dacs: macros

This commit is contained in:
Robert Jördens 2020-11-26 11:16:08 +01:00
parent 1906185286
commit c04180635b
2 changed files with 139 additions and 300 deletions

View File

@ -11,142 +11,69 @@ use super::{
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for // The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
// each transfer in a ping-pong buffer configuration (one is being prepared while the other is being // each transfer in a ping-pong buffer configuration (one is being prepared while the other is being
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on // processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
// startup are undefined. // startup are undefined. The dimension are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
#[link_section = ".axisram.buffers"] #[link_section = ".axisram.buffers"]
static mut DAC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE]; static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
#[link_section = ".axisram.buffers"] macro_rules! dac_output {
static mut DAC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE]; ($name:ident, $index:literal, $data_stream:ident,
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {
/// SPI is used as a type for indicating a DMA transfer into the SPI TX FIFO
struct $spi {
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
_channel: sampling_timer::tim2::$trigger_channel,
}
#[link_section = ".axisram.buffers"] impl $spi {
static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI4 is used as a type for indicating a DMA transfer into the SPI4 TX FIFO
struct SPI4 {
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
_channel: sampling_timer::tim2::Channel3,
}
impl SPI4 {
pub fn new( pub fn new(
_channel: sampling_timer::tim2::Channel3, _channel: sampling_timer::tim2::$trigger_channel,
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>, spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
) -> Self { ) -> Self {
Self { _channel, spi } Self { _channel, spi }
} }
} }
// Note(unsafe): This is safe because the DMA request line is logically owned by this module. // Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word // Additionally, the SPI is owned by this structure and is known to be configured for u16 word
// sizes. // sizes.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 { unsafe impl TargetAddress<MemoryToPeripheral> for $spi {
/// SPI2 is configured to operate using 16-bit transfer words. /// SPI is configured to operate using 16-bit transfer words.
type MemSize = u16; type MemSize = u16;
/// SPI4 DMA requests are generated whenever TIM2 CH3 comparison occurs. /// SPI DMA requests are generated whenever TIM2 CH3 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH3 as u8); const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO. /// Whenever the DMA request occurs, it should write into SPI's TX FIFO.
fn address(&self) -> u32 { fn address(&self) -> u32 {
&self.spi.inner().txdr as *const _ as u32 &self.spi.inner().txdr as *const _ as u32
} }
}
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
struct SPI5 {
_channel: sampling_timer::tim2::Channel4,
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
}
impl SPI5 {
pub fn new(
_channel: sampling_timer::tim2::Channel4,
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
) -> Self {
Self { _channel, spi }
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
// sizes.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
/// SPI5 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI5 DMA requests are generated whenever TIM2 CH4 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
fn address(&self) -> u32 {
&self.spi.inner().txdr as *const _ as u32
}
}
/// Represents both DAC output channels.
pub struct DacOutputs {
dac0: Dac0Output,
dac1: Dac1Output,
}
impl DacOutputs {
/// Construct the DAC outputs.
pub fn new(dac0: Dac0Output, dac1: Dac1Output) -> Self {
Self { dac0, dac1 }
} }
/// Borrow the next DAC output buffers to populate the DAC output codes in-place. /// Represents data associated with DAC0.
/// pub struct $name {
/// # Returns
/// (dac0, dac1) where each value is a mutable reference to the output code array for DAC0 and
/// DAC1 respectively.
pub fn prepare_data(
&mut self,
) -> (
&mut [u16; SAMPLE_BUFFER_SIZE],
&mut [u16; SAMPLE_BUFFER_SIZE],
) {
(self.dac0.prepare_buffer(), self.dac1.prepare_buffer())
}
/// Enqueue the next DAC output codes for transmission.
///
/// # Note
/// It is assumed that data was populated using `prepare_data()` before this function is
/// called.
pub fn commit_data(&mut self) {
self.dac0.commit_buffer();
self.dac1.commit_buffer();
}
}
/// Represents data associated with DAC0.
pub struct Dac0Output {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>, next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA. // Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
transfer: Transfer< transfer: Transfer<
hal::dma::dma::Stream4<hal::stm32::DMA1>, hal::dma::dma::$data_stream<hal::stm32::DMA1>,
SPI4, $spi,
MemoryToPeripheral, MemoryToPeripheral,
&'static mut [u16; SAMPLE_BUFFER_SIZE], &'static mut [u16; SAMPLE_BUFFER_SIZE],
>, >,
first_transfer: bool, first_transfer: bool,
} }
impl Dac0Output { impl $name {
/// Construct the DAC0 output channel. /// Construct the DAC output channel.
/// ///
/// # Args /// # Args
/// * `spi` - The SPI interface used to communicate with the ADC. /// * `spi` - The SPI interface used to communicate with the ADC.
/// * `stream` - The DMA stream used to write DAC codes over SPI. /// * `stream` - The DMA stream used to write DAC codes over SPI.
/// * `trigger_channel` - The sampling timer output compare channel for update triggers. /// * `trigger_channel` - The sampling timer output compare channel for update triggers.
pub fn new( pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>, spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>, stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel3, trigger_channel: sampling_timer::tim2::$trigger_channel,
) -> Self { ) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over) // Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs. // occurs.
@ -171,11 +98,12 @@ impl Dac0Output {
spi.inner().cr1.modify(|_, w| w.cstart().started()); spi.inner().cr1.modify(|_, w| w.cstart().started());
// Construct the trigger stream to write from memory to the peripheral. // Construct the trigger stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init( let transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
stream, stream,
SPI4::new(trigger_channel, spi), $spi::new(trigger_channel, spi),
// Note(unsafe): This buffer is only used once and provided for the DMA transfer. // Note(unsafe): This buffer is only used once and provided for the DMA transfer.
unsafe { &mut DAC0_BUF0 }, unsafe { &mut DAC_BUF[$index][0] },
None, None,
trigger_config, trigger_config,
); );
@ -183,7 +111,7 @@ impl Dac0Output {
Self { Self {
transfer, transfer,
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer. // Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC0_BUF1) }, next_buffer: unsafe { Some(&mut DAC_BUF[$index][1]) },
first_transfer: true, first_transfer: true,
} }
} }
@ -217,100 +145,9 @@ impl Dac0Output {
self.next_buffer.replace(prev_buffer); self.next_buffer.replace(prev_buffer);
} }
}
};
} }
/// Represents the data output stream from DAC1. dac_output!(Dac0Output, 0, Stream4, SPI4, Channel3, TIM2_CH3);
pub struct Dac1Output { dac_output!(Dac1Output, 1, Stream5, SPI5, Channel4, TIM2_CH4);
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream5<hal::stm32::DMA1>,
SPI5,
MemoryToPeripheral,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
first_transfer: bool,
}
impl Dac1Output {
/// Construct a new DAC1 output data stream.
///
/// # Args
/// * `spi` - The SPI interface connected to DAC1.
/// * `stream` - The DMA stream used to write DAC codes the SPI TX FIFO.
/// * `trigger_channel` - The timer channel used to generate DMA requests for DAC updates.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel4,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO to generate DAC updates.
let trigger_config = DmaConfig::default()
.memory_increment(true)
.peripheral_increment(false)
.circular_buffer(true);
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
// DAC.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
// Construct the stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
stream,
SPI5::new(trigger_channel, spi),
// Note(unsafe): This buffer is only used once and provided to the transfer.
unsafe { &mut DAC1_BUF0 },
None,
trigger_config,
);
Self {
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
transfer,
first_transfer: true,
}
}
/// Mutably borrow the next output buffer to populate it with DAC codes.
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
self.next_buffer.as_mut().unwrap()
}
/// Enqueue the next buffer for transmission to the DAC.
///
/// # Args
/// * `data` - The next data to write to the DAC.
pub fn commit_buffer(&mut self) {
let next_buffer = self.next_buffer.take().unwrap();
// If the last transfer was not complete, we didn't write all our previous DAC codes.
// Wait for all the DAC codes to get written as well.
if self.first_transfer {
self.first_transfer = false
} else {
// Note: If a device hangs up, check that this conditional is passing correctly, as
// there is no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
}
}

