let val = ctx.const_struct(fields, false);
self.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
// Check each field individually.
let mut traversal = CheckTypeFieldTraversal {
generator,
ctx,
gep_index_counter: 0,
errors: Vec::new(),
scrutinee: ty,
};
self.0.iter_fields(&mut traversal);
// Check the number of fields.
let exp_num_fields = traversal.gep_index_counter;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
// Currently, only the first error is reported.
return Err(traversal.errors[0].clone());
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
/// Get a field with [`StructValue::get_field_at_index`].
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, Ptr<M>>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(u64::from(field.gep_index), false)],
field.name,
)
.unwrap()
};
unsafe { Ptr(field.model).believe_value(ptr) }
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}

View File

@ -1,42 +0,0 @@
use crate::codegen::{
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::*;
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
///
/// `stop` is not included.
pub fn gen_for_model<'ctx, 'a, G, F, N>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Instance<'ctx, Int<N>>,
stop: Instance<'ctx, Int<N>>,
step: Instance<'ctx, Int<N>>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Instance<'ctx, Int<N>>,
) -> Result<(), String>,
N: IntKind<'ctx> + Default,
{
let int_model = Int(N::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = unsafe { int_model.believe_value(i) };
body(g, ctx, hooks, i)
},
step.value,
)
}

View File

@ -1,28 +1,32 @@
use crate::{ use inkwell::{
codegen::{ types::{AnyTypeEnum, BasicType, BasicTypeEnum, PointerType},
classes::{ values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue, AddressSpace, IntPredicate, OptimizationLevel,
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter, };
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
}, use nac3parser::ast::{Operator, StrRef};
expr::gen_binop_expr_with_values,
irrt::{ use super::{
calculate_len_for_slice_range, call_ndarray_calc_broadcast, expr::gen_binop_expr_with_values,
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices, irrt::{
call_ndarray_calc_size, calculate_len_for_slice_range, call_ndarray_calc_broadcast,
}, call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices, call_ndarray_calc_size,
llvm_intrinsics::{self, call_memcpy_generic},
macros::codegen_unreachable,
object::{
any::AnyObject,
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
},
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
CodeGenContext, CodeGenerator,
}, },
llvm_intrinsics::{self, call_memcpy_generic},
macros::codegen_unreachable,
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
types::{ListType, NDArrayType, ProxyType},
values::{
ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{ toplevel::{
helper::{extract_ndims, PrimDef}, helper::{arraylike_flatten_element_type, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, DefinitionId,
}, },
@ -31,16 +35,6 @@ use crate::{
typedef::{FunSignature, Type, TypeEnum}, typedef::{FunSignature, Type, TypeEnum},
}, },
}; };
use inkwell::{
types::BasicType,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use inkwell::{
types::{AnyTypeEnum, BasicTypeEnum, PointerType},
values::BasicValue,
};
use nac3parser::ast::{Operator, StrRef};
/// Creates an uninitialized `NDArray` instance. /// Creates an uninitialized `NDArray` instance.
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>( fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
@ -48,6 +42,7 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type, elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> { ) -> Result<NDArrayValue<'ctx>, String> {
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None); let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
@ -60,7 +55,7 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?; let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
Ok(NDArrayValue::from_ptr_val(ndarray, llvm_usize, None)) Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, llvm_usize, None))
} }
/// Creates an `NDArray` instance from a dynamic shape. /// Creates an `NDArray` instance from a dynamic shape.
@ -133,7 +128,7 @@ where
ndarray.store_ndims(ctx, generator, num_dims); ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx); let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims); ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
// Copy the dimension sizes from shape to ndarray.dims // Copy the dimension sizes from shape to ndarray.dims
let shape_len = shape_len_fn(generator, ctx, shape)?; let shape_len = shape_len_fn(generator, ctx, shape)?;
@ -149,7 +144,7 @@ where
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap(); let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_pdim = let ndarray_pdim =
unsafe { ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None) }; unsafe { ndarray.shape().ptr_offset_unchecked(ctx, generator, &i, None) };
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap(); ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
@ -200,12 +195,12 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
ndarray.store_ndims(ctx, generator, num_dims); ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx); let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims); ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
for (i, &shape_dim) in shape.iter().enumerate() { for (i, &shape_dim) in shape.iter().enumerate() {
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap(); let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
let ndarray_dim = unsafe { let ndarray_dim = unsafe {
ndarray.dim_sizes().ptr_offset_unchecked( ndarray.shape().ptr_offset_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(i as u64, true), &llvm_usize.const_int(i as u64, true),
@ -234,7 +229,7 @@ fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_num_elems = call_ndarray_calc_size( let ndarray_num_elems = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator), &ndarray.shape().as_slice_value(ctx, generator),
(None, None), (None, None),
); );
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems); ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
@ -320,11 +315,11 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
match shape { match shape {
BasicValueEnum::PointerValue(shape_list_ptr) BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() => if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
{ {
// 1. A list of ints; e.g., `np.empty([600, 800, 3])` // 1. A list of ints; e.g., `np.empty([600, 800, 3])`
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None); let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
create_ndarray_dyn_shape( create_ndarray_dyn_shape(
generator, generator,
ctx, ctx,
@ -385,7 +380,7 @@ where
let ndarray_num_elems = call_ndarray_calc_size( let ndarray_num_elems = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator), &ndarray.shape().as_slice_value(ctx, generator),
(None, None), (None, None),
); );
@ -479,8 +474,8 @@ fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>, ctx: &mut CodeGenContext<'ctx, 'a>,
res: NDArrayValue<'ctx>, res: NDArrayValue<'ctx>,
lhs: (BasicValueEnum<'ctx>, bool), lhs: (Type, BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool), rhs: (Type, BasicValueEnum<'ctx>, bool),
value_fn: ValueFn, value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String> ) -> Result<NDArrayValue<'ctx>, String>
where where
@ -493,8 +488,8 @@ where
{ {
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs; let (lhs_ty, lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs; let (rhs_ty, rhs_val, rhs_scalar) = rhs;
assert!( assert!(
!(lhs_scalar && rhs_scalar), !(lhs_scalar && rhs_scalar),
@ -505,12 +500,26 @@ where
// Assert that all ndarray operands are broadcastable to the target size // Assert that all ndarray operands are broadcastable to the target size
if !lhs_scalar { if !lhs_scalar {
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None); let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let lhs_val = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val); ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val);
} }
if !rhs_scalar { if !rhs_scalar {
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None); let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val); ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val);
} }
@ -518,7 +527,14 @@ where
let lhs_elem = if lhs_scalar { let lhs_elem = if lhs_scalar {
lhs_val lhs_val
} else { } else {
let lhs = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None); let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let lhs = NDArrayValue::from_pointer_value(
lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx); let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx);
unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) } unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) }
@ -527,7 +543,14 @@ where
let rhs_elem = if rhs_scalar { let rhs_elem = if rhs_scalar {
rhs_val rhs_val
} else { } else {
let rhs = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None); let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx); let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx);
unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) } unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) }
@ -653,11 +676,15 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
let ndims = llvm_usize.const_int(1, false); let ndims = llvm_usize.const_int(1, false);
match list_elem_ty { match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => { AnyTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty)) ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
} }
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => { AnyTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
todo!("Getting ndims for list[ndarray] not supported") todo!("Getting ndims for list[ndarray] not supported")
} }
@ -669,16 +696,20 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>( fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>, (ty, value): (Type, BasicValueEnum<'ctx>),
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
match value { match value {
BasicValueEnum::PointerValue(v) if NDArrayValue::is_instance(v, llvm_usize).is_ok() => { BasicValueEnum::PointerValue(v)
NDArrayValue::from_ptr_val(v, llvm_usize, None).load_ndims(ctx) if NDArrayValue::is_representable(v, llvm_usize).is_ok() =>
{
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
NDArrayValue::from_pointer_value(v, llvm_elem_ty, llvm_usize, None).load_ndims(ctx)
} }
BasicValueEnum::PointerValue(v) if ListValue::is_instance(v, llvm_usize).is_ok() => { BasicValueEnum::PointerValue(v) if ListValue::is_representable(v, llvm_usize).is_ok() => {
llvm_ndlist_get_ndims(generator, ctx, v.get_type()) llvm_ndlist_get_ndims(generator, ctx, v.get_type())
} }
@ -690,7 +721,6 @@ fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>( fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), (dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
src_lst: ListValue<'ctx>, src_lst: ListValue<'ctx>,
dim: u64, dim: u64,
@ -701,13 +731,15 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
let list_elem_ty = src_lst.get_type().element_type(); let list_elem_ty = src_lst.get_type().element_type();
match list_elem_ty { match list_elem_ty {
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => { AnyTypeEnum::PointerType(ptr_ty)
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
// The stride of elements in this dimension, i.e. the number of elements between arr[i] // The stride of elements in this dimension, i.e. the number of elements between arr[i]
// and arr[i + 1] in this dimension // and arr[i + 1] in this dimension
let stride = call_ndarray_calc_size( let stride = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&dst_arr.dim_sizes(), &dst_arr.shape(),
(Some(llvm_usize.const_int(dim + 1, false)), None), (Some(llvm_usize.const_int(dim + 1, false)), None),
); );
@ -721,11 +753,25 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|_, _| Ok(llvm_usize.const_int(1, false)), |_, _| Ok(llvm_usize.const_int(1, false)),
|generator, ctx, _, i| { |generator, ctx, _, i| {
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap(); let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
let offset = ctx
.builder
.build_int_mul(
offset,
ctx.builder
.build_int_truncate_or_bit_cast(
dst_arr.get_type().element_type().size_of().unwrap(),
offset.get_type(),
"",
)
.unwrap(),
"",
)
.unwrap();
let dst_ptr = let dst_ptr =
unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() }; unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() };
let nested_lst_elem = ListValue::from_ptr_val( let nested_lst_elem = ListValue::from_pointer_value(
unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) } unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) }
.into_pointer_value(), .into_pointer_value(),
llvm_usize, llvm_usize,
@ -735,7 +781,6 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_from_ndlist_impl( ndarray_from_ndlist_impl(
generator, generator,
ctx, ctx,
elem_ty,
(dst_arr, dst_ptr), (dst_arr, dst_ptr),
nested_lst_elem, nested_lst_elem,
dim + 1, dim + 1,
@ -746,13 +791,15 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
)?; )?;
} }
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => { AnyTypeEnum::PointerType(ptr_ty)
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
{
todo!("Not implemented for list[ndarray]") todo!("Not implemented for list[ndarray]")
} }
_ => { _ => {
let lst_len = src_lst.load_size(ctx, None); let lst_len = src_lst.load_size(ctx, None);
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap(); let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap(); let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap();
let cpy_len = ctx let cpy_len = ctx
@ -807,8 +854,9 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
let object = object.into_pointer_value(); let object = object.into_pointer_value();
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims // object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
if NDArrayValue::is_instance(object, llvm_usize).is_ok() { if NDArrayValue::is_representable(object, llvm_usize).is_ok() {
let object = NDArrayValue::from_ptr_val(object, llvm_usize, None); let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, llvm_usize, None);
let ndarray = gen_if_else_expr_callback( let ndarray = gen_if_else_expr_callback(
generator, generator,
@ -870,7 +918,6 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl( ndarray_sliced_copyto_impl(
generator, generator,
ctx, ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)), (ndarray, ndarray.data().base_ptr(ctx, generator)),
(object, object.data().base_ptr(ctx, generator)), (object, object.data().base_ptr(ctx, generator)),
0, 0,
@ -882,16 +929,17 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|_, _| Ok(Some(object.as_base_value())), |_, _| Ok(Some(object.as_base_value())),
)?; )?;
return Ok(NDArrayValue::from_ptr_val( return Ok(NDArrayValue::from_pointer_value(
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(), ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
llvm_elem_ty,
llvm_usize, llvm_usize,
None, None,
)); ));
} }
// Remaining case: TList // Remaining case: TList
assert!(ListValue::is_instance(object, llvm_usize).is_ok()); assert!(ListValue::is_representable(object, llvm_usize).is_ok());
let object = ListValue::from_ptr_val(object, llvm_usize, None); let object = ListValue::from_pointer_value(object, llvm_usize, None);
// The number of dimensions to prepend 1's to // The number of dimensions to prepend 1's to
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type()); let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
@ -946,7 +994,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
.build_store( .build_store(
lst, lst,
ctx.builder ctx.builder
.build_bitcast(object.as_base_value(), llvm_plist_i8, "") .build_bit_cast(object.as_base_value(), llvm_plist_i8, "")
.unwrap(), .unwrap(),
) )
.unwrap(); .unwrap();
@ -968,10 +1016,11 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
.builder .builder
.build_load(lst, "") .build_load(lst, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.map(|v| ctx.builder.build_bitcast(v, plist_plist_i8, "").unwrap()) .map(|v| ctx.builder.build_bit_cast(v, plist_plist_i8, "").unwrap())
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
let this_dim = ListValue::from_ptr_val(this_dim, llvm_usize, None); let this_dim =
ListValue::from_pointer_value(this_dim, llvm_usize, None);
// TODO: Assert this_dim.sz != 0 // TODO: Assert this_dim.sz != 0
@ -987,7 +1036,9 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ctx.builder ctx.builder
.build_store( .build_store(
lst, lst,
ctx.builder.build_bitcast(next_dim, llvm_plist_i8, "").unwrap(), ctx.builder
.build_bit_cast(next_dim, llvm_plist_i8, "")
.unwrap(),
) )
.unwrap(); .unwrap();
@ -995,7 +1046,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
}, },
)?; )?;
let lst = ListValue::from_ptr_val( let lst = ListValue::from_pointer_value(
ctx.builder ctx.builder
.build_load(lst, "") .build_load(lst, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
@ -1015,7 +1066,6 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_from_ndlist_impl( ndarray_from_ndlist_impl(
generator, generator,
ctx, ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)), (ndarray, ndarray.data().base_ptr(ctx, generator)),
object, object,
0, 0,
@ -1088,7 +1138,6 @@ fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>( fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), (dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
(src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>), (src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
dim: u64, dim: u64,
@ -1097,14 +1146,16 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
let llvm_i1 = ctx.ctx.bool_type(); let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(dst_arr.get_type().element_type(), src_arr.get_type().element_type());
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
// If there are no (remaining) slice expressions, memcpy the entire dimension // If there are no (remaining) slice expressions, memcpy the entire dimension
