Adding WIP updates for digital input stamping

master
Ryan Summers 2020-11-11 18:28:48 +01:00
parent d06a350549
commit 3a59f3e989
8 changed files with 273 additions and 38 deletions

1
Cargo.lock generated
View File

@ -501,7 +501,6 @@ dependencies = [
[[package]]
name = "stm32h7xx-hal"
version = "0.8.0"
source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/dma-rtic-example#d8cb6fa5099282665f5e5068a9dcdc9ebaa63240"
dependencies = [
"bare-metal 1.0.0",
"cast",

View File

@ -54,8 +54,9 @@ path = "ad9959"
[dependencies.stm32h7xx-hal]
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
git = "https://github.com/quartiq/stm32h7xx-hal"
branch = "feature/dma-rtic-example"
# git = "https://github.com/quartiq/stm32h7xx-hal"
# branch = "feature/dma-rtic-example"
path = "../stm32h7xx-hal"
[features]
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]

View File

@ -14,8 +14,8 @@
///! both transfers are completed before reading the data. This is usually not significant for
///! busy-waiting because the transfers should complete at approximately the same time.
use super::{
hal, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory, Priority,
TargetAddress, Transfer,
hal, sampling_timer, DMAReq, DmaConfig, MemoryToPeripheral,
PeripheralToMemory, Priority, TargetAddress, Transfer,
};
// The desired ADC input buffer size. This is use configurable.
@ -142,11 +142,18 @@ impl Adc0Input {
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into
/// the SPI TX FIFO.
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel1,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
// contents). Thus, neither the memory or peripheral address ever change. This is run in
// circular mode to be completed at every DMA request.
@ -224,7 +231,7 @@ impl Adc0Input {
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
@ -256,11 +263,18 @@ impl Adc1Input {
/// * `spi` - The SPI interface connected to ADC1.
/// * `trigger_stream` - The DMA stream used to trigger ADC conversions on the SPI interface.
/// * `data_stream` - The DMA stream used to read ADC samples from the SPI RX FIFO.
/// * `trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel2,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
// contents). Thus, neither the memory or peripheral address ever change. This is run in
// circular mode to be completed at every DMA request.
@ -339,7 +353,7 @@ impl Adc1Input {
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);

View File

@ -0,0 +1,84 @@
use super::{hal, sampling_timer, DmaConfig, PeripheralToMemory, Transfer};
const INPUT_BUFFER_SIZE: usize = 1;
#[link_section = ".axisram.buffers"]
static mut BUF0: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut BUF1: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
pub struct InputStamper {
_di0_trigger: hal::gpio::gpioa::PA3<hal::gpio::Alternate<hal::gpio::AF1>>,
timestamp_buffer: heapless::Vec<u16, heapless::consts::U128>,
next_buffer: Option<&'static mut [u16; INPUT_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream4<hal::stm32::DMA1>,
sampling_timer::Timer2Channel4,
PeripheralToMemory,
&'static mut [u16; INPUT_BUFFER_SIZE],
>,
}
impl InputStamper {
pub fn new(
trigger: hal::gpio::gpioa::PA3<hal::gpio::Alternate<hal::gpio::AF1>>,
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
timer_channel: sampling_timer::Timer2Channel4,
) -> Self {
// Utilize the TIM2 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the
// capture source.
timer_channel.listen_dma();
timer_channel.to_input_capture(sampling_timer::CC4S_A::TI4);
// Set up the DMA transfer.
let dma_config = DmaConfig::default()
.memory_increment(true)
.peripheral_increment(false);
let mut timestamp_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
stream,
timer_channel,
unsafe { &mut BUF0 },
None,
dma_config,
);
timestamp_transfer.start(|_| {});
Self {
timestamp_buffer: heapless::Vec::new(),
next_buffer: unsafe { Some(&mut BUF1) },
transfer: timestamp_transfer,
_di0_trigger: trigger,
}
}
pub fn transfer_complete_handler(&mut self) {
let next_buffer = self.next_buffer.take().unwrap();
self.transfer.clear_interrupts();
let (prev_buffer, _, remaining_transfers) =
self.transfer.next_transfer(next_buffer).unwrap();
let valid_count = prev_buffer.len() - remaining_transfers;
self.timestamp_buffer
.extend_from_slice(&prev_buffer[..valid_count])
.unwrap();
self.next_buffer.replace(prev_buffer);
}
pub fn with_timestamps<F>(&mut self, f: F)
where
F: FnOnce(&[u16]),
{
// First, run the transfer complete handler to retrieve any timestamps that are pending in
// the DMA transfer.
self.transfer_complete_handler();
f(self.timestamp_buffer.as_ref());
self.timestamp_buffer.clear();
}
}

