move cossin and atan2 into the same trig file

This commit is contained in:
Matt Huszagh 2020-12-16 16:26:44 -08:00
parent e257545321
commit 7c4f608206
4 changed files with 124 additions and 130 deletions

View File

@ -1,6 +1,6 @@
use core::f32::consts::PI; use core::f32::consts::PI;
use criterion::{black_box, criterion_group, criterion_main, Criterion}; use criterion::{black_box, criterion_group, criterion_main, Criterion};
use dsp::trig::cossin; use dsp::cossin::cossin;
fn cossin_bench(c: &mut Criterion) { fn cossin_bench(c: &mut Criterion) {
let zi = -0x7304_2531_i32; let zi = -0x7304_2531_i32;

View File

@ -1,126 +0,0 @@
use super::{abs, shift_round};
/// 2-argument arctangent function.
///
/// This implementation uses all integer arithmetic for fast
/// computation. It is designed to have high accuracy near the axes
/// and lower away from the axes. It is additionally designed so that
/// the error changes slowly with respect to the angle.
///
/// # Arguments
///
/// * `y` - Y-axis component.
/// * `x` - X-axis component.
///
/// # Returns
///
/// The angle between the x-axis and the ray to the point (x,y). The
/// result range is from i32::MIN to i32::MAX, where i32::MIN
/// corresponds to an angle of -pi and i32::MAX corresponds to an
/// angle of +pi.
pub fn atan2(y: i32, x: i32) -> i32 {
let y = y >> 16;
let x = x >> 16;
let ux = abs::<i32>(x);
let uy = abs::<i32>(y);
// Uses the general procedure described in the following
// Mathematics stack exchange answer:
//
// https://math.stackexchange.com/a/1105038/583981
//
// The atan approximation method has been modified to be cheaper
// to compute and to be more compatible with integer
// arithmetic. The approximation technique used here is
//
// pi / 4 * x + 0.285 * x * (1 - abs(x))
//
// which is taken from Rajan 2006: Efficient Approximations for
// the Arctangent Function.
let (min, max) = if ux < uy { (ux, uy) } else { (uy, ux) };
if max == 0 {
return 0;
}
let ratio = (min << 15) / max;
let mut angle = {
// pi/4, referenced to i16::MAX
const PI_4_FACTOR: i32 = 25735;
// 0.285, referenced to i16::MAX
const FACTOR_0285: i32 = 9339;
// 1/pi, referenced to u16::MAX
const PI_INVERTED_FACTOR: i32 = 20861;
let r1 = shift_round(ratio * PI_4_FACTOR, 15);
let r2 = shift_round(
(shift_round(ratio * FACTOR_0285, 15)) * (i16::MAX as i32 - ratio),
15,
);
(r1 + r2) * PI_INVERTED_FACTOR
};
if uy > ux {
angle = (i32::MAX >> 1) - angle;
}
if x < 0 {
angle = i32::MAX - angle;
}
if y < 0 {
angle *= -1;
}
angle
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::isclose;
use core::f64::consts::PI;
fn angle_to_axis(angle: f64) -> f64 {
let angle = angle % (PI / 2.);
(PI / 2. - angle).min(angle)
}
#[test]
fn absolute_error() {
const NUM_VALS: usize = 1_001;
let mut test_vals: [f64; NUM_VALS] = [0.; NUM_VALS];
let val_bounds: (f64, f64) = (-1., 1.);
let val_delta: f64 =
(val_bounds.1 - val_bounds.0) / (NUM_VALS - 1) as f64;
for i in 0..NUM_VALS {
test_vals[i] = val_bounds.0 + i as f64 * val_delta;
}
for &x in test_vals.iter() {
for &y in test_vals.iter() {
let atol: f64 = 4e-5;
let rtol: f64 = 0.127;
let actual = (y.atan2(x) as f64 * i16::MAX as f64).round()
/ i16::MAX as f64;
let tol = atol + rtol * angle_to_axis(actual).abs();
let computed = (atan2(
((y * i16::MAX as f64) as i32) << 16,
((x * i16::MAX as f64) as i32) << 16,
) >> 16) as f64
/ i16::MAX as f64
* PI;
if !isclose(computed, actual, 0., tol) {
println!("(x, y) : {}, {}", x, y);
println!("actual : {}", actual);
println!("computed : {}", computed);
println!("tolerance: {}\n", tol);
assert!(false);
}
}
}
}
}

View File

@ -31,11 +31,10 @@ where
} }
} }
pub mod atan2;
pub mod cossin;
pub mod iir; pub mod iir;
pub mod lockin; pub mod lockin;
pub mod pll; pub mod pll;
pub mod trig;
pub mod unwrap; pub mod unwrap;
#[cfg(test)] #[cfg(test)]