if slices.is_empty() { if slices.is_empty() {
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
let stride = call_ndarray_calc_size( let stride = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&src_arr.dim_sizes(), &src_arr.shape(),
(Some(llvm_usize.const_int(dim, false)), None), (Some(llvm_usize.const_int(dim, false)), None),
); );
let stride = let stride =
@ -1122,13 +1173,13 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
let src_stride = call_ndarray_calc_size( let src_stride = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&src_arr.dim_sizes(), &src_arr.shape(),
(Some(llvm_usize.const_int(dim + 1, false)), None), (Some(llvm_usize.const_int(dim + 1, false)), None),
); );
let dst_stride = call_ndarray_calc_size( let dst_stride = call_ndarray_calc_size(
generator, generator,
ctx, ctx,
&dst_arr.dim_sizes(), &dst_arr.shape(),
(Some(llvm_usize.const_int(dim + 1, false)), None), (Some(llvm_usize.const_int(dim + 1, false)), None),
); );
@ -1151,9 +1202,29 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|generator, ctx, _, src_i| { |generator, ctx, _, src_i| {
// Calculate the offset of the active slice // Calculate the offset of the active slice
let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap(); let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap();
let src_data_offset = ctx
.builder
.build_int_mul(
src_data_offset,
ctx.builder
.build_int_cast(sizeof_elem, src_data_offset.get_type(), "")
.unwrap(),
"",
)
.unwrap();
let dst_i = let dst_i =
ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap(); let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap();
let dst_data_offset = ctx
.builder
.build_int_mul(
dst_data_offset,
ctx.builder
.build_int_cast(sizeof_elem, dst_data_offset.get_type(), "")
.unwrap(),
"",
)
.unwrap();
let (src_ptr, dst_ptr) = unsafe { let (src_ptr, dst_ptr) = unsafe {
( (
@ -1165,7 +1236,6 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl( ndarray_sliced_copyto_impl(
generator, generator,
ctx, ctx,
elem_ty,
(dst_arr, dst_ptr), (dst_arr, dst_ptr),
(src_arr, src_ptr), (src_arr, src_ptr),
dim + 1, dim + 1,
@ -1208,7 +1278,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
&this, &this,
|_, ctx, shape| Ok(shape.load_ndims(ctx)), |_, ctx, shape| Ok(shape.load_ndims(ctx)),
|generator, ctx, shape, idx| unsafe { |generator, ctx, shape, idx| unsafe {
Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) Ok(shape.shape().get_typed_unchecked(ctx, generator, &idx, None))
}, },
)? )?
} else { } else {
@ -1216,7 +1286,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx)); ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
let ndims = this.load_ndims(ctx); let ndims = this.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndims); ndarray.create_shape(ctx, llvm_usize, ndims);
// Populate the first slices.len() dimensions by computing the size of each dim slice // Populate the first slices.len() dimensions by computing the size of each dim slice
for (i, (start, stop, step)) in slices.iter().enumerate() { for (i, (start, stop, step)) in slices.iter().enumerate() {
@ -1248,7 +1318,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap(); ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
unsafe { unsafe {
ndarray.dim_sizes().set_typed_unchecked( ndarray.shape().set_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(i as u64, false), &llvm_usize.const_int(i as u64, false),
@ -1266,8 +1336,8 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
(this.load_ndims(ctx), false), (this.load_ndims(ctx), false),
|generator, ctx, _, idx| { |generator, ctx, _, idx| {
unsafe { unsafe {
let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None); let dim_sz = this.shape().get_typed_unchecked(ctx, generator, &idx, None);
ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz); ndarray.shape().set_typed_unchecked(ctx, generator, &idx, dim_sz);
} }
Ok(()) Ok(())
@ -1282,7 +1352,6 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
ndarray_sliced_copyto_impl( ndarray_sliced_copyto_impl(
generator, generator,
ctx, ctx,
elem_ty,
(ndarray, ndarray.data().base_ptr(ctx, generator)), (ndarray, ndarray.data().base_ptr(ctx, generator)),
(this, this.data().base_ptr(ctx, generator)), (this, this.data().base_ptr(ctx, generator)),
0, 0,
@ -1328,7 +1397,7 @@ where
&operand, &operand,
|_, ctx, v| Ok(v.load_ndims(ctx)), |_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe { |generator, ctx, v, idx| unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
}, },
) )
.unwrap() .unwrap()
@ -1365,8 +1434,8 @@ pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>(
ctx: &mut CodeGenContext<'ctx, 'a>, ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type, elem_ty: Type,
res: Option<NDArrayValue<'ctx>>, res: Option<NDArrayValue<'ctx>>,
lhs: (BasicValueEnum<'ctx>, bool), lhs: (Type, BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool), rhs: (Type, BasicValueEnum<'ctx>, bool),
value_fn: ValueFn, value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String> ) -> Result<NDArrayValue<'ctx>, String>
where where
@ -1379,8 +1448,8 @@ where
{ {
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs; let (lhs_ty, lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs; let (rhs_ty, rhs_val, rhs_scalar) = rhs;
assert!( assert!(
!(lhs_scalar && rhs_scalar), !(lhs_scalar && rhs_scalar),
@ -1391,10 +1460,22 @@ where
let ndarray = res.unwrap_or_else(|| { let ndarray = res.unwrap_or_else(|| {
if lhs_scalar && rhs_scalar { if lhs_scalar && rhs_scalar {
let lhs_val = let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None); let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
let rhs_val = let lhs_val = NDArrayValue::from_pointer_value(
NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None); lhs_val.into_pointer_value(),
llvm_lhs_elem_ty,
llvm_usize,
None,
);
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
let rhs_val = NDArrayValue::from_pointer_value(
rhs_val.into_pointer_value(),
llvm_rhs_elem_ty,
llvm_usize,
None,
);
let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val); let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val);
@ -1410,8 +1491,14 @@ where
) )
.unwrap() .unwrap()
} else { } else {
let ndarray = NDArrayValue::from_ptr_val( let dtype = arraylike_flatten_element_type(
&mut ctx.unifier,
if lhs_scalar { rhs_ty } else { lhs_ty },
);
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
let ndarray = NDArrayValue::from_pointer_value(
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(), if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
llvm_elem_ty,
llvm_usize, llvm_usize,
None, None,
); );
@ -1423,7 +1510,7 @@ where
&ndarray, &ndarray,
|_, ctx, v| Ok(v.load_ndims(ctx)), |_, ctx, v| Ok(v.load_ndims(ctx)),
|generator, ctx, v, idx| unsafe { |generator, ctx, v, idx| unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
}, },
) )
.unwrap() .unwrap()
@ -1484,10 +1571,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
if let Some(res) = res { if let Some(res) = res {
let res_ndims = res.load_ndims(ctx); let res_ndims = res.load_ndims(ctx);
let res_dim0 = unsafe { let res_dim0 = unsafe {
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) res.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
}; };
let res_dim1 = unsafe { let res_dim1 = unsafe {
res.dim_sizes().get_typed_unchecked( res.shape().get_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(1, false), &llvm_usize.const_int(1, false),
@ -1495,10 +1582,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
) )
}; };
let lhs_dim0 = unsafe { let lhs_dim0 = unsafe {
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
}; };
let rhs_dim1 = unsafe { let rhs_dim1 = unsafe {
rhs.dim_sizes().get_typed_unchecked( rhs.shape().get_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(1, false), &llvm_usize.const_int(1, false),
@ -1547,15 +1634,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let lhs_dim1 = unsafe { let lhs_dim1 = unsafe {
lhs.dim_sizes().get_typed_unchecked( lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
}; };
let rhs_dim0 = unsafe { let rhs_dim0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
}; };
// lhs.dims[1] == rhs.dims[0] // lhs.dims[1] == rhs.dims[0]
@ -1594,7 +1676,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
}, },
|generator, ctx| { |generator, ctx| {
Ok(Some(unsafe { Ok(Some(unsafe {
lhs.dim_sizes().get_typed_unchecked( lhs.shape().get_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_zero(), &llvm_usize.const_zero(),
@ -1604,7 +1686,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
}, },
|generator, ctx| { |generator, ctx| {
Ok(Some(unsafe { Ok(Some(unsafe {
rhs.dim_sizes().get_typed_unchecked( rhs.shape().get_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(1, false), &llvm_usize.const_int(1, false),
@ -1631,7 +1713,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
let common_dim = { let common_dim = {
let lhs_idx1 = unsafe { let lhs_idx1 = unsafe {
lhs.dim_sizes().get_typed_unchecked( lhs.shape().get_typed_unchecked(
ctx, ctx,
generator, generator,
&llvm_usize.const_int(1, false), &llvm_usize.const_int(1, false),
@ -1639,7 +1721,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
) )
}; };
let rhs_idx0 = unsafe { let rhs_idx0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None) rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
}; };
let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None); let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None);
@ -1747,13 +1829,8 @@ pub fn gen_ndarray_empty<'ctx>(
let shape_ty = fun.0.args[0].ty; let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); call_ndarray_empty_impl(generator, context, context.primitives.float, shape_arg)
let ndims = extract_ndims(&context.unifier, ndims); .map(NDArrayValue::into)
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_empty(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
} }
/// Generates LLVM IR for `ndarray.zeros`. /// Generates LLVM IR for `ndarray.zeros`.
@ -1770,13 +1847,8 @@ pub fn gen_ndarray_zeros<'ctx>(
let shape_ty = fun.0.args[0].ty; let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); call_ndarray_zeros_impl(generator, context, context.primitives.float, shape_arg)
let ndims = extract_ndims(&context.unifier, ndims); .map(NDArrayValue::into)
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_zeros(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
} }
/// Generates LLVM IR for `ndarray.ones`. /// Generates LLVM IR for `ndarray.ones`.
@ -1793,13 +1865,8 @@ pub fn gen_ndarray_ones<'ctx>(
let shape_ty = fun.0.args[0].ty; let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); call_ndarray_ones_impl(generator, context, context.primitives.float, shape_arg)
let ndims = extract_ndims(&context.unifier, ndims); .map(NDArrayValue::into)
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_ones(generator, context, dtype, ndims, shape);
Ok(ndarray.instance.value)
} }
/// Generates LLVM IR for `ndarray.full`. /// Generates LLVM IR for `ndarray.full`.
@ -1819,14 +1886,8 @@ pub fn gen_ndarray_full<'ctx>(
let fill_value_arg = let fill_value_arg =
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?; args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); call_ndarray_full_impl(generator, context, fill_value_ty, shape_arg, fill_value_arg)
let ndims = extract_ndims(&context.unifier, ndims); .map(NDArrayValue::into)
let shape = AnyObject { value: shape_arg, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray =
NDArrayObject::make_np_full(generator, context, dtype, ndims, shape, fill_value_arg);
Ok(ndarray.instance.value)
} }
pub fn gen_ndarray_array<'ctx>( pub fn gen_ndarray_array<'ctx>(
@ -1991,11 +2052,18 @@ pub fn gen_ndarray_copy<'ctx>(
let this_arg = let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?; obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
ndarray_copy_impl( ndarray_copy_impl(
generator, generator,
context, context,
this_elem_ty, this_elem_ty,
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None), NDArrayValue::from_pointer_value(
this_arg.into_pointer_value(),
llvm_elem_ty,
llvm_usize,
None,
),
) )
.map(NDArrayValue::into) .map(NDArrayValue::into)
} }
@ -2014,6 +2082,7 @@ pub fn gen_ndarray_fill<'ctx>(
let llvm_usize = generator.get_size_type(context.ctx); let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0; let this_ty = obj.as_ref().unwrap().0;
let this_elem_ty = arraylike_flatten_element_type(&mut context.unifier, this_ty);
let this_arg = obj let this_arg = obj
.as_ref() .as_ref()
.unwrap() .unwrap()
@ -2024,10 +2093,12 @@ pub fn gen_ndarray_fill<'ctx>(
let value_ty = fun.0.args[0].ty; let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?; let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
ndarray_fill_flattened( ndarray_fill_flattened(
generator, generator,
context, context,
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None), NDArrayValue::from_pointer_value(this_arg, llvm_elem_ty, llvm_usize, None),
|generator, ctx, _| { |generator, ctx, _| {
let value = if value_arg.is_pointer_value() { let value = if value_arg.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type(); let llvm_i1 = ctx.ctx.bool_type();
@ -2068,8 +2139,9 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 { if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
// Dimensions are reversed in the transposed array // Dimensions are reversed in the transposed array
let out = create_ndarray_dyn_shape( let out = create_ndarray_dyn_shape(
@ -2084,7 +2156,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
.builder .builder
.build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "") .build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "")
.unwrap(); .unwrap();
unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) } unsafe { Ok(n.shape().get_typed_unchecked(ctx, generator, &new_idx, None)) }
}, },
) )
.unwrap(); .unwrap();
@ -2121,7 +2193,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
.build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "") .build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "")
.unwrap(); .unwrap();
let dim = unsafe { let dim = unsafe {
n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None) n1.shape().get_typed_unchecked(ctx, generator, &ndim_rev, None)
}; };
let rem_idx_val = let rem_idx_val =
@ -2187,8 +2259,9 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
if let BasicValueEnum::PointerValue(n1) = x1 { if let BasicValueEnum::PointerValue(n1) = x1 {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
@ -2197,11 +2270,11 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
let out = match shape { let out = match shape {
BasicValueEnum::PointerValue(shape_list_ptr) BasicValueEnum::PointerValue(shape_list_ptr)
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() => if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
{ {
// 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])` // 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])`
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None); let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
// Check for -1 in dimensions // Check for -1 in dimensions
gen_for_callback_incrementing( gen_for_callback_incrementing(
generator, generator,
@ -2416,7 +2489,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
); );
// The new shape must be compatible with the old shape // The new shape must be compatible with the old shape
let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None)); let out_sz = call_ndarray_calc_size(generator, ctx, &out.shape(), (None, None));
ctx.make_assert( ctx.make_assert(
generator, generator,
ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(), ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(),
@ -2464,17 +2537,22 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
) -> Result<BasicValueEnum<'ctx>, String> { ) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot"; const FN_NAME: &str = "ndarray_dot";
let (x1_ty, x1) = x1; let (x1_ty, x1) = x1;
let (_, x2) = x2; let (x2_ty, x2) = x2;
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
match (x1, x2) { match (x1, x2) {
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => { (BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); let n1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
let n2 = NDArrayValue::from_ptr_val(n2, llvm_usize, None); let n2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x2_ty);
let llvm_n1_data_ty = ctx.get_llvm_type(generator, n1_dtype);
let llvm_n2_data_ty = ctx.get_llvm_type(generator, n2_dtype);
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let n1 = NDArrayValue::from_pointer_value(n1, llvm_n1_data_ty, llvm_usize, None);
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); let n2 = NDArrayValue::from_pointer_value(n2, llvm_n2_data_ty, llvm_usize, None);
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
ctx.make_assert( ctx.make_assert(
generator, generator,
@ -2511,7 +2589,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
.build_float_mul(e1, elem2.into_float_value(), "") .build_float_mul(e1, elem2.into_float_value(), "")
.unwrap() .unwrap()
.as_basic_value_enum(), .as_basic_value_enum(),
_ => codegen_unreachable!(ctx), _ => codegen_unreachable!(ctx, "product: {}", elem1.get_type()),
}; };
let acc_val = ctx.builder.build_load(acc, "").unwrap(); let acc_val = ctx.builder.build_load(acc, "").unwrap();
let acc_val = match acc_val { let acc_val = match acc_val {
@ -2525,7 +2603,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
.build_float_add(e1, product.into_float_value(), "") .build_float_add(e1, product.into_float_value(), "")
.unwrap() .unwrap()
.as_basic_value_enum(), .as_basic_value_enum(),
_ => codegen_unreachable!(ctx), _ => codegen_unreachable!(ctx, "acc_val: {}", acc_val.get_type()),
}; };
ctx.builder.build_store(acc, acc_val).unwrap(); ctx.builder.build_store(acc, acc_val).unwrap();

View File

@ -1,12 +0,0 @@
use inkwell::values::BasicValueEnum;
use crate::typecheck::typedef::Type;
/// A NAC3 LLVM Python object of any type.
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
/// Typechecker type of the object.
pub ty: Type,
/// LLVM value of the object.
pub value: BasicValueEnum<'ctx>,
}