View File

@ -47,7 +47,8 @@ impl HighResTimerE {
let minimum_duration = set_duration + set_offset;
let source_frequency: u32 = self.clocks.timy_ker_ck().0;
let source_cycles = (minimum_duration * source_frequency as f32) as u32 + 1;
let source_cycles =
(minimum_duration * source_frequency as f32) as u32 + 1;
// Determine the clock divider, which may be 1, 2, or 4. We will choose a clock divider that
// allows us the highest resolution per tick, so lower dividers are favored.
@ -92,7 +93,6 @@ impl HighResTimerE {
}
}
// Enable the timer now that it is configured.
self.master.mcr.modify(|_, w| w.tecen().set_bit());
}

View File

@ -59,10 +59,12 @@ static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
mod adc;
mod afe;
mod dac;
mod digital_input_stamper;
mod eeprom;
mod hrtimer;
mod iir;
mod pounder;
mod sampling_timer;
mod server;
use adc::{Adc0Input, Adc1Input, AdcInputs};
@ -185,11 +187,10 @@ const APP: () = {
adcs: AdcInputs,
dacs: DacOutputs,
input_stamper: digital_input_stamper::InputStamper,
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
timer: hal::timer::Timer<hal::stm32::TIM2>,
profiles: heapless::spsc::Queue<[u32; 4], heapless::consts::U32>,
// Note: It appears that rustfmt generates a format that GDB cannot recognize, which
@ -267,6 +268,16 @@ const APP: () = {
let dma_streams =
hal::dma::dma::StreamsTuple::new(dp.DMA1, ccdr.peripheral.DMA1);
// Configure timer 2 to trigger conversions for the ADC
let timer2 = dp.TIM2.timer(
SAMPLE_FREQUENCY_KHZ.khz(),
ccdr.peripheral.TIM2,
&ccdr.clocks,
);
let mut sampling_timer = sampling_timer::SamplingTimer::new(timer2);
let sampling_timer_channels = sampling_timer.channels();
// Configure the SPI interfaces to the ADCs and DACs.
let adcs = {
let adc0 = {
@ -299,7 +310,12 @@ const APP: () = {
&ccdr.clocks,
);
Adc0Input::new(spi, dma_streams.0, dma_streams.1)
Adc0Input::new(
spi,
dma_streams.0,
dma_streams.1,
sampling_timer_channels.ch1,
)
};
let adc1 = {
@ -332,7 +348,12 @@ const APP: () = {
&ccdr.clocks,
);
Adc1Input::new(spi, dma_streams.2, dma_streams.3)
Adc1Input::new(
spi,
dma_streams.2,
dma_streams.3,
sampling_timer_channels.ch2,
)
};
AdcInputs::new(adc0, adc1)
@ -478,9 +499,7 @@ const APP: () = {
};
let mut reset_pin = gpioa.pa0.into_push_pull_output();
let mut io_update = gpiog
.pg7
.into_push_pull_output();
let mut io_update = gpiog.pg7.into_push_pull_output();
let ad9959 = ad9959::Ad9959::new(
qspi_interface,
@ -736,22 +755,17 @@ const APP: () = {
// Utilize the cycle counter for RTIC scheduling.
cp.DWT.enable_cycle_counter();
// Configure timer 2 to trigger conversions for the ADC
let timer2 = dp.TIM2.timer(
SAMPLE_FREQUENCY_KHZ.khz(),
ccdr.peripheral.TIM2,
&ccdr.clocks,
);
{
// Listen to the CH1 and CH2 comparison events. These channels should have a value of
// zero loaded into them, so the event should occur whenever the timer overflows. Note
// that we use channels instead of timer updates because each SPI DMA transfer needs a
// unique request line.
let t2_regs = unsafe { &*hal::stm32::TIM2::ptr() };
t2_regs
.dier
.modify(|_, w| w.cc1de().set_bit().cc2de().set_bit());
}
let input_stamper = {
let trigger = gpioa.pa3.into_alternate_af1();
digital_input_stamper::InputStamper::new(
trigger,
dma_streams.4,
sampling_timer_channels.ch4,
)
};
// Start sampling ADCs.
sampling_timer.start();
init::LateResources {
afe0: afe0,
@ -760,7 +774,8 @@ const APP: () = {
adcs,
dacs,
timer: timer2,
input_stamper,
pounder: pounder_devices,
eeprom_i2c,
@ -772,6 +787,11 @@ const APP: () = {
}
}
#[task(binds=DMA1_STR4, resources=[input_stamper], priority = 2)]
fn digital_stamper(c: digital_stamper::Context) {
let _timestamps = c.resources.input_stamper.transfer_complete_handler();
}
#[task(binds = TIM3, resources=[dacs, profiles, pounder], priority = 3)]
fn dac_update(c: dac_update::Context) {
c.resources.dacs.update();
@ -812,10 +832,15 @@ const APP: () = {
c.resources.pounder.lock(|pounder| {
if let Some(pounder) = pounder {
profiles.lock(|profiles| {
let profile = pounder.ad9959.serialize_profile(pounder::Channel::Out0.into(),
let profile = pounder
.ad9959
.serialize_profile(
pounder::Channel::Out0.into(),
100_000_000_f32,
0.0_f32,
*adc0 as f32 / 0xFFFF as f32).unwrap();
*adc0 as f32 / 0xFFFF as f32,
)
.unwrap();
profiles.enqueue(profile).unwrap();
});

