dma: don't swap buffers
* This uses a new closure-based method to the DMA HAL implementation which gives access to the inactive buffer directly. * It removes changing addresses, the third buffer for DBM, the inactive address poisoning, and allows the cancellation of the redundant repeat memory barriers and compiler fences. * This is now around 20 instructions per buffer down from about 100 cycles before. * Also introduces a new `SampleBuffer` type alias. * The required unpacking of the resources structure is a bit annoying but could probably abstraced away. TODO: * Test * Adapt `lockin`
This commit is contained in:
parent
d8cc3c74d9
commit
3165c680d6
3
Cargo.lock
generated
3
Cargo.lock
generated
@ -802,8 +802,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "stm32h7xx-hal"
|
||||
version = "0.9.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "67034b80041bc33a48df1c1c435b6ae3bb18c35e42aa7e702ce8363b96793398"
|
||||
source = "git+https://github.com/quartiq/stm32h7xx-hal.git?rev=cca4ecc#cca4ecc3e0cc8cb2f7a9652c4099d50b44977493"
|
||||
dependencies = [
|
||||
"bare-metal 1.0.0",
|
||||
"cast",
|
||||
|
@ -56,7 +56,9 @@ rev = "523d71d"
|
||||
|
||||
[dependencies.stm32h7xx-hal]
|
||||
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
|
||||
version = "0.9.0"
|
||||
# version = "0.9.0"
|
||||
git = "https://github.com/quartiq/stm32h7xx-hal.git"
|
||||
rev = "cca4ecc"
|
||||
|
||||
[patch.crates-io.miniconf]
|
||||
git = "https://github.com/quartiq/miniconf.git"
|
||||
|
@ -2,6 +2,8 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use core::sync::atomic::{fence, Ordering};
|
||||
|
||||
use stabilizer::{hardware, net};
|
||||
|
||||
use miniconf::Miniconf;
|
||||
@ -120,51 +122,73 @@ const APP: () = {
|
||||
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
|
||||
/// the same time bounds, meeting one also means the other is also met.
|
||||
#[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry], priority=2)]
|
||||
fn process(c: process::Context) {
|
||||
let adc_samples = [
|
||||
c.resources.adcs.0.acquire_buffer(),
|
||||
c.resources.adcs.1.acquire_buffer(),
|
||||
];
|
||||
fn process(mut c: process::Context) {
|
||||
let adc0 = &mut c.resources.adcs.0;
|
||||
let adc1 = &mut c.resources.adcs.1;
|
||||
let dac0 = &mut c.resources.dacs.0;
|
||||
let dac1 = &mut c.resources.dacs.1;
|
||||
let di = &c.resources.digital_inputs;
|
||||
let settings = &c.resources.settings;
|
||||
let iir_state = &mut c.resources.iir_state;
|
||||
let telemetry = &mut c.resources.telemetry;
|
||||
adc0.with_buffer(|a0| {
|
||||
adc1.with_buffer(|a1| {
|
||||
dac0.with_buffer(|d0| {
|
||||
dac1.with_buffer(|d1| {
|
||||
let adc_samples = [a0, a1];
|
||||
let dac_samples = [d0, d1];
|
||||
|
||||
let dac_samples = [
|
||||
c.resources.dacs.0.acquire_buffer(),
|
||||
c.resources.dacs.1.acquire_buffer(),
|
||||
];
|
||||
let digital_inputs =
|
||||
[di.0.is_high().unwrap(), di.1.is_high().unwrap()];
|
||||
|
||||
let digital_inputs = [
|
||||
c.resources.digital_inputs.0.is_high().unwrap(),
|
||||
c.resources.digital_inputs.1.is_high().unwrap(),
|
||||
];
|
||||
let hold = settings.force_hold
|
||||
|| (digital_inputs[1] && settings.allow_hold);
|
||||
|
||||
let hold = c.resources.settings.force_hold
|
||||
|| (digital_inputs[1] && c.resources.settings.allow_hold);
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
|
||||
for channel in 0..adc_samples.len() {
|
||||
for sample in 0..adc_samples[0].len() {
|
||||
let mut y = f32::from(adc_samples[channel][sample] as i16);
|
||||
for i in 0..c.resources.iir_state[channel].len() {
|
||||
y = c.resources.settings.iir_ch[channel][i].update(
|
||||
&mut c.resources.iir_state[channel][i],
|
||||
y,
|
||||
hold,
|
||||
);
|
||||
}
|
||||
// Note(unsafe): The filter limits ensure that the value is in range.
|
||||
// The truncation introduces 1/2 LSB distortion.