View File

@ -1,76 +0,0 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Output<Ptr<Item>>,
/// Number of items in the array
pub len: F::Output<Int<SizeT>>,
}
/// A list in NAC3.
#[derive(Debug, Clone, Copy, Default)]
pub struct List<Item> {
/// Model of the list items
pub item: Item,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),
}
}
}
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items
pub item_type: Type,
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
// Create object
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.len)
}
}

View File

@ -1,5 +0,0 @@
pub mod any;
pub mod list;
pub mod ndarray;
pub mod tuple;
pub mod utils;

View File

@ -1,126 +0,0 @@
use inkwell::values::BasicValueEnum;
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn make_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
fill_value: BasicValueEnum<'ctx>,
) -> Self {
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
}

View File

@ -1,227 +0,0 @@
use crate::codegen::{
irrt::call_nac3_ndarray_index,
model::*,
object::utils::slice::{RustSlice, Slice},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Output<Int<NDIndexType>>,
pub data: F::Output<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
// A convenience enum representing a [`NDIndex`].
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(Instance<'ctx, Int<Int32>>),
Slice(RustSlice<'ctx, Int32>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Get the value to set `NDIndex::type` for this variant.
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
) {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id(), false),
);
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = Int(Int32).alloca(generator, ctx);
index_ptr.store(ctx, *in_index);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = Struct(Slice(Int32)).alloca(generator, ctx);
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
/// Serialize a list of `RustNDIndex` as a newly allocated LLVM array of `NDIndex`.
pub fn make_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
// Allocate the LLVM ndindices.
let num_ndindices =
Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64, false);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i64::try_from(i).unwrap());
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
(num_ndindices, ndindices)
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Get the expected `ndims` after indexing with `indices`.
#[must_use]
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
let (num_indices, indices) = RustNDIndex::make_ndindices(generator, ctx, indices);
call_nac3_ndarray_index(
generator,
ctx,
num_indices,
indices,
self.instance,
dst_ndarray.instance,
);
dst_ndarray
}
}
pub mod util {
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{model::*, object::utils::slice::util::gen_slice, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::RustNDIndex;
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let slice = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
}

View File

@ -1,415 +0,0 @@
pub mod factory;
pub mod indexing;
pub mod nditer;
pub mod shape_util;
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
};
use super::any::AnyObject;
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Output<Ptr<Int<Byte>>>,
pub itemsize: F::Output<Int<SizeT>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, object.value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims, false)
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated onto the stack.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim, false);
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// Otherwise, do nothing and return the ndarray itself.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let value = self.get_nth_scalar(generator, ctx, zero).value;
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
}
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
#[derive(Debug, Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(AnyObject<'ctx>),
NDArray(NDArrayObject<'ctx>),
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.value,
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
}
}
}

View File

@ -1,179 +0,0 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_element, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
pub indices: F::Output<Ptr<Int<SizeT>>>,
pub nth: F::Output<Int<SizeT>>,
pub element: F::Output<Ptr<Int<Byte>>>,
pub size: F::Output<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
indices: traversal.add_auto("indices"),
nth: traversal.add_auto("nth"),
element: traversal.add_auto("element"),
size: traversal.add_auto("size"),
}
}
}
/// A helper structure with a convenient interface to interact with [`NDIter`].
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
/// The ndarray this [`NDIter`] to iterating over.
ndarray: NDArrayObject<'ctx>,
/// The current indices of [`NDIter`].
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
}
impl<'ctx> NDIterHandle<'ctx> {
/// Allocate an [`NDIter`] that iterates through an ndarray.
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = Struct(NDIter).alloca(generator, ctx);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_element<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_element(generator, ctx, self.instance)
}
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.nth)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
self.indices
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterHandle`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -1,105 +0,0 @@
use util::gen_for_model;
use crate::{
codegen::{
model::*,
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let one = Int(SizeT).const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items)
.get_index(generator, ctx, i.value)
.value
.into_int_value();
// Cast to SizeT
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
// Store
result.set_index(ctx, i.value, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len = input_sequence.len(generator, ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
for i in 0..input_sequence.num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i64::try_from(i).unwrap(), int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = Int(SizeT).const_1(generator, ctx.ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -1,99 +0,0 @@
use inkwell::values::StructValue;
use itertools::Itertools;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::any::AnyObject;
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM struct value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
// Check number of fields
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
TupleObject { tys, value }
}
#[must_use]
pub fn num_elements(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64, false)
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
assert!(
i < self.num_elements(),
"Tuple object with length {} have index {i}",
self.num_elements()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

View File

@ -1 +0,0 @@
pub mod slice;

View File

@ -1,125 +0,0 @@
use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
/// Fields of [`Slice`]
#[derive(Debug, Clone)]
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
pub start_defined: F::Output<Int<Bool>>,
pub start: F::Output<Int<N>>,
pub stop_defined: F::Output<Int<Bool>>,
pub stop: F::Output<Int<N>>,
pub step_defined: F::Output<Int<Bool>>,
pub step: F::Output<Int<N>>,
}
/// An IRRT representation of an (unresolved) slice.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Slice<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add("start", Int(self.0)),
stop_defined: traversal.add_auto("stop_defined"),
stop: traversal.add("stop", Int(self.0)),
step_defined: traversal.add_auto("step_defined"),
step: traversal.add("step", Int(self.0)),
}
}
}
/// A Rust structure that has [`Slice`] utilities and looks like a [`Slice`] but
/// `start`, `stop` and `step` are held by LLVM registers only and possibly
/// [`Option::None`] if unspecified.
#[derive(Debug, Clone)]
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
// It is possible that `start`, `stop`, and `step` are all `None`.
// We need to know the `int_kind` even when that is the case.
pub int_kind: N,
pub start: Option<Instance<'ctx, Int<N>>>,
pub stop: Option<Instance<'ctx, Int<N>>>,
pub step: Option<Instance<'ctx, Int<N>>>,
}
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
/// Write the contents to an LLVM [`Slice`].
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
) {
let false_ = Int(Bool).const_false(generator, ctx.ctx);
let true_ = Int(Bool).const_true(generator, ctx.ctx);
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
}
pub mod util {
use nac3parser::ast::Expr;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::RustSlice;
/// Generate LLVM IR for an [`ExprKind::Slice`] and convert it into a [`RustSlice`].
#[allow(clippy::type_complexity)]
pub fn gen_slice<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lower: &Option<Box<Expr<Option<Type>>>>,
upper: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
) -> Result<RustSlice<'ctx, Int32>, String> {
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => {
let value_expr = generator
.gen_expr(ctx, value_expr)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
let value_expr =
Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
Some(value_expr)
}
})
};
let start = help(lower)?;
let stop = help(upper)?;
let step = help(step)?;
Ok(RustSlice { int_kind: Int32, start, stop, step })
}
}

View File

@ -1,9 +1,22 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
types::{BasicType, BasicTypeEnum},
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
use super::{ use super::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::{destructure_range, gen_binop_expr}, expr::{destructure_range, gen_binop_expr},
gen_in_range_check, gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment}, irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable, macros::codegen_unreachable,
values::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
use crate::{ use crate::{
@ -14,17 +27,6 @@ use crate::{
typedef::{iter_type_vars, FunSignature, Type, TypeEnum}, typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
}, },
}; };
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
types::{BasicType, BasicTypeEnum},
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
/// See [`CodeGenerator::gen_var_alloc`]. /// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>( pub fn gen_var<'ctx>(
@ -308,7 +310,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
.unwrap() .unwrap()
.to_basic_value_enum(ctx, generator, target_ty)? .to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value(); .into_pointer_value();
let target = ListValue::from_ptr_val(target, llvm_usize, None); let target = ListValue::from_pointer_value(target, llvm_usize, None);
if let ExprKind::Slice { .. } = &key.node { if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice // Handle assigning to a slice
@ -329,7 +331,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
let value = let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value(); value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_ptr_val(value, llvm_usize, None); let value = ListValue::from_pointer_value(value, llvm_usize, None);
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty); let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices( let Some(src_ind) = handle_slice_indices(
@ -461,7 +463,8 @@ pub fn gen_for<G: CodeGenerator>(
TypeEnum::TObj { obj_id, .. } TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() => if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{ {
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range")); let iter_val =
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
// Internal variable for loop; Cannot be assigned // Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?; let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed // Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
@ -1826,6 +1829,37 @@ pub fn gen_stmt<G: CodeGenerator>(
stmt.location, stmt.location,
); );
} }
StmtKind::Global { names, .. } => {
let registered_globals = ctx
.top_level
.definitions
.read()
.iter()
.filter_map(|def| {
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
Some((*simple_name, *ty))
} else {
None
}
})
.collect_vec();
for id in names {
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
return Err(format!("{id} is not a global at {}", stmt.location));
};
let resolver = ctx.resolver.clone();
let ptr = resolver
.get_symbol_value(*id, ctx, generator)
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
.transpose()?
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ctx.var_assignment.insert(*id, (ptr, None, 0));
}
}
_ => unimplemented!(), _ => unimplemented!(),
}; };
Ok(()) Ok(())

View File

@ -1,34 +1,37 @@
use crate::{ use std::{
codegen::{ collections::{HashMap, HashSet},
classes::{ListType, NDArrayType, ProxyType, RangeType}, sync::Arc,
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
}; };
use indexmap::IndexMap; use indexmap::IndexMap;
use indoc::indoc; use indoc::indoc;
use inkwell::{ use inkwell::{
targets::{InitializationConfig, Target}, targets::{InitializationConfig, Target},
OptimizationLevel, OptimizationLevel,
}; };
use nac3parser::ast::FileName;
use nac3parser::{ use nac3parser::{
ast::{fold::Fold, StrRef}, ast::{fold::Fold, FileName, StrRef},
parser::parse_program, parser::parse_program,
}; };
use parking_lot::RwLock; use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc; use super::{
concrete_type::ConcreteTypeStore,
types::{ListType, NDArrayType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
@ -64,6 +67,7 @@ impl SymbolResolver for Resolver {
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }
@ -138,7 +142,8 @@ fn test_primitives() {
}; };
let mut virtual_checks = Vec::new(); let mut virtual_checks = Vec::new();
let mut calls = HashMap::new(); let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into(); let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer { let mut inferencer = Inferencer {
top_level: &top_level, top_level: &top_level,
function_data: &mut function_data, function_data: &mut function_data,
@ -317,7 +322,8 @@ fn test_simple_call() {
}; };
let mut virtual_checks = Vec::new(); let mut virtual_checks = Vec::new();
let mut calls = HashMap::new(); let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into(); let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut inferencer = Inferencer { let mut inferencer = Inferencer {
top_level: &top_level, top_level: &top_level,
function_data: &mut function_data, function_data: &mut function_data,
@ -446,7 +452,7 @@ fn test_classes_list_type_new() {
let llvm_usize = generator.get_size_type(&ctx); let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into()); let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok()); assert!(ListType::is_representable(llvm_list.as_base_type(), llvm_usize).is_ok());
} }
#[test] #[test]
@ -454,7 +460,7 @@ fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create(); let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx); let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok()); assert!(RangeType::is_representable(llvm_range.as_base_type()).is_ok());
} }
#[test] #[test]
@ -466,5 +472,5 @@ fn test_classes_ndarray_type_new() {
let llvm_usize = generator.get_size_type(&ctx); let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into()); let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok()); assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
} }

View File

@ -0,0 +1,192 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap();
let Ok(_) = PointerType::try_from(list_size_ty) else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}"));
};
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap();
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t }
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ListType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize);
ListType::from_type(llvm_list, llvm_usize)
}
/// Creates an [`ListType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize }
}
/// Returns the type of the `size` field of this `list` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `list` type.
#[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
}
}
impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ListValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
Self::Value::from_pointer_value(value, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ListType<'ctx>> for PointerType<'ctx> {
fn from(value: ListType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,64 @@
use inkwell::{context::Context, types::BasicType, values::IntValue};
use super::{
values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod list;
mod ndarray;
mod range;
pub mod structure;
/// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
/// The LLVM type of which values of this type possess. This is usually a
/// [LLVM pointer type][PointerType] for any non-primitive types.
type Base: BasicType<'ctx>;
/// The type of values represented by this type.
type Value: ProxyValue<'ctx, Type = Self>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String>;
/// Checks whether `llvm_ty` can be represented by this [`ProxyType`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String>;
/// Creates a new value of this type.
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value;
/// Creates a new array value of this type.
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx>;
/// Converts an existing value into a [`ProxyValue`] of this type.
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value;
/// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base;
}