View File

@ -124,9 +124,9 @@ impl QspiInterface {
unsafe {
qspi_regs.dlr.write(|w| w.dl().bits(0xFFFF_FFFF));
qspi_regs
.ccr
.modify(|_, w| w.imode().bits(0).fmode().bits(0).admode().bits(0));
qspi_regs.ccr.modify(|_, w| {
w.imode().bits(0).fmode().bits(0).admode().bits(0)
});
}
self.streaming = true;

112
src/sampling_timer.rs Normal file
View File

@ -0,0 +1,112 @@
use super::hal;
use hal::dma::{dma::DMAReq, traits::TargetAddress, PeripheralToMemory};
pub use hal::stm32::tim2::ccmr2_input::CC4S_A;
pub struct SamplingTimer {
timer: hal::timer::Timer<hal::stm32::TIM2>,
channels: Option<TimerChannels>,
}
impl SamplingTimer {
pub fn new(mut timer: hal::timer::Timer<hal::stm32::TIM2>) -> Self {
timer.pause();
Self {
timer,
channels: Some(TimerChannels::new()),
}
}
pub fn channels(&mut self) -> TimerChannels {
self.channels.take().unwrap()
}
pub fn start(&mut self) {
self.timer.reset_counter();
self.timer.resume();
}
}
pub struct TimerChannels {
pub ch1: Timer2Channel1,
pub ch2: Timer2Channel2,
pub ch3: Timer2Channel3,
pub ch4: Timer2Channel4,
}
impl TimerChannels {
fn new() -> Self {
Self {
ch1: Timer2Channel1 {},
ch2: Timer2Channel2 {},
ch3: Timer2Channel3 {},
ch4: Timer2Channel4 {},
}
}
}
pub struct Timer2Channel1 {}
impl Timer2Channel1 {
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc1de().set_bit());
}
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr1.write(|w| w.ccr().bits(value));
regs.ccmr1_output()
.modify(|_, w| unsafe { w.cc1s().bits(0) });
}
}
pub struct Timer2Channel2 {}
impl Timer2Channel2 {
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc2de().set_bit());
}
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr2.write(|w| w.ccr().bits(value));
regs.ccmr1_output()
.modify(|_, w| unsafe { w.cc2s().bits(0) });
}
}
pub struct Timer2Channel3 {}
pub struct Timer2Channel4 {}
unsafe impl TargetAddress<PeripheralToMemory> for Timer2Channel4 {
type MemSize = u16;
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
fn address(&self) -> u32 {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
&regs.dmar as *const _ as u32
}
}
impl Timer2Channel4 {
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc4de().set_bit());
}
pub fn to_input_capture(&self, trig: CC4S_A) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.ccmr2_input().modify(|_, w| w.cc4s().variant(trig));
// Update the DMA control burst regs to point to CCR4.
regs.dcr
.modify(|_, w| unsafe { w.dbl().bits(1).dba().bits(16) });
}
}