View File

@ -70,7 +70,7 @@ mod sampling_timer;
mod server; mod server;
use adc::{Adc0Input, Adc1Input}; use adc::{Adc0Input, Adc1Input};
use dac::{Dac0Output, Dac1Output, DacOutputs}; use dac::{Dac0Output, Dac1Output};
use dsp::iir; use dsp::iir;
#[cfg(not(feature = "semihosting"))] #[cfg(not(feature = "semihosting"))]
@ -189,7 +189,7 @@ const APP: () = {
afe1: AFE1, afe1: AFE1,
adcs: (Adc0Input, Adc1Input), adcs: (Adc0Input, Adc1Input),
dacs: DacOutputs, dacs: (Dac0Output, Dac1Output),
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>, eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
@ -441,7 +441,7 @@ const APP: () = {
dma_streams.5, dma_streams.5,
sampling_timer_channels.ch4, sampling_timer_channels.ch4,
); );
DacOutputs::new(dac0, dac1) (dac0, dac1)
}; };
let mut fp_led_0 = gpiod.pd5.into_push_pull_output(); let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
@ -749,7 +749,8 @@ const APP: () = {
let adc0_samples = c.resources.adcs.0.transfer_complete_handler(); let adc0_samples = c.resources.adcs.0.transfer_complete_handler();
let adc1_samples = c.resources.adcs.1.transfer_complete_handler(); let adc1_samples = c.resources.adcs.1.transfer_complete_handler();
let (dac0, dac1) = c.resources.dacs.prepare_data(); let dac0 = c.resources.dacs.0.prepare_buffer();
let dac1 = c.resources.dacs.1.prepare_buffer();
for (i, (adc0, adc1)) in for (i, (adc0, adc1)) in
adc0_samples.iter().zip(adc1_samples.iter()).enumerate() adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
@ -769,7 +770,8 @@ const APP: () = {
}; };
} }
c.resources.dacs.commit_data(); c.resources.dacs.0.commit_buffer();
c.resources.dacs.1.commit_buffer();
} }
#[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])] #[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]