View File

@ -0,0 +1,258 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::{
structure::{StructField, StructFields},
ProxyType,
};
use crate::codegen::{
values::{ArraySliceValue, NDArrayValue, ProxyValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
};
if llvm_ndarray_ty.count_fields() != 3 {
return Err(format!(
"Expected 3 fields in `NDArray`, got {}",
llvm_ndarray_ty.count_fields()
));
}
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
};
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
llvm_usize.get_bit_width(),
ndarray_ndims_ty.get_bit_width()
));
}
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
};
let ndarray_dims = ndarray_pdims.get_element_type();
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
));
};
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
llvm_usize.get_bit_width(),
ndarray_dims.get_bit_width()
));
}
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
let Ok(ndarray_pdata) = PointerType::try_from(ndarray_data_ty) else {
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
};
let ndarray_data = ndarray_pdata.get_element_type();
let Ok(ndarray_data) = IntType::try_from(ndarray_data) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.2`, got pointer-to-{ndarray_data}"
));
};
if ndarray_data.get_bit_width() != 8 {
return Err(format!(
"Expected pointer-to-8-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
ndarray_data.get_bit_width()
));
}
Ok(())
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
fn fields(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize)
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(
&self,
ctx: &'ctx Context,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { num_dims: size_t, dims: size_t*, data: i8* }
//
// * data : Pointer to an array containing the array data
// * itemsize: The size of each NDArray elements in bytes
// * ndims : Number of dimensions in the array
// * shape : Pointer to an array containing the shape of the NDArray
// * strides : Pointer to an array indicating the number of bytes between each element at a dimension
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, llvm_usize }
}
/// Returns the type of the `size` field of this `ndarray` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type()
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_int_type)
.unwrap()
}
/// Returns the element type of this `ndarray` type.
#[must_use]
pub fn element_type(&self) -> BasicTypeEnum<'ctx> {
self.dtype
}
}
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
NDArrayValue::from_pointer_value(value, self.dtype, self.llvm_usize, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: NDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,159 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use super::ProxyType;
use crate::codegen::{
values::{ArraySliceValue, ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator},
};
/// Proxy type for a `range` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct RangeType<'ctx> {
ty: PointerType<'ctx>,
}
impl<'ctx> RangeType<'ctx> {
/// Checks whether `llvm_ty` represents a `range` type, returning [Err] if it does not.
pub fn is_representable(llvm_ty: PointerType<'ctx>) -> Result<(), String> {
let llvm_range_ty = llvm_ty.get_element_type();
let AnyTypeEnum::ArrayType(llvm_range_ty) = llvm_range_ty else {
return Err(format!("Expected array type for `range` type, got {llvm_range_ty}"));
};
if llvm_range_ty.len() != 3 {
return Err(format!(
"Expected 3 elements for `range` type, got {}",
llvm_range_ty.len()
));
}
let llvm_range_elem_ty = llvm_range_ty.get_element_type();
let Ok(llvm_range_elem_ty) = IntType::try_from(llvm_range_elem_ty) else {
return Err(format!(
"Expected int type for `range` element type, got {llvm_range_elem_ty}"
));
};
if llvm_range_elem_ty.get_bit_width() != 32 {
return Err(format!(
"Expected 32-bit int type for `range` element type, got {}",
llvm_range_elem_ty.get_bit_width()
));
}
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a `Range`.
#[must_use]
fn llvm_type(ctx: &'ctx Context) -> PointerType<'ctx> {
// typedef int32_t Range[3];
let llvm_i32 = ctx.i32_type();
llvm_i32.array_type(3).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`RangeType`].
#[must_use]
pub fn new(ctx: &'ctx Context) -> Self {
let llvm_range = Self::llvm_type(ctx);
RangeType::from_type(llvm_range)
}
/// Creates an [`RangeType`] from a [`PointerType`].
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty).is_ok());
RangeType { ty: ptr_ty }
}
/// Returns the type of all fields of this `range` type.
#[must_use]
pub fn value_type(&self) -> IntType<'ctx> {
self.as_base_type().get_element_type().into_array_type().get_element_type().into_int_type()
}
}
impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
type Base = PointerType<'ctx>;
type Value = RangeValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_: &G,
_: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn new_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> Self::Value {
self.map_value(
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap(),
name,
)
}
fn new_array_value<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
}
fn map_value(
&self,
value: <Self::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> Self::Value {
debug_assert_eq!(value.get_type(), self.as_base_type());
RangeValue::from_pointer_value(value, name)
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<RangeType<'ctx>> for PointerType<'ctx> {
fn from(value: RangeType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,203 @@
use std::marker::PhantomData;
use inkwell::{
context::AsContextRef,
types::{BasicTypeEnum, IntType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
};
use crate::codegen::CodeGenContext;
/// Trait indicating that the structure is a field-wise representation of an LLVM structure.
///
/// # Usage
///
/// For example, for a simple C-slice LLVM structure:
///
/// ```ignore
/// struct CSliceFields<'ctx> {
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
/// len: StructField<'ctx, IntValue<'ctx>>
/// }
/// ```
pub trait StructFields<'ctx>: Eq + Copy {
/// Creates an instance of [`StructFields`] using the given `ctx` and `size_t` types.
fn new(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> Self;
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn to_vec(&self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>;
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn iter(&self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)> {
self.to_vec().into_iter()
}
/// Returns a [`Vec`] that contains the fields of the structure in the order as they appear in
/// the type definition.
#[must_use]
fn into_vec(self) -> Vec<(&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.to_vec()
}
/// Returns a [`Iterator`] that contains the fields of the structure in the order as they appear
/// in the type definition.
#[must_use]
fn into_iter(self) -> impl Iterator<Item = (&'static str, BasicTypeEnum<'ctx>)>
where
Self: Sized,
{
self.into_vec().into_iter()
}
}
/// A single field of an LLVM structure.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// The index of this field within the structure.
index: u32,
/// The name of this field.
name: &'static str,
/// The type of this field.
ty: BasicTypeEnum<'ctx>,
/// Instance of [`PhantomData`] containing [`Value`], used to implement automatic downcasts.
_value_ty: PhantomData<Value>,
}
impl<'ctx, Value> StructField<'ctx, Value>
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
/// Creates an instance of [`StructField`].
///
/// * `idx_counter` - The instance of [`FieldIndexCounter`] used to track the current field
/// index.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create(
idx_counter: &mut FieldIndexCounter,
name: &'static str,
ty: impl Into<BasicTypeEnum<'ctx>>,
) -> Self {
StructField { index: idx_counter.increment(), name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates an instance of [`StructField`] with a given index.
///
/// * `index` - The index of this field within its enclosing structure.
/// * `name` - Name of the field.
/// * `ty` - The type of this field.
pub fn create_at(index: u32, name: &'static str, ty: impl Into<BasicTypeEnum<'ctx>>) -> Self {
StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
}
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
/// {idx...}, i32 {self.index}`.
pub fn ptr_by_array_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
idx: &[IntValue<'ctx>],
) -> PointerValue<'ctx> {
unsafe {
ctx.builder.build_in_bounds_gep(
pobj,
&[idx, &[ctx.ctx.i32_type().const_int(u64::from(self.index), false)]].concat(),
"",
)
}
.unwrap()
}
/// Creates a pointer to this field in an arbitrary structure by performing the equivalent of
/// `getelementptr i32 0, i32 {self.index}`.
pub fn ptr_by_gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_struct_gep(
pobj,
self.index,
&obj_name.map(|name| format!("{name}.{}.addr", self.name)).unwrap_or_default(),
)
.unwrap()
}
/// Gets the value of this field for a given `obj`.
#[must_use]
pub fn get_from_value(&self, obj: StructValue<'ctx>) -> Value {
obj.get_field_at_index(self.index).and_then(|value| Value::try_from(value).ok()).unwrap()
}
/// Sets the value of this field for a given `obj`.
pub fn set_from_value(&self, obj: StructValue<'ctx>, value: Value) {
obj.set_field_at_index(self.index, value);
}
/// Gets the value of this field for a pointer-to-structure.
pub fn get(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
obj_name: Option<&'ctx str>,
) -> Value {
ctx.builder
.build_load(
self.ptr_by_gep(ctx, pobj, obj_name),
&obj_name.map(|name| format!("{name}.{}", self.name)).unwrap_or_default(),
)
.map_err(|_| ())
.and_then(|value| Value::try_from(value))
.unwrap()
}
/// Sets the value of this field for a pointer-to-structure.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
pobj: PointerValue<'ctx>,
value: Value,
obj_name: Option<&'ctx str>,
) {
ctx.builder.build_store(self.ptr_by_gep(ctx, pobj, obj_name), value).unwrap();
}
}
impl<'ctx, Value> From<StructField<'ctx, Value>> for (&'static str, BasicTypeEnum<'ctx>)
where
Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
fn from(value: StructField<'ctx, Value>) -> Self {
(value.name, value.ty)
}
}
/// A counter that tracks the next index of a field using a monotonically increasing counter.
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
pub struct FieldIndexCounter(u32);
impl FieldIndexCounter {
/// Increments the number stored by this counter, returning the previous value.
///
/// Functionally equivalent to `i++` in C-based languages.
pub fn increment(&mut self) -> u32 {
let v = self.0;
self.0 += 1;
v
}
}

View File

@ -0,0 +1,426 @@
use inkwell::{
types::AnyTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
/// An LLVM value that is array-like, i.e. it contains a contiguous, sequenced collection of
/// elements.
pub trait ArrayLikeValue<'ctx> {
/// Returns the element type of this array-like value.
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx>;
/// Returns the base pointer to the array.
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx>;
/// Returns the size of this array-like value.
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx>;
/// Returns a [`ArraySliceValue`] representing this value.
fn as_slice_value<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
self.base_ptr(ctx, generator),
self.size(ctx, generator),
None,
)
}
}
/// An array-like value that can be indexed by memory offset.
pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
/// Returns the pointer to the data at the `idx`-th index.
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx>;
}
/// An array-like value that can have its array elements accessed as a [`BasicValueEnum`].
pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
/// Returns the data at the `idx`-th index.
fn get<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> BasicValueEnum<'ctx> {
let ptr = self.ptr_offset(ctx, generator, idx, name);
ctx.builder.build_load(ptr, name.unwrap_or_default()).unwrap()
}
}
/// An array-like value that can have its array elements mutated as a [`BasicValueEnum`].
pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
ArrayLikeIndexer<'ctx, Index>
{
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, None) };
ctx.builder.build_store(ptr, value).unwrap();
}
/// Sets the data at the `idx`-th index.
fn set<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: BasicValueEnum<'ctx>,
) {
let ptr = self.ptr_offset(ctx, generator, idx, None);
ctx.builder.build_store(ptr, value).unwrap();
}
}
/// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index>
{
/// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn get_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, value)
}
/// Returns the data at the `idx`-th index.
fn get_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> T {
let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, value)
}
}
/// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index>
{
/// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx>;
/// # Safety
///
/// This function should be called with a valid index.
unsafe fn set_typed_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) }
}
/// Sets the data at the `idx`-th index.
fn set_typed<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
value: T,
) {
let value = self.upcast_from_type(ctx, value);
self.set(ctx, generator, idx, value);
}
}
/// Type alias for a function that casts a [`BasicValueEnum`] into a `T`.
type ValueDowncastFn<'ctx, T> =
Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, BasicValueEnum<'ctx>) -> T>;
/// Type alias for a function that casts a `T` into a [`BasicValueEnum`].
type ValueUpcastFn<'ctx, T> = Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, T) -> BasicValueEnum<'ctx>>;
/// An adapter for constraining untyped array values as typed values.
pub struct TypedArrayLikeAdapter<'ctx, T, Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>> {
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
}
impl<'ctx, T, Adapted> TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
/// Creates a [`TypedArrayLikeAdapter`].
///
/// * `adapted` - The value to be adapted.
/// * `downcast_fn` - The function converting a [`BasicValueEnum`] into a `T`.
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from(
adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>,
upcast_fn: ValueUpcastFn<'ctx, T>,
) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
}
}
impl<'ctx, T, Adapted> ArrayLikeValue<'ctx> for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeValue<'ctx>,
{
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator)
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator)
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
self.adapted.size(ctx, generator)
}
}
impl<'ctx, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: ArrayLikeIndexer<'ctx, Index>,
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
self.adapted.ptr_offset(ctx, generator, idx, name)
}
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{
fn downcast_to_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> T {
(self.downcast_fn)(ctx, value)
}
}
impl<'ctx, T, Index, Adapted> TypedArrayLikeMutator<'ctx, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted>
where
Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{
fn upcast_from_type(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
value: T,
) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, value)
}
}
/// An LLVM value representing an array slice, consisting of a pointer to the data and the size of
/// the slice.
#[derive(Copy, Clone)]
pub struct ArraySliceValue<'ctx>(PointerValue<'ctx>, IntValue<'ctx>, Option<&'ctx str>);
impl<'ctx> ArraySliceValue<'ctx> {
/// Creates an [`ArraySliceValue`] from a [`PointerValue`] and its size.
#[must_use]
pub fn from_ptr_val(
ptr: PointerValue<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Self {
ArraySliceValue(ptr, size, name)
}
}
impl<'ctx> From<ArraySliceValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ArraySliceValue<'ctx>) -> Self {
value.0
}
}
impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
self.0
}
fn size<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.1
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ArraySliceValue<'ctx> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ArraySliceValue<'ctx> {}

View File

@ -0,0 +1,241 @@
use inkwell::{
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
types::ListType,
{CodeGenContext, CodeGenerator},
};
/// Proxy type for accessing a `list` value in LLVM.
#[derive(Copy, Clone)]
pub struct ListValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ListValue<'ctx> {
/// Checks whether `value` is an instance of `list`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
ListType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ListValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
ListValue { value: ptr, llvm_usize, name }
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
///
/// If `size` is [None], the size stored in the field of this instance is used instead.
pub fn create_data(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: Option<IntValue<'ctx>>,
) {
let size = size.unwrap_or_else(|| self.load_size(ctx, None));
let data = ctx
.builder
.build_select(
ctx.builder
.build_int_compare(IntPredicate::NE, size, self.llvm_usize.const_zero(), "")
.unwrap(),
ctx.builder.build_array_alloca(elem_ty, size, "").unwrap(),
elem_ty.ptr_type(AddressSpace::default()).const_zero(),
"",
)
.map(BasicValueEnum::into_pointer_value)
.unwrap();
self.store_data(ctx, data);
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
#[must_use]
pub fn data(&self) -> ListDataProxy<'ctx, '_> {
ListDataProxy(self)
}
/// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
size: IntValue<'ctx>,
) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx);
ctx.builder.build_store(psize, size).unwrap();
}
/// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let psize = self.ptr_to_size(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.size")))
.unwrap_or_default();
ctx.builder
.build_load(psize, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for ListValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ListType<'ctx>;
fn get_type(&self) -> Self::Type {
ListType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ListValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ListValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `data` array of an `list` instance in LLVM.
#[derive(Copy, Clone)]
pub struct ListDataProxy<'ctx, 'a>(&'a ListValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.value.get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.pptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_size(ctx, None)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
debug_assert_eq!(idx.get_type(), generator.get_size_type(ctx.ctx));
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"list index out of range",
[None, None, None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx> for ListDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx> for ListDataProxy<'ctx, '_> {}

View File

@ -0,0 +1,47 @@
use inkwell::{context::Context, values::BasicValue};
use super::types::ProxyType;
use crate::codegen::CodeGenerator;
pub use array::*;
pub use list::*;
pub use ndarray::*;
pub use range::*;
mod array;
mod list;
mod ndarray;
mod range;
/// A LLVM type that is used to represent a non-primitive value in NAC3.
pub trait ProxyValue<'ctx>: Into<Self::Base> {
/// The type of LLVM values represented by this instance. This is usually the
/// [LLVM pointer type][PointerValue].
type Base: BasicValue<'ctx>;
/// The type of this value.
type Type: ProxyType<'ctx, Value = Self>;
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_instance<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: impl BasicValue<'ctx>,
) -> Result<(), String> {
Self::Type::is_type(generator, ctx, value.as_basic_value_enum().get_type())
}
/// Checks whether `value` can be represented by this [`ProxyValue`].
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
value: Self::Base,
) -> Result<(), String> {
Self::is_instance(generator, ctx, value.as_basic_value_enum())
}
/// Returns the [type][ProxyType] of this value.
fn get_type(&self) -> Self::Type;
/// Returns the [base value][Self::Base] of this proxy.
fn as_base_value(&self) -> Self::Base;
}