|
||||
let y = unsafe { y.to_int_unchecked::<i16>() };
|
||||
// Convert to DAC code
|
||||
dac_samples[channel][sample] = DacCode::from(y).0;
|
||||
}
|
||||
}
|
||||
for channel in 0..adc_samples.len() {
|
||||
adc_samples[channel]
|
||||
.iter()
|
||||
.zip(dac_samples[channel].iter_mut())
|
||||
.map(|(ai, di)| {
|
||||
let x = f32::from(*ai as i16);
|
||||
let y = settings.iir_ch[channel]
|
||||
.iter()
|
||||
.zip(iir_state[channel].iter_mut())
|
||||
.fold(x, |yi, (ch, state)| {
|
||||
ch.update(state, yi, hold)
|
||||
});
|
||||
// Note(unsafe): The filter limits must ensure that
|
||||
// the value is in range.
|
||||
// The truncation introduces 1/2 LSB distortion.
|
||||
let y: i16 =
|
||||
unsafe { y.to_int_unchecked() };
|
||||
// Convert to DAC code
|
||||
*di = DacCode::from(y).0;
|
||||
})
|
||||
.last();
|
||||
}
|
||||
|
||||
// Update telemetry measurements.
|
||||
c.resources.telemetry.adcs =
|
||||
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
|
||||
// Update telemetry measurements.
|
||||
telemetry.adcs = [
|
||||
AdcCode(adc_samples[0][0]),
|
||||
AdcCode(adc_samples[1][0]),
|
||||
];
|
||||
|
||||
c.resources.telemetry.dacs =
|
||||
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
|
||||
telemetry.dacs = [
|
||||
DacCode(dac_samples[0][0]),
|
||||
DacCode(dac_samples[1][0]),
|
||||
];
|
||||
|
||||
c.resources.telemetry.digital_inputs = digital_inputs;
|
||||
telemetry.digital_inputs = digital_inputs;
|
||||
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
})
|
||||
})
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
#[idle(resources=[network], spawn=[settings_update])]
|
||||
|
@ -29,15 +29,9 @@
|
||||
///! available. When enough samples have been collected, a transfer-complete interrupt is generated
|
||||
///! and the ADC samples are available for processing.
|
||||
///!
|
||||
///! The SPI peripheral internally has an 8- or 16-byte TX and RX FIFO, which corresponds to a 4- or
|
||||
///! 8-sample buffer for incoming ADC samples. During the handling of the DMA transfer completion,
|
||||
///! there is a small window where buffers are swapped over where it's possible that a sample could
|
||||
///! be lost. In order to avoid this, the SPI RX FIFO is effectively used as a "sample overflow"
|
||||
///! region and can buffer a number of samples until the next DMA transfer is configured. If a DMA
|
||||
///! transfer is still not set in time, the SPI peripheral will generate an input-overrun interrupt.
|
||||
///! This interrupt then serves as a means of detecting if samples have been lost, which will occur
|
||||
///! whenever data processing takes longer than the collection period.
|
||||
///!
|
||||
///! After a complete transfer of a batch of samples, the inactive buffer is available to the
|
||||
///! user for processing. The processing must complete before the DMA transfer of the next batch
|
||||
///! completes.
|
||||
///!
|
||||
///! ## Starting Data Collection
|
||||
///!
|
||||
@ -68,13 +62,12 @@
|
||||
///! sample DMA requests, which can be completed by setting e.g. ADC0's comparison to a counter
|
||||
///! value of 0 and ADC1's comparison to a counter value of 1.
|
||||
///!
|
||||
///! In this implementation, single buffer mode DMA transfers are used because the SPI RX FIFO can
|
||||
///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because
|
||||
///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless
|
||||
///! double-buffered mode offers less overhead due to the DMA disable/enable procedure).
|
||||
///! In this implementation, double buffer mode DMA transfers are used because the SPI RX FIFOs
|
||||
///! have finite depth, FIFO access is slower than AXISRAM access, and because the single
|
||||
///! buffer mode DMA disable/enable and buffer update sequence is slow.
