#![deny(warnings)] #![no_std] #![no_main] use core::sync::atomic::{fence, Ordering}; use mutex_trait::prelude::*; use dsp::iir; use stabilizer::{ hardware::{ self, adc::{Adc0Input, Adc1Input, AdcCode}, afe::Gain, dac::{Dac0Output, Dac1Output, DacCode}, embedded_hal::digital::v2::InputPin, hal, system_timer::SystemTimer, DigitalInput0, DigitalInput1, AFE0, AFE1, }, net::{ data_stream::{BlockGenerator, StreamTarget}, miniconf::Miniconf, serde::Deserialize, telemetry::{Telemetry, TelemetryBuffer}, NetworkState, NetworkUsers, }, }; const SCALE: f32 = i16::MAX as _; // The number of cascaded IIR biquads per channel. Select 1 or 2! const IIR_CASCADE_LENGTH: usize = 1; #[derive(Clone, Copy, Debug, Deserialize, Miniconf)] pub struct Settings { afe: [Gain; 2], iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], allow_hold: bool, force_hold: bool, telemetry_period: u16, stream_target: StreamTarget, } impl Default for Settings { fn default() -> Self { Self { // Analog frontend programmable gain amplifier gains (G1, G2, G5, G10) afe: [Gain::G1, Gain::G1], // IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the // new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`. // The array is `iir_state[channel-index][cascade-index][coeff-index]`. // The IIR coefficients can be mapped to other transfer function // representations, for example as described in https://arxiv.org/abs/1508.06319 iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2], // Permit the DI1 digital input to suppress filter output updates. allow_hold: false, // Force suppress filter output updates. force_hold: false, // The default telemetry period in seconds. telemetry_period: 10, stream_target: StreamTarget::default(), } } } #[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, monotonic = stabilizer::hardware::system_timer::SystemTimer)] const APP: () = { struct Resources { afes: (AFE0, AFE1), digital_inputs: (DigitalInput0, DigitalInput1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), network: NetworkUsers, generator: BlockGenerator, settings: Settings, telemetry: TelemetryBuffer, #[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])] iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2], } #[init(spawn=[telemetry, settings_update, ethernet_link])] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup::setup(c.core, c.device); let mut network = NetworkUsers::new( stabilizer.net.stack, stabilizer.net.phy, stabilizer.cycle_counter, env!("CARGO_BIN_NAME"), stabilizer.net.mac_address, ); let generator = network.enable_streaming(); // Spawn a settings update for default settings. c.spawn.settings_update().unwrap(); c.spawn.telemetry().unwrap(); // Spawn the ethernet link period check task. c.spawn.ethernet_link().unwrap(); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, generator, network, digital_inputs: stabilizer.digital_inputs, telemetry: TelemetryBuffer::default(), settings: Settings::default(), } } /// Main DSP processing routine for Stabilizer. /// /// # Note /// Processing time for the DSP application code is bounded by the following constraints: /// /// DSP application code starts after the ADC has generated a batch of samples and must be /// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer /// time). If this constraint is not met, firmware will panic due to an ADC input overrun. /// /// The DSP application code must also fill out the next DAC output buffer in time such that the /// DAC can switch to it when it has completed the current buffer. If this constraint is not met /// it's possible that old DAC codes will be generated on the output and the output samples will /// be delayed by 1 batch. /// /// Because the ADC and DAC operate at the same rate, these two constraints actually implement /// the same time bounds, meeting one also means the other is also met. #[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry, generator], priority=2)] #[inline(never)] #[link_section = ".itcm.process"] fn process(mut c: process::Context) { let process::Resources { adcs: (ref mut adc0, ref mut adc1), dacs: (ref mut dac0, ref mut dac1), ref digital_inputs, ref settings, ref mut iir_state, ref mut telemetry, ref mut generator, } = c.resources; let digital_inputs = [ digital_inputs.0.is_high().unwrap(), digital_inputs.1.is_high().unwrap(), ]; telemetry.digital_inputs = digital_inputs; let hold = settings.force_hold || (digital_inputs[1] && settings.allow_hold); (adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| { let adc_samples = [adc0, adc1]; let dac_samples = [dac0, dac1]; // Preserve instruction and data ordering w.r.t. DMA flag access. fence(Ordering::SeqCst); for channel in 0..adc_samples.len() { adc_samples[channel] .iter() .zip(dac_samples[channel].iter_mut()) .map(|(ai, di)| { let x = f32::from(*ai as i16); let y = settings.iir_ch[channel] .iter() .zip(iir_state[channel].iter_mut()) .fold(x, |yi, (ch, state)| { ch.update(state, yi, hold) }); // Note(unsafe): The filter limits must ensure that the value is in range. // The truncation introduces 1/2 LSB distortion. let y: i16 = unsafe { y.to_int_unchecked() }; // Convert to DAC code *di = DacCode::from(y).0; }) .last(); } // Stream the data. generator.send(&adc_samples, &dac_samples); // Update telemetry measurements. telemetry.adcs = [AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])]; telemetry.dacs = [DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])]; // Preserve instruction and data ordering w.r.t. DMA flag access. fence(Ordering::SeqCst); }); } #[idle(resources=[network], spawn=[settings_update])] fn idle(mut c: idle::Context) -> ! { loop { match c.resources.network.lock(|net| net.update()) { NetworkState::SettingsChanged => { c.spawn.settings_update().unwrap() } NetworkState::Updated => {} NetworkState::NoChange => cortex_m::asm::wfi(), } } } #[task(priority = 1, resources=[network, afes, settings])] fn settings_update(mut c: settings_update::Context) { // Update the IIR channels. let settings = c.resources.network.miniconf.settings(); c.resources.settings.lock(|current| *current = *settings); // Update AFEs c.resources.afes.0.set_gain(settings.afe[0]); c.resources.afes.1.set_gain(settings.afe[1]); let target = settings.stream_target.into(); c.resources.network.direct_stream(target); } #[task(priority = 1, resources=[network, settings, telemetry], schedule=[telemetry])] fn telemetry(mut c: telemetry::Context) { let telemetry: TelemetryBuffer = c.resources.telemetry.lock(|telemetry| *telemetry); let (gains, telemetry_period) = c .resources .settings .lock(|settings| (settings.afe, settings.telemetry_period)); c.resources .network .telemetry .publish(&telemetry.finalize(gains[0], gains[1])); // Schedule the telemetry task in the future. c.schedule .telemetry( c.scheduled + SystemTimer::ticks_from_secs(telemetry_period as u32), ) .unwrap(); } #[task(priority = 1, resources=[network], schedule=[ethernet_link])] fn ethernet_link(c: ethernet_link::Context) { c.resources.network.processor.handle_link(); c.schedule .ethernet_link(c.scheduled + SystemTimer::ticks_from_secs(1)) .unwrap(); } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 SPI error"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 SPI error"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 SPI error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 SPI error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };