Robert Jördens
3165c680d6
* This uses a new closure-based method to the DMA HAL implementation which gives access to the inactive buffer directly. * It removes changing addresses, the third buffer for DBM, the inactive address poisoning, and allows the cancellation of the redundant repeat memory barriers and compiler fences. * This is now around 20 instructions per buffer down from about 100 cycles before. * Also introduces a new `SampleBuffer` type alias. * The required unpacking of the resources structure is a bit annoying but could probably abstraced away. TODO: * Test * Adapt `lockin`
272 lines
9.8 KiB
Rust
272 lines
9.8 KiB
Rust
#![deny(warnings)]
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
use core::sync::atomic::{fence, Ordering};
|
|
|
|
use stabilizer::{hardware, net};
|
|
|
|
use miniconf::Miniconf;
|
|
use serde::Deserialize;
|
|
|
|
use dsp::iir;
|
|
use hardware::{
|
|
Adc0Input, Adc1Input, AdcCode, AfeGain, Dac0Output, Dac1Output, DacCode,
|
|
DigitalInput0, DigitalInput1, InputPin, SystemTimer, AFE0, AFE1,
|
|
};
|
|
|
|
use net::{NetworkUsers, Telemetry, TelemetryBuffer, UpdateState};
|
|
|
|
const SCALE: f32 = i16::MAX as _;
|
|
|
|
// The number of cascaded IIR biquads per channel. Select 1 or 2!
|
|
const IIR_CASCADE_LENGTH: usize = 1;
|
|
|
|
#[derive(Clone, Copy, Debug, Deserialize, Miniconf)]
|
|
pub struct Settings {
|
|
afe: [AfeGain; 2],
|
|
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
|
|
allow_hold: bool,
|
|
force_hold: bool,
|
|
telemetry_period: u16,
|
|
}
|
|
|
|
impl Default for Settings {
|
|
fn default() -> Self {
|
|
Self {
|
|
// Analog frontend programmable gain amplifier gains (G1, G2, G5, G10)
|
|
afe: [AfeGain::G1, AfeGain::G1],
|
|
// IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the
|
|
// new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`.
|
|
// The array is `iir_state[channel-index][cascade-index][coeff-index]`.
|
|
// The IIR coefficients can be mapped to other transfer function
|
|
// representations, for example as described in https://arxiv.org/abs/1508.06319
|
|
iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2],
|
|
// Permit the DI1 digital input to suppress filter output updates.
|
|
allow_hold: false,
|
|
// Force suppress filter output updates.
|
|
force_hold: false,
|
|
// The default telemetry period in seconds.
|
|
telemetry_period: 10,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)]
|
|
const APP: () = {
|
|
struct Resources {
|
|
afes: (AFE0, AFE1),
|
|
digital_inputs: (DigitalInput0, DigitalInput1),
|
|
adcs: (Adc0Input, Adc1Input),
|
|
dacs: (Dac0Output, Dac1Output),
|
|
network: NetworkUsers<Settings, Telemetry>,
|
|
|
|
settings: Settings,
|
|
telemetry: TelemetryBuffer,
|
|
|
|
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
|
|
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
|
|
}
|
|
|
|
#[init(spawn=[telemetry, settings_update])]
|
|
fn init(c: init::Context) -> init::LateResources {
|
|
// Configure the microcontroller
|
|
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
|
|
|
|
let network = NetworkUsers::new(
|
|
stabilizer.net.stack,
|
|
stabilizer.net.phy,
|
|
stabilizer.cycle_counter,
|
|
env!("CARGO_BIN_NAME"),
|
|
stabilizer.net.mac_address,
|
|
);
|
|
|
|
// Spawn a settings update for default settings.
|
|
c.spawn.settings_update().unwrap();
|
|
c.spawn.telemetry().unwrap();
|
|
|
|
// Enable ADC/DAC events
|
|
stabilizer.adcs.0.start();
|
|
stabilizer.adcs.1.start();
|
|
stabilizer.dacs.0.start();
|
|
stabilizer.dacs.1.start();
|
|
|
|
// Start sampling ADCs.
|
|
stabilizer.adc_dac_timer.start();
|
|
|
|
init::LateResources {
|
|
afes: stabilizer.afes,
|
|
adcs: stabilizer.adcs,
|
|
dacs: stabilizer.dacs,
|
|
network,
|
|
digital_inputs: stabilizer.digital_inputs,
|
|
telemetry: net::TelemetryBuffer::default(),
|
|
settings: Settings::default(),
|
|
}
|
|
}
|
|
|
|
/// Main DSP processing routine for Stabilizer.
|
|
///
|
|
/// # Note
|
|
/// Processing time for the DSP application code is bounded by the following constraints:
|
|
///
|
|
/// DSP application code starts after the ADC has generated a batch of samples and must be
|
|
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
|
|
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
|
|
///
|
|
/// The DSP application code must also fill out the next DAC output buffer in time such that the
|
|
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
|
|
/// it's possible that old DAC codes will be generated on the output and the output samples will
|
|
/// be delayed by 1 batch.
|
|
///
|
|
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
|
|
/// the same time bounds, meeting one also means the other is also met.
|
|
#[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry], priority=2)]
|
|
fn process(mut c: process::Context) {
|
|
let adc0 = &mut c.resources.adcs.0;
|
|
let adc1 = &mut c.resources.adcs.1;
|
|
let dac0 = &mut c.resources.dacs.0;
|
|
let dac1 = &mut c.resources.dacs.1;
|
|
let di = &c.resources.digital_inputs;
|
|
let settings = &c.resources.settings;
|
|
let iir_state = &mut c.resources.iir_state;
|
|
let telemetry = &mut c.resources.telemetry;
|
|
adc0.with_buffer(|a0| {
|
|
adc1.with_buffer(|a1| {
|
|
dac0.with_buffer(|d0| {
|
|
dac1.with_buffer(|d1| {
|
|
let adc_samples = [a0, a1];
|
|
let dac_samples = [d0, d1];
|
|
|
|
let digital_inputs =
|
|
[di.0.is_high().unwrap(), di.1.is_high().unwrap()];
|
|
|
|
let hold = settings.force_hold
|
|
|| (digital_inputs[1] && settings.allow_hold);
|
|
|
|
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
|
fence(Ordering::SeqCst);
|
|
|
|
for channel in 0..adc_samples.len() {
|
|
adc_samples[channel]
|
|
.iter()
|
|
.zip(dac_samples[channel].iter_mut())
|
|
.map(|(ai, di)| {
|
|
let x = f32::from(*ai as i16);
|
|
let y = settings.iir_ch[channel]
|
|
.iter()
|
|
.zip(iir_state[channel].iter_mut())
|
|
.fold(x, |yi, (ch, state)| {
|
|
ch.update(state, yi, hold)
|
|
});
|
|
// Note(unsafe): The filter limits must ensure that
|
|
// the value is in range.
|
|
// The truncation introduces 1/2 LSB distortion.
|
|
let y: i16 =
|
|
unsafe { y.to_int_unchecked() };
|
|
// Convert to DAC code
|
|
*di = DacCode::from(y).0;
|
|
})
|
|
.last();
|
|
}
|
|
|
|
// Update telemetry measurements.
|
|
telemetry.adcs = [
|
|
AdcCode(adc_samples[0][0]),
|
|
AdcCode(adc_samples[1][0]),
|
|
];
|
|
|
|
telemetry.dacs = [
|
|
DacCode(dac_samples[0][0]),
|
|
DacCode(dac_samples[1][0]),
|
|
];
|
|
|
|
telemetry.digital_inputs = digital_inputs;
|
|
|
|
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
|
fence(Ordering::SeqCst);
|
|
})
|
|
})
|
|
})
|
|
});
|
|
}
|
|
|
|
#[idle(resources=[network], spawn=[settings_update])]
|
|
fn idle(mut c: idle::Context) -> ! {
|
|
loop {
|
|
match c.resources.network.lock(|net| net.update()) {
|
|
UpdateState::Updated => c.spawn.settings_update().unwrap(),
|
|
UpdateState::NoChange => cortex_m::asm::wfi(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[task(priority = 1, resources=[network, afes, settings])]
|
|
fn settings_update(mut c: settings_update::Context) {
|
|
// Update the IIR channels.
|
|
let settings = c.resources.network.miniconf.settings();
|
|
c.resources.settings.lock(|current| *current = *settings);
|
|
|
|
// Update AFEs
|
|
c.resources.afes.0.set_gain(settings.afe[0]);
|
|
c.resources.afes.1.set_gain(settings.afe[1]);
|
|
}
|
|
|
|
#[task(priority = 1, resources=[network, settings, telemetry], schedule=[telemetry])]
|
|
fn telemetry(mut c: telemetry::Context) {
|
|
let telemetry: TelemetryBuffer =
|
|
c.resources.telemetry.lock(|telemetry| *telemetry);
|
|
|
|
let (gains, telemetry_period) = c
|
|
.resources
|
|
.settings
|
|
.lock(|settings| (settings.afe, settings.telemetry_period));
|
|
|
|
c.resources
|
|
.network
|
|
.telemetry
|
|
.publish(&telemetry.finalize(gains[0], gains[1]));
|
|
|
|
// Schedule the telemetry task in the future.
|
|
c.schedule
|
|
.telemetry(
|
|
c.scheduled
|
|
+ SystemTimer::ticks_from_secs(telemetry_period as u32),
|
|
)
|
|
.unwrap();
|
|
}
|
|
|
|
#[task(binds = ETH, priority = 1)]
|
|
fn eth(_: eth::Context) {
|
|
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
|
|
}
|
|
|
|
#[task(binds = SPI2, priority = 3)]
|
|
fn spi2(_: spi2::Context) {
|
|
panic!("ADC0 input overrun");
|
|
}
|
|
|
|
#[task(binds = SPI3, priority = 3)]
|
|
fn spi3(_: spi3::Context) {
|
|
panic!("ADC1 input overrun");
|
|
}
|
|
|
|
#[task(binds = SPI4, priority = 3)]
|
|
fn spi4(_: spi4::Context) {
|
|
panic!("DAC0 output error");
|
|
}
|
|
|
|
#[task(binds = SPI5, priority = 3)]
|
|
fn spi5(_: spi5::Context) {
|
|
panic!("DAC1 output error");
|
|
}
|
|
|
|
extern "C" {
|
|
// hw interrupt handlers for RTIC to use for scheduling tasks
|
|
// one per priority
|
|
fn DCMI();
|
|
fn JPEG();
|
|
fn SDMMC();
|
|
}
|
|
};
|