View File

@ -0,0 +1,523 @@
use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
};
use crate::codegen::{
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
llvm_intrinsics::call_int_umin,
stmt::gen_for_callback_incrementing,
types::NDArrayType,
CodeGenContext, CodeGenerator,
};
/// Proxy type for accessing an `NDArray` value in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDArrayValue<'ctx> {
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
NDArrayType::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
NDArrayValue { value: ptr, dtype, llvm_usize, name }
}
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
fn ptr_to_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.ndims
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the number of dimensions `ndims` into this instance.
pub fn store_ndims<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
ndims: IntValue<'ctx>,
) {
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_store(pndims, ndims).unwrap();
}
/// Returns the number of dimensions of this `NDArray` as a value.
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let pndims = self.ptr_to_ndims(ctx);
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
}
/// Returns the double-indirection pointer to the `shape` array, as if by calling
/// `getelementptr` on the field.
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.shape
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of dimension sizes `dims` into this instance.
fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
ctx.builder.build_store(self.ptr_to_shape(ctx), dims).unwrap();
}
/// Convenience method for creating a new array storing dimension sizes with the given `size`.
pub fn create_shape(
&self,
ctx: &CodeGenContext<'ctx, '_>,
llvm_usize: IntType<'ctx>,
size: IntValue<'ctx>,
) {
self.store_shape(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
}
/// Returns a proxy object to the field storing the size of each dimension of this `NDArray`.
#[must_use]
pub fn shape(&self) -> NDArrayShapeProxy<'ctx, '_> {
NDArrayShapeProxy(self)
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.get_type()
.get_fields(ctx.ctx, self.llvm_usize)
.data
.ptr_by_gep(ctx, self.value, self.name)
}
/// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
let data = ctx
.builder
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
ctx.builder.build_store(self.ptr_to_data(ctx), data).unwrap();
}
/// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`.
pub fn create_data(
&self,
ctx: &CodeGenContext<'ctx, '_>,
elem_ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
) {
let itemsize =
ctx.builder.build_int_cast(elem_ty.size_of().unwrap(), size.get_type(), "").unwrap();
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
// TODO: What about alignment?
self.store_data(
ctx,
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap(),
);
}
/// Returns a proxy object to the field storing the data of this `NDArray`.
#[must_use]
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self)
}
}
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDArrayType<'ctx>;
fn get_type(&self) -> Self::Type {
NDArrayType::from_type(self.as_base_value().get_type(), self.dtype, self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDArrayValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.shape().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_shape(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn downcast_to_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
fn upcast_from_type(
&self,
_: &mut CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
) -> AnyTypeEnum<'ctx> {
self.0.dtype.as_any_type_enum()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
ctx.builder
.build_load(self.0.ptr_to_data(ctx), var_name.as_str())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> IntValue<'ctx> {
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
}
}
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
idx.get_type(),
"",
)
.unwrap();
let idx = ctx.builder.build_int_mul(*idx, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[idx],
name.unwrap_or_default(),
)
.unwrap()
};
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let data_sz = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, data_sz, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) };
// Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately
// load/store.
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_elem_ty = indices
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
.get_type()
.get_element_type();
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
panic!("Expected list[int32] but got {indices_elem_ty}")
};
assert_eq!(
indices_elem_ty.get_bit_width(),
32,
"Expected list[int32] but got list[int{}]",
indices_elem_ty.get_bit_width()
);
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
let sizeof_elem = ctx
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
index.get_type(),
"",
)
.unwrap();
let index = ctx.builder.build_int_mul(index, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[index],
name.unwrap_or_default(),
)
.unwrap()
};
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
indices: &Index,
name: Option<&str>,
) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let indices_size = indices.size(ctx, generator);
let nidx_leq_ndims = ctx
.builder
.build_int_compare(IntPredicate::SLE, indices_size, self.0.load_ndims(ctx), "")
.unwrap();
ctx.make_assert(
generator,
nidx_leq_ndims,
"0:IndexError",
"invalid index to scalar variable",
[None, None, None],
ctx.current_loc,
);
let indices_len = indices.size(ctx, generator);
let ndarray_len = self.0.load_ndims(ctx);
let len = call_int_umin(ctx, indices_len, ndarray_len, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let (dim_idx, dim_sz) = unsafe {
(
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),
self.0.shape().get_typed_unchecked(ctx, generator, &i, None),
)
};
let dim_idx = ctx
.builder
.build_int_z_extend_or_bit_cast(dim_idx, dim_sz.get_type(), "")
.unwrap();
let dim_lt =
ctx.builder.build_int_compare(IntPredicate::SLT, dim_idx, dim_sz, "").unwrap();
ctx.make_assert(
generator,
dim_lt,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(dim_idx), Some(dim_sz), None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let ptr = unsafe { self.ptr_offset_unchecked(ctx, generator, indices, name) };
// TODO: Current implementation is transparent
ctx.builder
.build_pointer_cast(
ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap()
.ptr_type(AddressSpace::default()),
"",
)
.unwrap()
}
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeAccessor<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx, Index>
for NDArrayDataProxy<'ctx, '_>
{
}

View File

@ -0,0 +1,153 @@
use inkwell::values::{BasicValueEnum, IntValue, PointerValue};
use super::ProxyValue;
use crate::codegen::{types::RangeType, CodeGenContext};
/// Proxy type for accessing a `range` value in LLVM.
#[derive(Copy, Clone)]
pub struct RangeValue<'ctx> {
value: PointerValue<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> RangeValue<'ctx> {
/// Checks whether `value` is an instance of `range`, returning [Err] if `value` is not an instance.
pub fn is_representable(value: PointerValue<'ctx>) -> Result<(), String> {
RangeType::is_representable(value.get_type())
}
/// Creates an [`RangeValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(ptr: PointerValue<'ctx>, name: Option<&'ctx str>) -> Self {
debug_assert!(Self::is_representable(ptr).is_ok());
RangeValue { value: ptr, name }
}
fn ptr_to_start(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.start.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(0, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_end(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.end.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, false)],
var_name.as_str(),
)
.unwrap()
}
}
fn ptr_to_step(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.step.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(2, false)],
var_name.as_str(),
)
.unwrap()
}
}
/// Stores the `start` value into this instance.
pub fn store_start(&self, ctx: &CodeGenContext<'ctx, '_>, start: IntValue<'ctx>) {
debug_assert_eq!(start.get_type().get_bit_width(), 32);
let pstart = self.ptr_to_start(ctx);
ctx.builder.build_store(pstart, start).unwrap();
}
/// Returns the `start` value of this `range`.
pub fn load_start(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstart = self.ptr_to_start(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.start")))
.unwrap_or_default();
ctx.builder
.build_load(pstart, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Stores the `end` value into this instance.
pub fn store_end(&self, ctx: &CodeGenContext<'ctx, '_>, end: IntValue<'ctx>) {
debug_assert_eq!(end.get_type().get_bit_width(), 32);
let pend = self.ptr_to_end(ctx);
ctx.builder.build_store(pend, end).unwrap();
}
/// Returns the `end` value of this `range`.
pub fn load_end(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pend = self.ptr_to_end(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.end")))
.unwrap_or_default();
ctx.builder.build_load(pend, var_name.as_str()).map(BasicValueEnum::into_int_value).unwrap()
}
/// Stores the `step` value into this instance.
pub fn store_step(&self, ctx: &CodeGenContext<'ctx, '_>, step: IntValue<'ctx>) {
debug_assert_eq!(step.get_type().get_bit_width(), 32);
let pstep = self.ptr_to_step(ctx);
ctx.builder.build_store(pstep, step).unwrap();
}
/// Returns the `step` value of this `range`.
pub fn load_step(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> {
let pstep = self.ptr_to_step(ctx);
let var_name = name
.map(ToString::to_string)
.or_else(|| self.name.map(|v| format!("{v}.step")))
.unwrap_or_default();
ctx.builder
.build_load(pstep, var_name.as_str())
.map(BasicValueEnum::into_int_value)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for RangeValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = RangeType<'ctx>;
fn get_type(&self) -> Self::Type {
RangeType::from_type(self.value.get_type())
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<RangeValue<'ctx>> for PointerValue<'ctx> {
fn from(value: RangeValue<'ctx>) -> Self {
value.as_base_value()
}
}

View File

@ -1,10 +1,4 @@
#![deny( #![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
dead_code, dead_code,
@ -19,7 +13,13 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
pub use inkwell;
pub use nac3parser;
pub mod codegen; pub mod codegen;
pub mod symbol_resolver; pub mod symbol_resolver;
pub mod toplevel; pub mod toplevel;
pub mod typecheck; pub mod typecheck;
extern crate self as nac3core;

View File

@ -1,7 +1,15 @@
use std::fmt::Debug; use std::{
use std::rc::Rc; collections::{HashMap, HashSet},
use std::sync::Arc; fmt::{Debug, Display},
use std::{collections::HashMap, collections::HashSet, fmt::Display}; rc::Rc,
sync::Arc,
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use crate::{ use crate::{
codegen::{CodeGenContext, CodeGenerator}, codegen::{CodeGenContext, CodeGenerator},
@ -11,10 +19,6 @@ use crate::{
typedef::{Type, TypeEnum, Unifier, VarMap}, typedef::{Type, TypeEnum, Unifier, VarMap},
}, },
}; };
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)] #[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue { pub enum SymbolValue {
@ -365,6 +369,7 @@ pub trait SymbolResolver {
&self, &self,
str: StrRef, str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>>; ) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>; fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;

View File

@ -1,6 +1,5 @@
use std::iter::once; use std::iter::once;
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
use indexmap::IndexMap; use indexmap::IndexMap;
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
@ -11,20 +10,22 @@ use inkwell::{
use itertools::Either; use itertools::Either;
use strum::IntoEnumIterator; use strum::IntoEnumIterator;
use super::{
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDef, PrimDefDetails},
numpy::make_ndarray_ty,
*,
};
use crate::{ use crate::{
codegen::{ codegen::{
builtin_fns, builtin_fns,
classes::{ProxyValue, RangeValue},
numpy::*, numpy::*,
stmt::exn_constructor, stmt::exn_constructor,
values::{ProxyValue, RangeValue},
}, },
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, numpy::make_ndarray_ty},
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap}, typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
}; };
use super::*;
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>; type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
pub fn get_exn_constructor( pub fn get_exn_constructor(
@ -709,7 +710,7 @@ impl<'a> BuiltinBuilder<'a> {
let (zelf_ty, zelf) = obj.unwrap(); let (zelf_ty, zelf) = obj.unwrap();
let zelf = let zelf =
zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value(); zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
let zelf = RangeValue::from_ptr_val(zelf, Some("range")); let zelf = RangeValue::from_pointer_value(zelf, Some("range"));
let mut start = None; let mut start = None;
let mut stop = None; let mut stop = None;

