pounder_test/src/bin/dual-iir.rs

303 lines
10 KiB
Rust

#![deny(warnings)]
#![no_std]
#![no_main]
use core::sync::atomic::{fence, Ordering};
use mutex_trait::prelude::*;
use dsp::iir;
use stabilizer::{
hardware::{
self,
adc::{Adc0Input, Adc1Input, AdcCode},
afe::Gain,
dac::{Dac0Output, Dac1Output, DacCode},
embedded_hal::digital::v2::InputPin,
hal,
system_timer::SystemTimer,
DigitalInput0, DigitalInput1, AFE0, AFE1,
},
net::{
data_stream::{BlockGenerator, StreamTarget},
miniconf::Miniconf,
serde::Deserialize,
telemetry::{Telemetry, TelemetryBuffer},
NetworkState, NetworkUsers,
},
};
const SCALE: f32 = i16::MAX as _;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[derive(Clone, Copy, Debug, Deserialize, Miniconf)]
pub struct Settings {
afe: [Gain; 2],
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
allow_hold: bool,
force_hold: bool,
telemetry_period: u16,
stream_target: StreamTarget,
}
impl Default for Settings {
fn default() -> Self {
Self {
// Analog frontend programmable gain amplifier gains (G1, G2, G5, G10)
afe: [Gain::G1, Gain::G1],
// IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the
// new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`.
// The array is `iir_state[channel-index][cascade-index][coeff-index]`.
// The IIR coefficients can be mapped to other transfer function
// representations, for example as described in https://arxiv.org/abs/1508.06319
iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2],
// Permit the DI1 digital input to suppress filter output updates.
allow_hold: false,
// Force suppress filter output updates.
force_hold: false,
// The default telemetry period in seconds.
telemetry_period: 10,
stream_target: StreamTarget::default(),
}
}
}
#[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, monotonic = stabilizer::hardware::system_timer::SystemTimer)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
digital_inputs: (DigitalInput0, DigitalInput1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
network: NetworkUsers<Settings, Telemetry>,
generator: BlockGenerator,
settings: Settings,
telemetry: TelemetryBuffer,
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
}
#[init(spawn=[telemetry, settings_update, ethernet_link])]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) =
hardware::setup::setup(c.core, c.device);
let mut network = NetworkUsers::new(
stabilizer.net.stack,
stabilizer.net.phy,
stabilizer.cycle_counter,
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
);
let generator = network.enable_streaming();
// Spawn a settings update for default settings.
c.spawn.settings_update().unwrap();
c.spawn.telemetry().unwrap();
// Spawn the ethernet link period check task.
c.spawn.ethernet_link().unwrap();
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
generator,
network,
digital_inputs: stabilizer.digital_inputs,
telemetry: TelemetryBuffer::default(),
settings: Settings::default(),
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry, generator], priority=2)]
#[inline(never)]
#[link_section = ".itcm.process"]
fn process(mut c: process::Context) {
let process::Resources {
adcs: (ref mut adc0, ref mut adc1),
dacs: (ref mut dac0, ref mut dac1),
ref digital_inputs,
ref settings,
ref mut iir_state,
ref mut telemetry,
ref mut generator,
} = c.resources;
let digital_inputs = [
digital_inputs.0.is_high().unwrap(),
digital_inputs.1.is_high().unwrap(),
];
telemetry.digital_inputs = digital_inputs;
let hold =
settings.force_hold || (digital_inputs[1] && settings.allow_hold);
(adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| {
let adc_samples = [adc0, adc1];
let dac_samples = [dac0, dac1];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
for channel in 0..adc_samples.len() {
adc_samples[channel]
.iter()
.zip(dac_samples[channel].iter_mut())
.map(|(ai, di)| {
let x = f32::from(*ai as i16);
let y = settings.iir_ch[channel]
.iter()
.zip(iir_state[channel].iter_mut())
.fold(x, |yi, (ch, state)| {
ch.update(state, yi, hold)
});
// Note(unsafe): The filter limits must ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y: i16 = unsafe { y.to_int_unchecked() };
// Convert to DAC code
*di = DacCode::from(y).0;
})
.last();
}
// Stream the data.
generator.send(&adc_samples, &dac_samples);
// Update telemetry measurements.
telemetry.adcs =
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
telemetry.dacs =
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
});
}
#[idle(resources=[network], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
loop {
match c.resources.network.lock(|net| net.update()) {
NetworkState::SettingsChanged => {
c.spawn.settings_update().unwrap()
}
NetworkState::Updated => {}
NetworkState::NoChange => cortex_m::asm::wfi(),
}
}
}
#[task(priority = 1, resources=[network, afes, settings])]
fn settings_update(mut c: settings_update::Context) {
// Update the IIR channels.
let settings = c.resources.network.miniconf.settings();
c.resources.settings.lock(|current| *current = *settings);
// Update AFEs
c.resources.afes.0.set_gain(settings.afe[0]);
c.resources.afes.1.set_gain(settings.afe[1]);
let target = settings.stream_target.into();
c.resources.network.direct_stream(target);
}
#[task(priority = 1, resources=[network, settings, telemetry], schedule=[telemetry])]
fn telemetry(mut c: telemetry::Context) {
let telemetry: TelemetryBuffer =
c.resources.telemetry.lock(|telemetry| *telemetry);
let (gains, telemetry_period) = c
.resources
.settings
.lock(|settings| (settings.afe, settings.telemetry_period));
c.resources
.network
.telemetry
.publish(&telemetry.finalize(gains[0], gains[1]));
// Schedule the telemetry task in the future.
c.schedule
.telemetry(
c.scheduled
+ SystemTimer::ticks_from_secs(telemetry_period as u32),
)
.unwrap();
}
#[task(priority = 1, resources=[network], schedule=[ethernet_link])]
fn ethernet_link(c: ethernet_link::Context) {
c.resources.network.processor.handle_link();
c.schedule
.ethernet_link(c.scheduled + SystemTimer::ticks_from_secs(1))
.unwrap();
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 SPI error");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC1 SPI error");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 SPI error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 SPI error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};