Adding updated docs for adc file
This commit is contained in:
parent
9cfb52308d
commit
aa36446f95
2
Cargo.lock
generated
2
Cargo.lock
generated
@ -501,7 +501,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "stm32h7xx-hal"
|
||||
version = "0.8.0"
|
||||
source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/stabilizer-dma#5fbbfa9352f720994c210e5c21601f3acf9dc40c"
|
||||
source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/dma-rtic-example#d8cb6fa5099282665f5e5068a9dcdc9ebaa63240"
|
||||
dependencies = [
|
||||
"bare-metal 1.0.0",
|
||||
"cast",
|
||||
|
@ -55,7 +55,7 @@ path = "ad9959"
|
||||
[dependencies.stm32h7xx-hal]
|
||||
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
|
||||
git = "https://github.com/quartiq/stm32h7xx-hal"
|
||||
branch = "feature/stabilizer-dma"
|
||||
branch = "feature/dma-rtic-example"
|
||||
|
||||
[features]
|
||||
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]
|
||||
@ -65,7 +65,7 @@ nightly = ["cortex-m/inline-asm"]
|
||||
[profile.dev]
|
||||
codegen-units = 1
|
||||
incremental = false
|
||||
opt-level = 1
|
||||
opt-level = 3
|
||||
|
||||
[profile.release]
|
||||
opt-level = 3
|
||||
|
169
src/adc.rs
169
src/adc.rs
@ -1,13 +1,36 @@
|
||||
///! Stabilizer ADC management interface
|
||||
///!
|
||||
///! The Stabilizer ADCs utilize a DMA channel to trigger sampling. The SPI streams are configured
|
||||
///! for full-duplex operation, but only RX is connected to physical pins. A timer channel is
|
||||
///! configured to generate a DMA write into the SPI TXFIFO, which initiates a SPI transfer and
|
||||
///! results in an ADC sample read for both channels.
|
||||
///!
|
||||
///! In order to read multiple samples without interrupting the CPU, a separate DMA transfer is
|
||||
///! configured to read from each of the ADC SPI RX FIFOs. Due to the design of the SPI peripheral,
|
||||
///! these DMA transfers stall when no data is available in the FIFO. Thus, the DMA transfer only
|
||||
///! completes after all samples have been read. When this occurs, a CPU interrupt is generated so
|
||||
///! that software can process the acquired samples from both ADCs. Only one of the ADC DMA streams
|
||||
///! is configured to generate an interrupt to handle both transfers, so it is necessary to ensure
|
||||
///! both transfers are completed before reading the data. This is usually not significant for
|
||||
///! busy-waiting because the transfers should complete at approximately the same time.
|
||||
use super::{
|
||||
hal, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory, Priority,
|
||||
Stream, TargetAddress, Transfer,
|
||||
hal, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory, Priority, TargetAddress,
|
||||
Transfer,
|
||||
};
|
||||
|
||||
// The desired ADC input buffer size. This is use configurable.
|
||||
const INPUT_BUFFER_SIZE: usize = 1;
|
||||
|
||||
// The following data is written by the timer ADC sample trigger into each of the SPI TXFIFOs. Note
|
||||
// that because the SPI MOSI line is not connected, this data is dont-care. Data in AXI SRAM is not
|
||||
// initialized on boot, so the contents are random.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut SPI_START: [u16; 1] = [0x00];
|
||||
|
||||
// The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for
|
||||
// each transfer in a ping-pong buffer configuration (one is being acquired while the other is being
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC0_BUF0: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
|
||||
@ -20,8 +43,9 @@ static mut ADC1_BUF0: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC1_BUF1: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
|
||||
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI2 {}
|
||||
|
||||
impl SPI2 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
@ -29,18 +53,23 @@ impl SPI2 {
|
||||
}
|
||||
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_UP as u8);
|
||||
/// SPI2 DMA requests are generated whenever TIM2 CH1 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH1 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI3 {}
|
||||
|
||||
impl SPI3 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
@ -48,26 +77,37 @@ impl SPI3 {
|
||||
}
|
||||
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
|
||||
/// SPI3 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_UP as u8);
|
||||
/// SPI3 DMA requests are generated whenever TIM2 CH2 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH2 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents both ADC input channels.
|
||||
pub struct AdcInputs {
|
||||
adc0: Adc0Input,
|
||||
adc1: Adc1Input,
|
||||
}
|
||||
|
||||
impl AdcInputs {
|
||||
/// Construct the ADC inputs.
|
||||
pub fn new(adc0: Adc0Input, adc1: Adc1Input) -> Self {
|
||||
Self { adc0, adc1 }
|
||||
}
|
||||
|
||||
/// Interrupt handler to handle when the sample collection DMA transfer completes.
|
||||
///
|
||||
/// # Returns
|
||||
/// (adc0, adc1) where adcN is a reference to the collected ADC samples. Two array references
|
||||
/// are returned - one for each ADC sample stream.