View File

@ -1,17 +1,17 @@
use nac3parser::ast::fold::Fold;
use std::rc::Rc; use std::rc::Rc;
use nac3parser::ast::{fold::Fold, ExprKind, Ident};
use super::*;
use crate::{ use crate::{
codegen::{expr::get_subst_key, stmt::exn_constructor}, codegen::{expr::get_subst_key, stmt::exn_constructor},
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
typecheck::{ typecheck::{
type_inferencer::{FunctionData, Inferencer}, type_inferencer::{FunctionData, IdentifierInfo, Inferencer},
typedef::{TypeVar, VarMap}, typedef::{TypeVar, VarMap},
}, },
}; };
use super::*;
pub struct ComposerConfig { pub struct ComposerConfig {
pub kernel_ann: Option<&'static str>, pub kernel_ann: Option<&'static str>,
pub kernel_invariant_ann: &'static str, pub kernel_invariant_ann: &'static str,
@ -101,7 +101,8 @@ impl TopLevelComposer {
.iter() .iter()
.map(|def_ast| match *def_ast.0.read() { .map(|def_ast| match *def_ast.0.read() {
TopLevelDef::Class { name, .. } => name.to_string(), TopLevelDef::Class { name, .. } => name.to_string(),
TopLevelDef::Function { simple_name, .. } => simple_name.to_string(), TopLevelDef::Function { simple_name, .. }
| TopLevelDef::Variable { simple_name, .. } => simple_name.to_string(),
}) })
.collect_vec(); .collect_vec();
@ -381,13 +382,87 @@ impl TopLevelComposer {
)) ))
} }
ast::StmtKind::Assign { .. } => {
// Assignment statements can assign to (and therefore create) more than one
// variable, but this function only allows returning one set of symbol information.
// We want to avoid changing this to return a `Vec` of symbol info, as this would
// require `iter().next().unwrap()` on every variable created from a non-Assign
// statement.
//
// Make callers use `register_top_level_var` instead, as it provides more
// fine-grained control over which symbols to register, while also simplifying the
// usage of this function.
panic!("Registration of top-level Assign statements must use TopLevelComposer::register_top_level_var (at {})", ast.location);
}
ast::StmtKind::AnnAssign { target, annotation, .. } => {
let ExprKind::Name { id: name, .. } = target.node else {
return Err(format!(
"global variable declaration must be an identifier (at {})",
target.location
));
};
self.register_top_level_var(
name,
Some(annotation.as_ref().clone()),
resolver,
mod_path,
target.location,
)
}
_ => Err(format!( _ => Err(format!(
"registrations of constructs other than top level classes/functions are not supported (at {})", "registrations of constructs other than top level classes/functions/variables are not supported (at {})",
ast.location ast.location
)), )),
} }
} }
/// Registers a top-level variable with the given `name` into the composer.
///
/// `annotation` - The type annotation of the top-level variable, or [`None`] if no type
/// annotation is provided.
/// `location` - The location of the top-level variable.
pub fn register_top_level_var(
&mut self,
name: Ident,
annotation: Option<Expr>,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
mod_path: &str,
location: Location,
) -> Result<(StrRef, DefinitionId, Option<Type>), String> {
if self.keyword_list.contains(&name) {
return Err(format!("cannot use keyword `{name}` as a class name (at {location})"));
}
let global_var_name =
if mod_path.is_empty() { name.to_string() } else { format!("{mod_path}.{name}") };
if !self.defined_names.insert(global_var_name.clone()) {
return Err(format!(
"global variable `{global_var_name}` defined twice (at {location})"
));
}
let ty_to_be_unified = self.unifier.get_dummy_var().ty;
self.definition_ast_list.push((
RwLock::new(Self::make_top_level_variable_def(
global_var_name,
name,
// dummy here, unify with correct type later,
ty_to_be_unified,
annotation,
resolver,
Some(location),
))
.into(),
None,
));
Ok((name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified)))
}
pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet<String>> { pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet<String>> {
self.analyze_top_level_class_type_var()?; self.analyze_top_level_class_type_var()?;
self.analyze_top_level_class_bases()?; self.analyze_top_level_class_bases()?;
@ -396,6 +471,7 @@ impl TopLevelComposer {
if inference { if inference {
self.analyze_function_instance()?; self.analyze_function_instance()?;
} }
self.analyze_top_level_variables()?;
Ok(()) Ok(())
} }
@ -433,7 +509,7 @@ impl TopLevelComposer {
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported // things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript // i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript { value, slice, .. } ExprKind::Subscript { value, slice, .. }
if { if {
matches!( matches!(
&value.node, &value.node,
@ -449,9 +525,9 @@ impl TopLevelComposer {
} }
is_generic = true; is_generic = true;
let type_var_list: Vec<&ast::Expr<()>>; let type_var_list: Vec<&Expr<()>>;
// if `class A(Generic[T, V, G])` // if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node { if let ExprKind::Tuple { elts, .. } = &slice.node {
type_var_list = elts.iter().collect_vec(); type_var_list = elts.iter().collect_vec();
// `class A(Generic[T])` // `class A(Generic[T])`
} else { } else {
@ -500,6 +576,7 @@ impl TopLevelComposer {
} }
Ok(()) Ok(())
}; };
let mut errors = HashSet::new(); let mut errors = HashSet::new();
for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) { for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) {
if class_ast.is_none() { if class_ast.is_none() {
@ -853,7 +930,6 @@ impl TopLevelComposer {
let unifier = self.unifier.borrow_mut(); let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty; let primitives_store = &self.primitives_ty;
let mut errors = HashSet::new();
let mut analyze = |function_def: &Arc<RwLock<TopLevelDef>>, function_ast: &Option<Stmt>| { let mut analyze = |function_def: &Arc<RwLock<TopLevelDef>>, function_ast: &Option<Stmt>| {
let mut function_def = function_def.write(); let mut function_def = function_def.write();
let function_def = &mut *function_def; let function_def = &mut *function_def;
@ -962,18 +1038,18 @@ impl TopLevelComposer {
} }
} }
let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&ast::Expr>)> = let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&Expr>)> = args
args.args .args
.iter() .iter()
.rev() .rev()
.zip( .zip(
args.defaults args.defaults
.iter() .iter()
.rev() .rev()
.map(|x| -> Option<&ast::Expr> { Some(x) }) .map(|x| -> Option<&Expr> { Some(x) })
.chain(std::iter::repeat(None)), .chain(std::iter::repeat(None)),
) )
.collect_vec(); .collect_vec();
arg_with_default arg_with_default
.iter() .iter()
@ -1128,6 +1204,8 @@ impl TopLevelComposer {
})?; })?;
Ok(()) Ok(())
}; };
let mut errors = HashSet::new();
for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) { for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) {
if function_ast.is_none() { if function_ast.is_none() {
continue; continue;
@ -1229,7 +1307,7 @@ impl TopLevelComposer {
let arg_with_default: Vec<( let arg_with_default: Vec<(
&ast::Located<ast::ArgData<()>>, &ast::Located<ast::ArgData<()>>,
Option<&ast::Expr>, Option<&Expr>,
)> = args )> = args
.args .args
.iter() .iter()
@ -1238,7 +1316,7 @@ impl TopLevelComposer {
args.defaults args.defaults
.iter() .iter()
.rev() .rev()
.map(|x| -> Option<&ast::Expr> { Some(x) }) .map(|x| -> Option<&Expr> { Some(x) })
.chain(std::iter::repeat(None)), .chain(std::iter::repeat(None)),
) )
.collect_vec(); .collect_vec();
@ -1395,7 +1473,7 @@ impl TopLevelComposer {
.map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?; .map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?;
} }
ast::StmtKind::AnnAssign { target, annotation, value, .. } => { ast::StmtKind::AnnAssign { target, annotation, value, .. } => {
if let ast::ExprKind::Name { id: attr, .. } = &target.node { if let ExprKind::Name { id: attr, .. } = &target.node {
if defined_fields.insert(attr.to_string()) { if defined_fields.insert(attr.to_string()) {
let dummy_field_type = unifier.get_dummy_var().ty; let dummy_field_type = unifier.get_dummy_var().ty;
@ -1403,7 +1481,7 @@ impl TopLevelComposer {
None => { None => {
// handle Kernel[T], KernelInvariant[T] // handle Kernel[T], KernelInvariant[T]
let (annotation, mutable) = match &annotation.node { let (annotation, mutable) = match &annotation.node {
ast::ExprKind::Subscript { value, slice, .. } ExprKind::Subscript { value, slice, .. }
if matches!( if matches!(
&value.node, &value.node,
ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into() ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into()
@ -1411,7 +1489,7 @@ impl TopLevelComposer {
{ {
(slice, false) (slice, false)
} }
ast::ExprKind::Subscript { value, slice, .. } ExprKind::Subscript { value, slice, .. }
if matches!( if matches!(
&value.node, &value.node,
ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into()) ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into())
@ -1429,13 +1507,13 @@ impl TopLevelComposer {
Some(boxed_expr) => { Some(boxed_expr) => {
// Class attributes are set as immutable regardless // Class attributes are set as immutable regardless
let (annotation, _) = match &annotation.node { let (annotation, _) = match &annotation.node {
ast::ExprKind::Subscript { slice, .. } => (slice, false), ExprKind::Subscript { slice, .. } => (slice, false),
_ if core_config.kernel_ann.is_none() => (annotation, false), _ if core_config.kernel_ann.is_none() => (annotation, false),
_ => continue, _ => continue,
}; };
match &**boxed_expr { match &**boxed_expr {
ast::Located {location: _, custom: (), node: ast::ExprKind::Constant { value: v, kind: _ }} => { ast::Located {location: _, custom: (), node: ExprKind::Constant { value: v, kind: _ }} => {
// Restricting the types allowed to be defined as class attributes // Restricting the types allowed to be defined as class attributes
match v { match v {
ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {} ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {}
@ -1702,7 +1780,6 @@ impl TopLevelComposer {
} }
} }
let mut errors = HashSet::new();
let mut analyze = |i, def: &Arc<RwLock<TopLevelDef>>, ast: &Option<Stmt>| { let mut analyze = |i, def: &Arc<RwLock<TopLevelDef>>, ast: &Option<Stmt>| {
let class_def = def.read(); let class_def = def.read();
if let TopLevelDef::Class { if let TopLevelDef::Class {
@ -1845,6 +1922,8 @@ impl TopLevelComposer {
} }
Ok(()) Ok(())
}; };
let mut errors = HashSet::new();
for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) { for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) {
if ast.is_none() { if ast.is_none() {
continue; continue;
@ -1882,272 +1961,296 @@ impl TopLevelComposer {
if ast.is_none() { if ast.is_none() {
return Ok(()); return Ok(());
} }
let mut function_def = def.write();
if let TopLevelDef::Function { let (name, simple_name, signature, resolver) = {
instance_to_stmt, let function_def = def.read();
instance_to_symbol, let TopLevelDef::Function { name, simple_name, signature, resolver, .. } =
name, &*function_def
simple_name,
signature,
resolver,
..
} = &mut *function_def
{
let signature_ty_enum = unifier.get_ty(*signature);
let TypeEnum::TFunc(FunSignature { args, ret, vars }) = signature_ty_enum.as_ref()
else { else {
unreachable!("must be typeenum::tfunc") return Ok(());
}; };
let mut vars = vars.clone(); (name.clone(), *simple_name, *signature, resolver.clone())
// None if is not class method };
let uninst_self_type = {
if let Some(class_id) = method_class.get(&DefinitionId(id)) { let signature_ty_enum = unifier.get_ty(signature);
let class_def = definition_ast_list.get(class_id.0).unwrap(); let TypeEnum::TFunc(FunSignature { args, ret, vars, .. }) = signature_ty_enum.as_ref()
let class_def = class_def.0.read(); else {
let TopLevelDef::Class { type_vars, .. } = &*class_def else { unreachable!("must be typeenum::tfunc")
unreachable!("must be class def") };
let mut vars = vars.clone();
// None if is not class method
let uninst_self_type = {
if let Some(class_id) = method_class.get(&DefinitionId(id)) {
let class_def = definition_ast_list.get(class_id.0).unwrap();
let class_def = class_def.0.read();
let TopLevelDef::Class { type_vars, .. } = &*class_def else {
unreachable!("must be class def")
};
let ty_ann = make_self_type_annotation(type_vars, *class_id);
let self_ty = get_type_from_type_annotation_kinds(
&def_list,
unifier,
primitives_ty,
&ty_ann,
&mut None,
)?;
vars.extend(type_vars.iter().map(|ty| {
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
unreachable!()
}; };
let ty_ann = make_self_type_annotation(type_vars, *class_id); (*id, *ty)
let self_ty = get_type_from_type_annotation_kinds( }));
&def_list, Some((self_ty, type_vars.clone()))
unifier, } else {
primitives_ty, None
&ty_ann, }
&mut None, };
)?; // carefully handle those with bounds, without bounds and no typevars
vars.extend(type_vars.iter().map(|ty| { // if class methods, `vars` also contains all class typevars here
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else { let (type_var_subst_comb, no_range_vars) = {
let mut no_ranges: Vec<Type> = Vec::new();
let var_combs = vars
.values()
.map(|ty| {
unifier.get_instantiations(*ty).unwrap_or_else(|| {
let TypeEnum::TVar { name, loc, is_const_generic: false, .. } =
&*unifier.get_ty(*ty)
else {
unreachable!() unreachable!()
}; };
(*id, *ty) let rigid = unifier.get_fresh_rigid_var(*name, *loc).ty;
})); no_ranges.push(rigid);
Some((self_ty, type_vars.clone())) vec![rigid]
} else {
None
}
};
// carefully handle those with bounds, without bounds and no typevars
// if class methods, `vars` also contains all class typevars here
let (type_var_subst_comb, no_range_vars) = {
let mut no_ranges: Vec<Type> = Vec::new();
let var_combs = vars
.values()
.map(|ty| {
unifier.get_instantiations(*ty).unwrap_or_else(|| {
let TypeEnum::TVar { name, loc, is_const_generic: false, .. } =
&*unifier.get_ty(*ty)
else {
unreachable!()
};
let rigid = unifier.get_fresh_rigid_var(*name, *loc).ty;
no_ranges.push(rigid);
vec![rigid]
})
}) })
.multi_cartesian_product() })
.collect_vec(); .multi_cartesian_product()
let mut result: Vec<VarMap> = Vec::default(); .collect_vec();
for comb in var_combs { let mut result: Vec<VarMap> = Vec::default();
result.push(vars.keys().copied().zip(comb).collect()); for comb in var_combs {
} result.push(vars.keys().copied().zip(comb).collect());
// NOTE: if is empty, means no type var, append a empty subst, ok to do this? }
if result.is_empty() { // NOTE: if is empty, means no type var, append a empty subst, ok to do this?
result.push(VarMap::new()); if result.is_empty() {
} result.push(VarMap::new());
(result, no_ranges) }
}; (result, no_ranges)
};
for subst in type_var_subst_comb { for subst in type_var_subst_comb {
// for each instance // for each instance
let inst_ret = unifier.subst(*ret, &subst).unwrap_or(*ret); let inst_ret = unifier.subst(*ret, &subst).unwrap_or(*ret);
let inst_args = { let inst_args = {
args.iter() args.iter()
.map(|a| FuncArg { .map(|a| FuncArg {
name: a.name, name: a.name,
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty), ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
default_value: a.default_value.clone(), default_value: a.default_value.clone(),
is_vararg: false, is_vararg: false,
})
.collect_vec()
};
let self_type = {
uninst_self_type.clone().map(|(self_type, type_vars)| {
let subst_for_self = {
let class_ty_var_ids = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
*id
} else {
unreachable!("must be type var here");
}
})
.collect::<HashSet<_>>();
subst
.iter()
.filter_map(|(ty_var_id, ty_var_target)| {
if class_ty_var_ids.contains(ty_var_id) {
Some((*ty_var_id, *ty_var_target))
} else {
None
}
})
.collect::<VarMap>()
};
unifier.subst(self_type, &subst_for_self).unwrap_or(self_type)
}) })
}; .collect_vec()
let mut identifiers = { };
let mut result: HashSet<_> = HashSet::new(); let self_type = {
if self_type.is_some() { uninst_self_type.clone().map(|(self_type, type_vars)| {
result.insert("self".into()); let subst_for_self = {
let class_ty_var_ids = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
*id
} else {
unreachable!("must be type var here");
}
})
.collect::<HashSet<_>>();
subst
.iter()
.filter_map(|(ty_var_id, ty_var_target)| {
if class_ty_var_ids.contains(ty_var_id) {
Some((*ty_var_id, *ty_var_target))
} else {
None
}
})
.collect::<VarMap>()
};
unifier.subst(self_type, &subst_for_self).unwrap_or(self_type)
})
};
let mut identifiers = {
let mut result = HashMap::new();
if self_type.is_some() {
result.insert("self".into(), IdentifierInfo::default());
}
result.extend(inst_args.iter().map(|x| (x.name, IdentifierInfo::default())));
result
};
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
let mut inferencer = Inferencer {
top_level: ctx.as_ref(),
defined_identifiers: identifiers.clone(),
function_data: &mut FunctionData {
resolver: resolver.as_ref().unwrap().clone(),
return_type: if unifier.unioned(inst_ret, primitives_ty.none) {
None
} else {
Some(inst_ret)
},
// NOTE: allowed type vars
bound_variables: no_range_vars.clone(),
},
unifier,
variable_mapping: {
let mut result: HashMap<StrRef, Type> = HashMap::new();
if let Some(self_ty) = self_type {
result.insert("self".into(), self_ty);
} }
result.extend(inst_args.iter().map(|x| x.name)); result.extend(inst_args.iter().map(|x| (x.name, x.ty)));
result result
}; },
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new(); primitives: primitives_ty,
let mut inferencer = Inferencer { virtual_checks: &mut Vec::new(),
top_level: ctx.as_ref(), calls: &mut calls,
defined_identifiers: identifiers.clone(), in_handler: false,
function_data: &mut FunctionData { };
resolver: resolver.as_ref().unwrap().clone(),
return_type: if unifier.unioned(inst_ret, primitives_ty.none) {
None
} else {
Some(inst_ret)
},
// NOTE: allowed type vars
bound_variables: no_range_vars.clone(),
},
unifier,
variable_mapping: {
let mut result: HashMap<StrRef, Type> = HashMap::new();
if let Some(self_ty) = self_type {
result.insert("self".into(), self_ty);
}
result.extend(inst_args.iter().map(|x| (x.name, x.ty)));
result
},
primitives: primitives_ty,
virtual_checks: &mut Vec::new(),
calls: &mut calls,
in_handler: false,
};
let ast::StmtKind::FunctionDef { body, decorator_list, .. } = let ast::StmtKind::FunctionDef { body, decorator_list, .. } =
ast.clone().unwrap().node ast.clone().unwrap().node
else { else {
unreachable!("must be function def ast") unreachable!("must be function def ast")
}; };
if !decorator_list.is_empty()
&& matches!(&decorator_list[0].node, if !decorator_list.is_empty() {
ast::ExprKind::Name{ id, .. } if id == &"extern".into()) if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"extern".into())
{
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
if !decorator_list.is_empty()
&& matches!(&decorator_list[0].node,
ast::ExprKind::Name{ id, .. } if id == &"rpc".into())
{ {
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string()); instance_to_symbol.insert(String::new(), simple_name.to_string());
continue; continue;
} }
let fun_body = body if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"rpc".into())
.into_iter() {
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
if let ExprKind::Call { func, .. } = &decorator_list[0].node {
if matches!(&func.node, ExprKind::Name { id, .. } if id == &"rpc".into()) {
let TopLevelDef::Function { instance_to_symbol, .. } =
&mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
}
}
let fun_body =
body.into_iter()
.map(|b| inferencer.fold_stmt(b)) .map(|b| inferencer.fold_stmt(b))
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?; let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?;
{ {
// check virtuals // check virtuals
let defs = ctx.definitions.read(); let defs = ctx.definitions.read();
for (subtype, base, loc) in &*inferencer.virtual_checks { for (subtype, base, loc) in &*inferencer.virtual_checks {
let base_id = { let base_id = {
let base = inferencer.unifier.get_ty(*base); let base = inferencer.unifier.get_ty(*base);
if let TypeEnum::TObj { obj_id, .. } = &*base { if let TypeEnum::TObj { obj_id, .. } = &*base {
*obj_id *obj_id
} else { } else {
return Err(HashSet::from([format!( return Err(HashSet::from([format!(
"Base type should be a class (at {loc})" "Base type should be a class (at {loc})"
)])); )]));
} }
}; };
let subtype_id = { let subtype_id = {
let ty = inferencer.unifier.get_ty(*subtype); let ty = inferencer.unifier.get_ty(*subtype);
if let TypeEnum::TObj { obj_id, .. } = &*ty { if let TypeEnum::TObj { obj_id, .. } = &*ty {
*obj_id *obj_id
} else { } else {
let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
]));
}
};
let subtype_entry = defs[subtype_id.0].read();
let TopLevelDef::Class { ancestors, .. } = &*subtype_entry else {
unreachable!()
};
let m = ancestors.iter()
.find(|kind| matches!(kind, TypeAnnotation::CustomClass { id, .. } if *id == base_id));
if m.is_none() {
let base_repr = inferencer.unifier.stringify(*base); let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype); let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!( return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"), "Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
])); ]));
} }
};
let subtype_entry = defs[subtype_id.0].read();
let TopLevelDef::Class { ancestors, .. } = &*subtype_entry else {
unreachable!()
};
let m = ancestors.iter()
.find(|kind| matches!(kind, TypeAnnotation::CustomClass { id, .. } if *id == base_id));
if m.is_none() {
let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
]));
} }
} }
if !unifier.unioned(inst_ret, primitives_ty.none) && !returned {
let def_ast_list = &definition_ast_list;
let ret_str = unifier.internal_stringify(
inst_ret,
&mut |id| {
let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read()
else {
unreachable!("must be class id here")
};
name.to_string()
},
&mut |id| format!("typevar{id}"),
&mut None,
);
return Err(HashSet::from([format!(
"expected return type of `{}` in function `{}` (at {})",
ret_str,
name,
ast.as_ref().unwrap().location
)]));
}
instance_to_stmt.insert(
get_subst_key(
unifier,
self_type,
&subst,
Some(&vars.keys().copied().collect()),
),
FunInstance {
body: Arc::new(fun_body),
unifier_id: 0,
calls: Arc::new(calls),
subst,
},
);
} }
if !unifier.unioned(inst_ret, primitives_ty.none) && !returned {
let def_ast_list = &definition_ast_list;
let ret_str = unifier.internal_stringify(
inst_ret,
&mut |id| {
let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read()
else {
unreachable!("must be class id here")
};
name.to_string()
},
&mut |id| format!("typevar{id}"),
&mut None,
);
return Err(HashSet::from([format!(
"expected return type of `{}` in function `{}` (at {})",
ret_str,
name,
ast.as_ref().unwrap().location
)]));
}
let TopLevelDef::Function { instance_to_stmt, .. } = &mut *def.write() else {
unreachable!()
};
instance_to_stmt.insert(
get_subst_key(
unifier,
self_type,
&subst,
Some(&vars.keys().copied().collect()),
),
FunInstance {
body: Arc::new(fun_body),
unifier_id: 0,
calls: Arc::new(calls),
subst,
},
);
} }
Ok(()) Ok(())
}; };
for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) { for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) {
if ast.is_none() { if ast.is_none() {
continue; continue;
@ -2161,4 +2264,59 @@ impl TopLevelComposer {
} }
Ok(()) Ok(())
} }
/// Step 6. Analyze and populate the types of global variables.
fn analyze_top_level_variables(&mut self) -> Result<(), HashSet<String>> {
let def_list = &self.definition_ast_list;
let temp_def_list = self.extract_def_list();
let unifier = &mut self.unifier;
let primitives_store = &self.primitives_ty;
let mut analyze = |variable_def: &Arc<RwLock<TopLevelDef>>| -> Result<_, HashSet<String>> {
let TopLevelDef::Variable { ty: dummy_ty, ty_decl, resolver, loc, .. } =
&*variable_def.read()
else {
// not top level variable def, skip
return Ok(());
};
let resolver = &**resolver.as_ref().unwrap();
if let Some(ty_decl) = ty_decl {
let ty_annotation = parse_ast_to_type_annotation_kinds(
resolver,
&temp_def_list,
unifier,
primitives_store,
ty_decl,
HashMap::new(),
)?;
let ty_from_ty_annotation = get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives_store,
&ty_annotation,
&mut None,
)?;
unifier.unify(*dummy_ty, ty_from_ty_annotation).map_err(|e| {
HashSet::from([e.at(Some(loc.unwrap())).to_display(unifier).to_string()])
})?;
}
Ok(())
};
let mut errors = HashSet::new();
for (variable_def, _) in def_list.iter().skip(self.builtin_num) {
if let Err(e) = analyze(variable_def) {
errors.extend(e);
}
}
if !errors.is_empty() {
return Err(errors);
}
Ok(())
}
} }