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use super::design_parameters::SAMPLE_BUFFER_SIZE;
|
||||
use super::design_parameters::{SampleBuffer, SAMPLE_BUFFER_SIZE};
|
||||
use super::timers;
|
||||
|
||||
use hal::dma::{
|
||||
@ -119,8 +112,7 @@ static mut SPI_EOT_CLEAR: [u32; 1] = [0x00];
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
static mut ADC_BUF: [[SampleBuffer; 2]; 2] = [[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
macro_rules! adc_input {
|
||||
($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident, $clear_stream:ident,
|
||||
@ -192,12 +184,11 @@ macro_rules! adc_input {
|
||||
|
||||
/// Represents data associated with ADC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&'static mut SampleBuffer,
|
||||
hal::dma::DBTransfer,
|
||||
>,
|
||||
trigger_transfer: Transfer<
|
||||
@ -316,6 +307,7 @@ macro_rules! adc_input {
|
||||
// data stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.double_buffer(true)
|
||||
.transfer_complete_interrupt($index == 1)
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
@ -333,17 +325,14 @@ macro_rules! adc_input {
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC_BUF[$index][0] is "owned" by this peripheral.
|
||||
// Note(unsafe): The ADC_BUF[$index] is "owned" by this peripheral.
|
||||
// It shall not be used anywhere else in the module.
|
||||
unsafe { &mut ADC_BUF[$index][0] },
|
||||
None,
|
||||
unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
data_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
|
||||
// shall not be used anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
transfer: data_transfer,
|
||||
trigger_transfer,
|
||||
clear_transfer,
|
||||
@ -364,27 +353,17 @@ macro_rules! adc_input {
|
||||
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with ADC samples.
|
||||
/// Wait for the transfer of the currently active buffer to complete,
|
||||
/// then call a function on the now inactive buffer and acknowledge the
|
||||
/// transfer complete flag.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing. Note: If a device
|
||||
// hangs up, check that this conditional is passing correctly, as there is no
|
||||
// time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
/// NOTE(unsafe): Memory safety and access ordering is not guaranteed
|
||||
/// (see the HAL DMA docs).
|
||||
pub fn with_buffer<F, R>(&mut self, f: F) -> R
|
||||
where
|
||||
F: FnOnce(&mut SampleBuffer) -> R,
|
||||
{
|
||||
unsafe { self.transfer.next_dbm_transfer_with(|buf, _current| f(buf)) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -52,7 +52,7 @@
|
||||
///! served promptly after the transfer completes.
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use super::design_parameters::SAMPLE_BUFFER_SIZE;
|
||||
use super::design_parameters::{SampleBuffer, SAMPLE_BUFFER_SIZE};
|
||||
use super::timers;
|
||||
|
||||
use hal::dma::{
|
||||
@ -66,8 +66,7 @@ use hal::dma::{
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 3]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 3]; 2];
|
||||
static mut DAC_BUF: [[SampleBuffer; 2]; 2] = [[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
/// Custom type for referencing DAC output codes.
|
||||
/// The internal integer is the raw code written to the DAC output register.
|
||||
@ -137,13 +136,12 @@ macro_rules! dac_output {
|
||||
|
||||
/// Represents data associated with DAC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
$spi,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&'static mut SampleBuffer,
|
||||
hal::dma::DBTransfer,
|
||||
>,
|
||||
}
|
||||
@ -198,33 +196,26 @@ macro_rules! dac_output {
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC_BUF[$index][2]) },
|
||||
}
|
||||
Self { transfer }
|
||||
}
|
||||
|
||||
pub fn start(&mut self) {
|
||||
self.transfer.start(|spi| spi.start_dma());
|
||||
}
|
||||
|
||||
/// Acquire the next output buffer to populate it with DAC codes.
|
||||
pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
/// Wait for the transfer of the currently active buffer to complete,
|
||||
/// then call a function on the now inactive buffer and acknowledge the
|
||||
/// transfer complete flag.
|
||||
///
|
||||
/// NOTE(unsafe): Memory safety and access ordering is not guaranteed
|
||||
/// (see the HAL DMA docs).
|
||||
pub fn with_buffer<F, R>(&mut self, f: F) -> R
|
||||
where
|
||||
F: FnOnce(&mut SampleBuffer) -> R,
|
||||
{
|
||||
unsafe {
|
||||
self.transfer.next_dbm_transfer_with(|buf, _current| f(buf))
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -50,5 +50,7 @@ pub const ADC_SAMPLE_TICKS: u16 = 1 << ADC_SAMPLE_TICKS_LOG2;
|
||||
pub const SAMPLE_BUFFER_SIZE_LOG2: u8 = 3;
|
||||
pub const SAMPLE_BUFFER_SIZE: usize = 1 << SAMPLE_BUFFER_SIZE_LOG2;
|
||||
|
||||
pub type SampleBuffer = [u16; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
// The MQTT broker IPv4 address
|
||||
pub const MQTT_BROKER: [u8; 4] = [10, 34, 16, 10];
|
||||
|
Loading…
Reference in New Issue
Block a user