|
||||
pub fn transfer_complete_handler(
|
||||
&mut self,
|
||||
) -> (&[u16; INPUT_BUFFER_SIZE], &[u16; INPUT_BUFFER_SIZE]) {
|
||||
@ -77,6 +117,7 @@ impl AdcInputs {
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with ADC0.
|
||||
pub struct Adc0Input {
|
||||
next_buffer: Option<&'static mut [u16; INPUT_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
@ -85,72 +126,113 @@ pub struct Adc0Input {
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; INPUT_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
SPI2,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; 1],
|
||||
>,
|
||||
}
|
||||
|
||||
impl Adc0Input {
|
||||
/// Construct the ADC0 input channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into
|
||||
/// the SPI TX FIFO.
|
||||
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
|
||||
) -> Self {
|
||||
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
|
||||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(false)
|
||||
.peripheral_increment(false)
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
&SPI2::new(),
|
||||
SPI2::new(),
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
|
||||
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
|
||||
// after the requested number of samples have been collected. Note that only ADC1's data
|
||||
// stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.priority(Priority::VeryHigh)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
// application (e.g. a second DMA transfer completes before the first was done with
|
||||
// processing). This is used as a flow control indicator to guarantee that no ADC samples
|
||||
// are lost.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
&spi,
|
||||
spi,
|
||||
unsafe { &mut ADC0_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
);
|
||||
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
|
||||
let spi = spi.enable();
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
});
|
||||
|
||||
data_transfer.start();
|
||||
trigger_transfer.start();
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle a transfer completion.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; INPUT_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
while hal::dma::dma::Stream1::<hal::stm32::DMA1>::is_enabled() {}
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the data input stream from ADC1
|
||||
pub struct Adc1Input {
|
||||
next_buffer: Option<&'static mut [u16; INPUT_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
@ -159,68 +241,107 @@ pub struct Adc1Input {
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; INPUT_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
SPI3,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; 1],
|
||||
>,
|
||||
}
|
||||
|
||||
impl Adc1Input {
|
||||
/// Construct a new ADC1 input data stream.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface connected to ADC1.
|
||||
/// * `trigger_stream` - The DMA stream used to trigger ADC conversions on the SPI interface.
|
||||
/// * `data_stream` - The DMA stream used to read ADC samples from the SPI RX FIFO.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
|
||||
) -> Self {
|
||||
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
|
||||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(false)
|
||||
.peripheral_increment(false)
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
&SPI3::new(),
|
||||
SPI3::new(),
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
|
||||
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
|
||||
// after the requested number of samples have been collected. Note that only ADC1's data
|
||||
// stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.transfer_complete_interrupt(true)
|
||||
.priority(Priority::VeryHigh)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
// application (e.g. a second DMA transfer completes before the first was done with
|
||||
// processing). This is used as a flow control indicator to guarantee that no ADC samples
|
||||
// are lost.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
&spi,
|
||||
spi,
|
||||
unsafe { &mut ADC1_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
);
|
||||
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
|
||||
let spi = spi.enable();
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
});
|
||||
|
||||
data_transfer.start();
|
||||
trigger_transfer.start();
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle a transfer completion.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; INPUT_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
while hal::dma::dma::Stream3::<hal::stm32::DMA1>::is_enabled() {}
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
|
12
src/main.rs
12
src/main.rs
@ -1,6 +1,4 @@
|
||||
#![deny(warnings)]
|
||||
// Deprecation warnings are temporarily allowed as the HAL DMA goes through updates.
|
||||
#![allow(deprecated)]
|
||||
#![allow(clippy::missing_safety_doc)]
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
@ -41,7 +39,7 @@ use hal::{
|
||||
dma::{
|
||||
config::Priority,
|
||||
dma::{DMAReq, DmaConfig},
|
||||
traits::{Stream, TargetAddress},
|
||||
traits::TargetAddress,
|
||||
MemoryToPeripheral, PeripheralToMemory, Transfer,
|
||||
},
|
||||
ethernet::{self, PHY},
|
||||
@ -706,8 +704,14 @@ const APP: () = {
|
||||
&ccdr.clocks,
|
||||
);
|
||||
{
|
||||
// Listen to the CH1 and CH2 comparison events. These channels should have a value of
|
||||
// zero loaded into them, so the event should occur whenever the timer overflows. Note
|
||||
// that we use channels instead of timer updates because each SPI DMA transfer needs a
|
||||
// unique request line.
|
||||
let t2_regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
t2_regs.dier.modify(|_, w| w.ude().set_bit());
|
||||
t2_regs
|
||||
.dier
|
||||
.modify(|_, w| w.cc1de().set_bit().cc2de().set_bit());
|
||||
}
|
||||
|
||||
init::LateResources {
|
||||
|
Loading…
Reference in New Issue
Block a user