View File

@ -1,14 +1,15 @@
use std::convert::TryInto; use std::convert::TryInto;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
use ast::ExprKind;
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator; use strum::IntoEnumIterator;
use strum_macros::EnumIter; use strum_macros::EnumIter;
use super::*; use nac3parser::ast::{Constant, ExprKind, Location};
use super::{numpy::unpack_ndarray_var_tys, *};
use crate::{
symbol_resolver::SymbolValue,
typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap},
};
/// All primitive types and functions in nac3core. /// All primitive types and functions in nac3core.
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)] #[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
@ -388,6 +389,9 @@ impl TopLevelDef {
r r
} }
), ),
TopLevelDef::Variable { name, ty, .. } => {
format!("Variable {{ name: {name:?}, ty: {:?} }}", unifier.stringify(*ty),)
}
} }
} }
} }
@ -589,6 +593,18 @@ impl TopLevelComposer {
} }
} }
#[must_use]
pub fn make_top_level_variable_def(
name: String,
simple_name: StrRef,
ty: Type,
ty_decl: Option<Expr>,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
loc: Option<Location>,
) -> TopLevelDef {
TopLevelDef::Variable { name, simple_name, ty, ty_decl, resolver, loc }
}
#[must_use] #[must_use]
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String { pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
class_name.push('.'); class_name.push('.');

View File

@ -6,36 +6,36 @@ use std::{
sync::Arc, sync::Arc,
}; };
use super::codegen::CodeGenContext;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{
FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier, VarMap,
};
use crate::{
codegen::CodeGenerator,
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::CodeLocation,
typedef::{CallId, TypeVarId},
},
};
use inkwell::values::BasicValueEnum; use inkwell::values::BasicValueEnum;
use itertools::Itertools; use itertools::Itertools;
use nac3parser::ast::{self, Location, Stmt, StrRef};
use parking_lot::RwLock; use parking_lot::RwLock;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)] use nac3parser::ast::{self, Expr, Location, Stmt, StrRef};
pub struct DefinitionId(pub usize);
use crate::{
codegen::{CodeGenContext, CodeGenerator},
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{
CallId, FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, TypeVarId, Unifier,
VarMap,
},
},
};
use composer::*;
use type_annotation::*;
pub mod builtins; pub mod builtins;
pub mod composer; pub mod composer;
pub mod helper; pub mod helper;
pub mod numpy; pub mod numpy;
pub mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)] #[cfg(test)]
mod test; mod test;
pub mod type_annotation;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize);
type GenCallCallback = dyn for<'ctx, 'a> Fn( type GenCallCallback = dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>, &mut CodeGenContext<'ctx, 'a>,
@ -148,6 +148,25 @@ pub enum TopLevelDef {
/// Definition location. /// Definition location.
loc: Option<Location>, loc: Option<Location>,
}, },
Variable {
/// Qualified name of the global variable, should be unique globally.
name: String,
/// Simple name, the same as in method/function definition.
simple_name: StrRef,
/// Type of the global variable.
ty: Type,
/// The declared type of the global variable, or [`None`] if no type annotation is provided.
ty_decl: Option<Expr>,
/// Symbol resolver of the module defined the class.
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Definition location.
loc: Option<Location>,
},
} }
pub struct TopLevelContext { pub struct TopLevelContext {

View File

@ -1,12 +1,11 @@
use crate::{
toplevel::helper::PrimDef,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use itertools::Itertools; use itertools::Itertools;
use super::helper::PrimDef;
use crate::typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
};
/// Creates a `ndarray` [`Type`] with the given type arguments. /// Creates a `ndarray` [`Type`] with the given type arguments.
/// ///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not /// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not

View File

@ -1,21 +1,23 @@
use super::*; use std::{collections::HashMap, sync::Arc};
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::into_var_map; use indoc::indoc;
use parking_lot::Mutex;
use test_case::test_case;
use nac3parser::{
ast::{fold::Fold, FileName},
parser::parse_program,
};
use super::{helper::PrimDef, DefinitionId, *};
use crate::{ use crate::{
codegen::CodeGenContext, codegen::CodeGenContext,
symbol_resolver::{SymbolResolver, ValueEnum}, symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::DefinitionId,
typecheck::{ typecheck::{
type_inferencer::PrimitiveStore, type_inferencer::PrimitiveStore,
typedef::{Type, Unifier}, typedef::{into_var_map, Type, Unifier},
}, },
}; };
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::{ast::fold::Fold, parser::parse_program};
use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
struct ResolverInternal { struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>, id_to_type: Mutex<HashMap<StrRef, Type>>,
@ -62,6 +64,7 @@ impl SymbolResolver for Resolver {
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }

View File

@ -1,10 +1,13 @@
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
use crate::typecheck::typedef::VarMap;
use nac3parser::ast::Constant;
use strum::IntoEnumIterator; use strum::IntoEnumIterator;
use nac3parser::ast::Constant;
use super::{
helper::{PrimDef, PrimDefDetails},
*,
};
use crate::{symbol_resolver::SymbolValue, typecheck::typedef::VarMap};
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub enum TypeAnnotation { pub enum TypeAnnotation {
Primitive(Type), Primitive(Type),

View File

@ -1,13 +1,19 @@
use crate::toplevel::helper::PrimDef; use std::{
collections::{HashMap, HashSet},
iter::once,
};
use super::type_inferencer::Inferencer;
use super::typedef::{Type, TypeEnum};
use nac3parser::ast::{ use nac3parser::ast::{
self, Constant, Expr, ExprKind, self, Constant, Expr, ExprKind,
Operator::{LShift, RShift}, Operator::{LShift, RShift},
Stmt, StmtKind, StrRef, Stmt, StmtKind, StrRef,
}; };
use std::{collections::HashSet, iter::once};
use super::{
type_inferencer::{DeclarationSource, IdentifierInfo, Inferencer},
typedef::{Type, TypeEnum},
};
use crate::toplevel::helper::PrimDef;
impl<'a> Inferencer<'a> { impl<'a> Inferencer<'a> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> { fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
@ -21,15 +27,29 @@ impl<'a> Inferencer<'a> {
fn check_pattern( fn check_pattern(
&mut self, &mut self,
pattern: &Expr<Option<Type>>, pattern: &Expr<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>, defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<(), HashSet<String>> { ) -> Result<(), HashSet<String>> {
match &pattern.node { match &pattern.node {
ExprKind::Name { id, .. } if id == &"none".into() => { ExprKind::Name { id, .. } if id == &"none".into() => {
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)])) Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
} }
ExprKind::Name { id, .. } => { ExprKind::Name { id, .. } => {
if !defined_identifiers.contains(id) { // If `id` refers to a declared symbol, reject this assignment if it is used in the
defined_identifiers.insert(*id); // context of an (implicit) global variable
if let Some(id_info) = defined_identifiers.get(id) {
if matches!(
id_info.source,
DeclarationSource::Global { is_explicit: Some(false) }
) {
return Err(HashSet::from([format!(
"cannot access local variable '{id}' before it is declared (at {})",
pattern.location
)]));
}
}
if !defined_identifiers.contains_key(id) {
defined_identifiers.insert(*id, IdentifierInfo::default());
} }
self.should_have_value(pattern)?; self.should_have_value(pattern)?;
Ok(()) Ok(())
@ -69,7 +89,7 @@ impl<'a> Inferencer<'a> {
fn check_expr( fn check_expr(
&mut self, &mut self,
expr: &Expr<Option<Type>>, expr: &Expr<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>, defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<(), HashSet<String>> { ) -> Result<(), HashSet<String>> {
// there are some cases where the custom field is None // there are some cases where the custom field is None
if let Some(ty) = &expr.custom { if let Some(ty) = &expr.custom {
@ -90,7 +110,7 @@ impl<'a> Inferencer<'a> {
return Ok(()); return Ok(());
} }
self.should_have_value(expr)?; self.should_have_value(expr)?;
if !defined_identifiers.contains(id) { if !defined_identifiers.contains_key(id) {
match self.function_data.resolver.get_symbol_type( match self.function_data.resolver.get_symbol_type(
self.unifier, self.unifier,
&self.top_level.definitions.read(), &self.top_level.definitions.read(),
@ -98,7 +118,22 @@ impl<'a> Inferencer<'a> {
*id, *id,
) { ) {
Ok(_) => { Ok(_) => {
self.defined_identifiers.insert(*id); let is_global = self.is_id_global(*id);
defined_identifiers.insert(
*id,
IdentifierInfo {
source: match is_global {
Some(true) => {
DeclarationSource::Global { is_explicit: Some(false) }
}
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
} }
Err(e) => { Err(e) => {
return Err(HashSet::from([format!( return Err(HashSet::from([format!(
@ -171,9 +206,7 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone(); let mut defined_identifiers = defined_identifiers.clone();
for arg in &args.args { for arg in &args.args {
// TODO: should we check the types here? // TODO: should we check the types here?
if !defined_identifiers.contains(&arg.node.arg) { defined_identifiers.entry(arg.node.arg).or_default();
defined_identifiers.insert(arg.node.arg);
}
} }
self.check_expr(body, &mut defined_identifiers)?; self.check_expr(body, &mut defined_identifiers)?;
} }
@ -236,7 +269,7 @@ impl<'a> Inferencer<'a> {
fn check_stmt( fn check_stmt(
&mut self, &mut self,
stmt: &Stmt<Option<Type>>, stmt: &Stmt<Option<Type>>,
defined_identifiers: &mut HashSet<StrRef>, defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<bool, HashSet<String>> { ) -> Result<bool, HashSet<String>> {
match &stmt.node { match &stmt.node {
StmtKind::For { target, iter, body, orelse, .. } => { StmtKind::For { target, iter, body, orelse, .. } => {
@ -262,9 +295,11 @@ impl<'a> Inferencer<'a> {
let body_returned = self.check_block(body, &mut body_identifiers)?; let body_returned = self.check_block(body, &mut body_identifiers)?;
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?; let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
for ident in &body_identifiers { for ident in body_identifiers.keys() {
if !defined_identifiers.contains(ident) && orelse_identifiers.contains(ident) { if !defined_identifiers.contains_key(ident)
defined_identifiers.insert(*ident); && orelse_identifiers.contains_key(ident)
{
defined_identifiers.insert(*ident, IdentifierInfo::default());
} }
} }
Ok(body_returned && orelse_returned) Ok(body_returned && orelse_returned)
@ -295,7 +330,7 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone(); let mut defined_identifiers = defined_identifiers.clone();
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node; let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
if let Some(name) = name { if let Some(name) = name {
defined_identifiers.insert(*name); defined_identifiers.insert(*name, IdentifierInfo::default());
} }
self.check_block(body, &mut defined_identifiers)?; self.check_block(body, &mut defined_identifiers)?;
} }
@ -359,6 +394,44 @@ impl<'a> Inferencer<'a> {
} }
Ok(true) Ok(true)
} }
StmtKind::Global { names, .. } => {
for id in names {
if let Some(id_info) = defined_identifiers.get(id) {
if id_info.source == DeclarationSource::Local {
return Err(HashSet::from([format!(
"name '{id}' is referenced prior to global declaration at {}",
stmt.location,
)]));
}
continue;
}
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
self.primitives,
*id,
) {
Ok(_) => {
defined_identifiers.insert(
*id,
IdentifierInfo {
source: DeclarationSource::Global { is_explicit: Some(true) },
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, stmt.location
)]))
}
}
}
Ok(false)
}
// break, raise, etc. // break, raise, etc.
_ => Ok(false), _ => Ok(false),
} }
@ -367,7 +440,7 @@ impl<'a> Inferencer<'a> {
pub fn check_block( pub fn check_block(
&mut self, &mut self,
block: &[Stmt<Option<Type>>], block: &[Stmt<Option<Type>>],
defined_identifiers: &mut HashSet<StrRef>, defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
) -> Result<bool, HashSet<String>> { ) -> Result<bool, HashSet<String>> {
let mut ret = false; let mut ret = false;
for stmt in block { for stmt in block {