View File

@ -1,8 +1,85 @@
use super::Complex; use super::{abs, shift_round, Complex};
use core::f64::consts::PI; use core::f64::consts::PI;
include!(concat!(env!("OUT_DIR"), "/cossin_table.rs")); include!(concat!(env!("OUT_DIR"), "/cossin_table.rs"));
/// 2-argument arctangent function.
///
/// This implementation uses all integer arithmetic for fast
/// computation. It is designed to have high accuracy near the axes
/// and lower away from the axes. It is additionally designed so that
/// the error changes slowly with respect to the angle.
///
/// # Arguments
///
/// * `y` - Y-axis component.
/// * `x` - X-axis component.
///
/// # Returns
///
/// The angle between the x-axis and the ray to the point (x,y). The
/// result range is from i32::MIN to i32::MAX, where i32::MIN
/// corresponds to an angle of -pi and i32::MAX corresponds to an
/// angle of +pi.
pub fn atan2(y: i32, x: i32) -> i32 {
let y = y >> 16;
let x = x >> 16;
let ux = abs::<i32>(x);
let uy = abs::<i32>(y);
// Uses the general procedure described in the following
// Mathematics stack exchange answer:
//
// https://math.stackexchange.com/a/1105038/583981
//
// The atan approximation method has been modified to be cheaper
// to compute and to be more compatible with integer
// arithmetic. The approximation technique used here is
//
// pi / 4 * x + 0.285 * x * (1 - abs(x))
//
// which is taken from Rajan 2006: Efficient Approximations for
// the Arctangent Function.
let (min, max) = if ux < uy { (ux, uy) } else { (uy, ux) };
if max == 0 {
return 0;
}
let ratio = (min << 15) / max;
let mut angle = {
// pi/4, referenced to i16::MAX
const PI_4_FACTOR: i32 = 25735;
// 0.285, referenced to i16::MAX
const FACTOR_0285: i32 = 9339;
// 1/pi, referenced to u16::MAX
const PI_INVERTED_FACTOR: i32 = 20861;
let r1 = shift_round(ratio * PI_4_FACTOR, 15);
let r2 = shift_round(
(shift_round(ratio * FACTOR_0285, 15)) * (i16::MAX as i32 - ratio),
15,
);
(r1 + r2) * PI_INVERTED_FACTOR
};
if uy > ux {
angle = (i32::MAX >> 1) - angle;
}
if x < 0 {
angle = i32::MAX - angle;
}
if y < 0 {
angle *= -1;
}
angle
}
/// Compute the cosine and sine of an angle. /// Compute the cosine and sine of an angle.
/// This is ported from the MiSoC cossin core. /// This is ported from the MiSoC cossin core.
/// (https://github.com/m-labs/misoc/blob/master/misoc/cores/cossin.py) /// (https://github.com/m-labs/misoc/blob/master/misoc/cores/cossin.py)
@ -75,6 +152,14 @@ pub fn cossin(phase: i32) -> Complex<i32> {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use crate::testing::isclose;
use core::f64::consts::PI;
fn angle_to_axis(angle: f64) -> f64 {
let angle = angle % (PI / 2.);
(PI / 2. - angle).min(angle)
}
#[test] #[test]
fn error_max_rms_all_phase() { fn error_max_rms_all_phase() {
// Constant amplitude error due to LUT data range. // Constant amplitude error due to LUT data range.
@ -143,4 +228,40 @@ mod tests {
assert!(max_err.0 < 1.1e-5); assert!(max_err.0 < 1.1e-5);
assert!(max_err.1 < 1.1e-5); assert!(max_err.1 < 1.1e-5);
} }
#[test]
fn absolute_error() {
const NUM_VALS: usize = 1_001;
let mut test_vals: [f64; NUM_VALS] = [0.; NUM_VALS];
let val_bounds: (f64, f64) = (-1., 1.);
let val_delta: f64 =
(val_bounds.1 - val_bounds.0) / (NUM_VALS - 1) as f64;
for i in 0..NUM_VALS {
test_vals[i] = val_bounds.0 + i as f64 * val_delta;
}
for &x in test_vals.iter() {
for &y in test_vals.iter() {
let atol: f64 = 4e-5;
let rtol: f64 = 0.127;
let actual = (y.atan2(x) as f64 * i16::MAX as f64).round()
/ i16::MAX as f64;
let tol = atol + rtol * angle_to_axis(actual).abs();
let computed = (atan2(
((y * i16::MAX as f64) as i32) << 16,
((x * i16::MAX as f64) as i32) << 16,
) >> 16) as f64
/ i16::MAX as f64
* PI;
if !isclose(computed, actual, 0., tol) {
println!("(x, y) : {}, {}", x, y);
println!("actual : {}", actual);
println!("computed : {}", computed);
println!("tolerance: {}\n", tol);
assert!(false);
}
}
}
}
} }