View File

@ -1,17 +1,21 @@
use crate::symbol_resolver::SymbolValue; use std::{cmp::max, collections::HashMap, rc::Rc};
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys}; use itertools::{iproduct, Itertools};
use crate::typecheck::{ use strum::IntoEnumIterator;
use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{
type_inferencer::*, type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap}, typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
}; };
use itertools::{iproduct, Itertools}; use crate::{
use nac3parser::ast::StrRef; symbol_resolver::SymbolValue,
use nac3parser::ast::{Cmpop, Operator, Unaryop}; toplevel::{
use std::cmp::max; helper::PrimDef,
use std::collections::HashMap; numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
use std::rc::Rc; },
use strum::IntoEnumIterator; };
/// The variant of a binary operator. /// The variant of a binary operator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)] #[derive(Debug, Clone, Copy, PartialEq, Eq)]

View File

@ -1,14 +1,13 @@
use std::collections::HashMap; use std::{collections::HashMap, fmt::Display};
use std::fmt::Display;
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum}; use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
use super::{ use super::{
magic_methods::Binop, magic_methods::{Binop, HasOpInfo},
typedef::{RecordKey, Type, Unifier}, typedef::{RecordKey, Type, TypeEnum, Unifier},
}; };
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub enum TypeErrorKind { pub enum TypeErrorKind {

View File

@ -1,32 +1,36 @@
use std::cmp::max; use std::{
use std::collections::{HashMap, HashSet}; cell::RefCell,
use std::convert::{From, TryInto}; cmp::max,
use std::iter::once; collections::{HashMap, HashSet},
use std::{cell::RefCell, sync::Arc}; convert::{From, TryInto},
iter::once,
sync::Arc,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
self,
fold::{self, Fold},
Arguments, Comprehension, ExprContext, ExprKind, Ident, Located, Location, StrRef,
};
use super::{ use super::{
magic_methods::*, magic_methods::*,
type_error::{TypeError, TypeErrorKind}, type_error::{TypeError, TypeErrorKind},
typedef::{ typedef::{
into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, OperatorInfo, into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, Mapping, OperatorInfo,
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap, RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
}, },
}; };
use crate::toplevel::type_annotation::TypeAnnotation;
use crate::{ use crate::{
symbol_resolver::{SymbolResolver, SymbolValue}, symbol_resolver::{SymbolResolver, SymbolValue},
toplevel::{ toplevel::{
helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef}, helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
type_annotation::TypeAnnotation,
TopLevelContext, TopLevelDef, TopLevelContext, TopLevelDef,
}, },
typecheck::typedef::Mapping,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
self,
fold::{self, Fold},
Arguments, Comprehension, ExprContext, ExprKind, Located, Location, StrRef,
}; };
#[cfg(test)] #[cfg(test)]
@ -84,6 +88,40 @@ impl PrimitiveStore {
} }
} }
/// The location where an identifier declaration refers to.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum DeclarationSource {
/// Local scope.
Local,
/// Global scope.
Global {
/// Whether the identifier is declared by the use of `global` statement. This field is
/// [`None`] if the identifier does not refer to a variable.
is_explicit: Option<bool>,
},
}
/// Information regarding a defined identifier.
#[derive(Clone, Copy, Debug)]
pub struct IdentifierInfo {
/// Whether this identifier refers to a global variable.
pub source: DeclarationSource,
}
impl Default for IdentifierInfo {
fn default() -> Self {
IdentifierInfo { source: DeclarationSource::Local }
}
}
impl IdentifierInfo {
#[must_use]
pub fn new() -> IdentifierInfo {
IdentifierInfo::default()
}
}
pub struct FunctionData { pub struct FunctionData {
pub resolver: Arc<dyn SymbolResolver + Send + Sync>, pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
pub return_type: Option<Type>, pub return_type: Option<Type>,
@ -92,7 +130,7 @@ pub struct FunctionData {
pub struct Inferencer<'a> { pub struct Inferencer<'a> {
pub top_level: &'a TopLevelContext, pub top_level: &'a TopLevelContext,
pub defined_identifiers: HashSet<StrRef>, pub defined_identifiers: HashMap<StrRef, IdentifierInfo>,
pub function_data: &'a mut FunctionData, pub function_data: &'a mut FunctionData,
pub unifier: &'a mut Unifier, pub unifier: &'a mut Unifier,
pub primitives: &'a PrimitiveStore, pub primitives: &'a PrimitiveStore,
@ -224,9 +262,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
handler.location, handler.location,
)); ));
if let Some(name) = name { if let Some(name) = name {
if !self.defined_identifiers.contains(&name) { self.defined_identifiers.entry(name).or_default();
self.defined_identifiers.insert(name);
}
if let Some(old_typ) = self.variable_mapping.insert(name, typ) { if let Some(old_typ) = self.variable_mapping.insert(name, typ) {
let loc = handler.location; let loc = handler.location;
self.unifier.unify(old_typ, typ).map_err(|e| { self.unifier.unify(old_typ, typ).map_err(|e| {
@ -378,6 +414,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
| ast::StmtKind::Continue { .. } | ast::StmtKind::Continue { .. }
| ast::StmtKind::Expr { .. } | ast::StmtKind::Expr { .. }
| ast::StmtKind::For { .. } | ast::StmtKind::For { .. }
| ast::StmtKind::Global { .. }
| ast::StmtKind::Pass { .. } | ast::StmtKind::Pass { .. }
| ast::StmtKind::Try { .. } => {} | ast::StmtKind::Try { .. } => {}
ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => { ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => {
@ -499,9 +536,8 @@ impl<'a> Fold<()> for Inferencer<'a> {
} }
ast::StmtKind::Assert { test, msg, .. } => { ast::StmtKind::Assert { test, msg, .. } => {
self.unify(test.custom.unwrap(), self.primitives.bool, &test.location)?; self.unify(test.custom.unwrap(), self.primitives.bool, &test.location)?;
match msg { if let Some(m) = msg {
Some(m) => self.unify(m.custom.unwrap(), self.primitives.str, &m.location)?, self.unify(m.custom.unwrap(), self.primitives.str, &m.location)?;
None => (),
} }
} }
_ => return report_error("Unsupported statement type", stmt.location), _ => return report_error("Unsupported statement type", stmt.location),
@ -549,7 +585,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
unreachable!("must be tobj") unreachable!("must be tobj")
} }
} else { } else {
if !self.defined_identifiers.contains(id) { if !self.defined_identifiers.contains_key(id) {
match self.function_data.resolver.get_symbol_type( match self.function_data.resolver.get_symbol_type(
self.unifier, self.unifier,
&self.top_level.definitions.read(), &self.top_level.definitions.read(),
@ -557,7 +593,22 @@ impl<'a> Fold<()> for Inferencer<'a> {
*id, *id,
) { ) {
Ok(_) => { Ok(_) => {
self.defined_identifiers.insert(*id); let is_global = self.is_id_global(*id);
self.defined_identifiers.insert(
*id,
IdentifierInfo {
source: match is_global {
Some(true) => DeclarationSource::Global {
is_explicit: Some(false),
},
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
} }
Err(e) => { Err(e) => {
return report_error( return report_error(
@ -622,8 +673,8 @@ impl<'a> Inferencer<'a> {
fn infer_pattern<T>(&mut self, pattern: &ast::Expr<T>) -> Result<(), InferenceError> { fn infer_pattern<T>(&mut self, pattern: &ast::Expr<T>) -> Result<(), InferenceError> {
match &pattern.node { match &pattern.node {
ExprKind::Name { id, .. } => { ExprKind::Name { id, .. } => {
if !self.defined_identifiers.contains(id) { if !self.defined_identifiers.contains_key(id) {
self.defined_identifiers.insert(*id); self.defined_identifiers.insert(*id, IdentifierInfo::default());
} }
Ok(()) Ok(())
} }
@ -732,8 +783,8 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = self.defined_identifiers.clone(); let mut defined_identifiers = self.defined_identifiers.clone();
for arg in &args.args { for arg in &args.args {
let name = &arg.node.arg; let name = &arg.node.arg;
if !defined_identifiers.contains(name) { if !defined_identifiers.contains_key(name) {
defined_identifiers.insert(*name); defined_identifiers.insert(*name, IdentifierInfo::default());
} }
} }
let fn_args: Vec<_> = args let fn_args: Vec<_> = args
@ -1550,36 +1601,29 @@ impl<'a> Inferencer<'a> {
} }
// 2-argument ndarray n-dimensional creation functions // 2-argument ndarray n-dimensional creation functions
if id == &"np_full".into() && args.len() == 2 { if id == &"np_full".into() && args.len() == 2 {
let ExprKind::List { elts, .. } = &args[0].node else { // Parse arguments
return report_error( let shape_expr = args.remove(0);
format!( let (ndims, shape) =
"Expected List literal for first argument of {id}, got {}", self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling for `shape`
args[0].node.name()
)
.as_str(),
args[0].location,
);
};
let ndims = elts.len() as u64; let fill_value = self.fold_expr(args.remove(0))?;
let arg0 = self.fold_expr(args.remove(0))?; // Build the return type
let arg1 = self.fold_expr(args.remove(0))?; let dtype = fill_value.custom.unwrap();
let ty = arg1.custom.unwrap();
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None); let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims)); let ret = make_ndarray_ty(self.unifier, self.primitives, Some(dtype), Some(ndims));
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature { let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![ args: vec![
FuncArg { FuncArg {
name: "shape".into(), name: "shape".into(),
ty: arg0.custom.unwrap(), ty: shape.custom.unwrap(),
default_value: None, default_value: None,
is_vararg: false, is_vararg: false,
}, },
FuncArg { FuncArg {
name: "fill_value".into(), name: "fill_value".into(),
ty: arg1.custom.unwrap(), ty: fill_value.custom.unwrap(),
default_value: None, default_value: None,
is_vararg: false, is_vararg: false,
}, },
@ -1597,7 +1641,7 @@ impl<'a> Inferencer<'a> {
location: func.location, location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx }, node: ExprKind::Name { id: *id, ctx: *ctx },
}), }),
args: vec![arg0, arg1], args: vec![shape, fill_value],
keywords: vec![], keywords: vec![],
}, },
})); }));
@ -2640,4 +2684,22 @@ impl<'a> Inferencer<'a> {
self.constrain(body.custom.unwrap(), orelse.custom.unwrap(), &body.location)?; self.constrain(body.custom.unwrap(), orelse.custom.unwrap(), &body.location)?;
Ok(body.custom.unwrap()) Ok(body.custom.unwrap())
} }
/// Determines whether the given `id` refers to a global symbol.
///
/// Returns `Some(true)` if `id` refers to a global variable, `Some(false)` if `id` refers to a
/// class/function, and `None` if `id` refers to a local symbol.
pub(super) fn is_id_global(&self, id: Ident) -> Option<bool> {
self.top_level
.definitions
.read()
.iter()
.map(|def| match *def.read() {
TopLevelDef::Class { name, .. } => (name, false),
TopLevelDef::Function { simple_name, .. } => (simple_name, false),
TopLevelDef::Variable { simple_name, .. } => (simple_name, true),
})
.find(|(global, _)| global == &id)
.map(|(_, has_explicit_prop)| has_explicit_prop)
}
} }

View File

@ -1,18 +1,20 @@
use super::super::{magic_methods::with_fields, typedef::*}; use std::iter::zip;
use super::*;
use crate::{
codegen::CodeGenContext,
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
};
use indexmap::IndexMap; use indexmap::IndexMap;
use indoc::indoc; use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::parser::parse_program;
use parking_lot::RwLock; use parking_lot::RwLock;
use std::iter::zip;
use test_case::test_case; use test_case::test_case;
use nac3parser::{ast::FileName, parser::parse_program};
use super::*;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
typecheck::{magic_methods::with_fields, typedef::*},
};
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
id_to_def: HashMap<StrRef, DefinitionId>, id_to_def: HashMap<StrRef, DefinitionId>,
@ -41,6 +43,7 @@ impl SymbolResolver for Resolver {
&self, &self,
_: StrRef, _: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
unimplemented!() unimplemented!()
} }
@ -517,7 +520,7 @@ impl TestEnvironment {
primitives: &mut self.primitives, primitives: &mut self.primitives,
virtual_checks: &mut self.virtual_checks, virtual_checks: &mut self.virtual_checks,
calls: &mut self.calls, calls: &mut self.calls,
defined_identifiers: HashSet::default(), defined_identifiers: HashMap::default(),
in_handler: false, in_handler: false,
} }
} }
@ -593,8 +596,9 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
println!("source:\n{source}"); println!("source:\n{source}");
let mut env = TestEnvironment::new(); let mut env = TestEnvironment::new();
let id_to_name = std::mem::take(&mut env.id_to_name); let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect(); let mut defined_identifiers: HashMap<_, _> =
defined_identifiers.insert("virtual".into()); env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer(); let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers); inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source, FileName::default()).unwrap();
@ -739,8 +743,9 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
println!("source:\n{source}"); println!("source:\n{source}");
let mut env = TestEnvironment::basic_test_env(); let mut env = TestEnvironment::basic_test_env();
let id_to_name = std::mem::take(&mut env.id_to_name); let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect(); let mut defined_identifiers: HashMap<_, _> =
defined_identifiers.insert("virtual".into()); env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut inferencer = env.get_inferencer(); let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers); inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source, FileName::default()).unwrap();

View File

@ -1,21 +1,28 @@
use super::magic_methods::{Binop, HasOpInfo}; use std::{
use super::type_error::{TypeError, TypeErrorKind}; borrow::Cow,
use super::unification_table::{UnificationKey, UnificationTable}; cell::RefCell,
use crate::symbol_resolver::SymbolValue; collections::{HashMap, HashSet},
use crate::toplevel::helper::PrimDef; fmt::{self, Display},
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef}; iter::{repeat, zip},
use crate::typecheck::magic_methods::OpInfo; rc::Rc,
use crate::typecheck::type_inferencer::PrimitiveStore; sync::{Arc, Mutex},
};
use indexmap::IndexMap; use indexmap::IndexMap;
use itertools::{repeat_n, Itertools}; use itertools::{repeat_n, Itertools};
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop}; use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
use std::cell::RefCell;
use std::collections::HashMap; use super::{
use std::fmt::{self, Display}; magic_methods::{Binop, HasOpInfo, OpInfo},
use std::iter::{repeat, zip}; type_error::{TypeError, TypeErrorKind},
use std::rc::Rc; type_inferencer::PrimitiveStore,
use std::sync::{Arc, Mutex}; unification_table::{UnificationKey, UnificationTable},
use std::{borrow::Cow, collections::HashSet}; };
use crate::{
symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, DefinitionId, TopLevelContext, TopLevelDef},
};
#[cfg(test)] #[cfg(test)]
mod test; mod test;
@ -670,8 +677,8 @@ impl Unifier {
let num_args = posargs.len() + kwargs.len(); let num_args = posargs.len() + kwargs.len();
// Now we check the arguments against the parameters, // Now we check the arguments against the parameters,
// and depending on what `call_info` is, we might change how the behavior `unify_call()` // and depending on what `call_info` is, we might change how `unify_call()` behaves
// in hopes to improve user error messages when type checking fails. // to improve user error messages when type checking fails.
match operator_info { match operator_info {
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => { Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
// The call is written in the form of (say) `a + b`. // The call is written in the form of (say) `a + b`.

Some files were not shown because too many files have changed in this diff Show More