2021-01-20 21:19:28 +08:00
|
|
|
#![deny(warnings)]
|
|
|
|
#![no_std]
|
|
|
|
#![no_main]
|
|
|
|
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
|
|
|
|
|
|
|
|
use stm32h7xx_hal as hal;
|
|
|
|
|
|
|
|
use rtic::cyccnt::{Instant, U32Ext};
|
|
|
|
|
2021-01-21 21:55:33 +08:00
|
|
|
use stabilizer::{
|
2021-01-28 01:15:35 +08:00
|
|
|
hardware, ADC_SAMPLE_TICKS_LOG2, SAMPLE_BUFFER_SIZE_LOG2,
|
2021-01-20 21:29:29 +08:00
|
|
|
};
|
2021-01-21 21:55:33 +08:00
|
|
|
|
2021-01-25 18:45:55 +08:00
|
|
|
use dsp::{iir, iir_int, lockin::Lockin, rpll::RPLL};
|
2021-01-20 21:29:29 +08:00
|
|
|
use hardware::{
|
|
|
|
Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1,
|
|
|
|
};
|
|
|
|
|
2021-01-20 21:19:28 +08:00
|
|
|
const SCALE: f32 = ((1 << 15) - 1) as f32;
|
|
|
|
|
|
|
|
// The number of cascaded IIR biquads per channel. Select 1 or 2!
|
|
|
|
const IIR_CASCADE_LENGTH: usize = 1;
|
|
|
|
|
|
|
|
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
|
|
|
|
const APP: () = {
|
|
|
|
struct Resources {
|
|
|
|
afes: (AFE0, AFE1),
|
|
|
|
adcs: (Adc0Input, Adc1Input),
|
|
|
|
dacs: (Dac0Output, Dac1Output),
|
2021-01-28 01:15:35 +08:00
|
|
|
stack: hardware::NetworkStack,
|
2021-01-20 21:19:28 +08:00
|
|
|
|
|
|
|
// Format: iir_state[ch][cascade-no][coeff]
|
|
|
|
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
|
|
|
|
iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2],
|
|
|
|
#[init([[iir::IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE }; IIR_CASCADE_LENGTH]; 2])]
|
|
|
|
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
|
2021-01-20 21:29:29 +08:00
|
|
|
|
|
|
|
timestamper: InputStamper,
|
2021-01-25 18:45:55 +08:00
|
|
|
pll: RPLL,
|
2021-01-21 21:55:33 +08:00
|
|
|
lockin: Lockin,
|
2021-01-20 21:19:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#[init]
|
|
|
|
fn init(c: init::Context) -> init::LateResources {
|
|
|
|
// Configure the microcontroller
|
|
|
|
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
|
|
|
|
|
2021-01-26 21:40:44 +08:00
|
|
|
let pll = RPLL::new(ADC_SAMPLE_TICKS_LOG2 + SAMPLE_BUFFER_SIZE_LOG2, 0);
|
2021-01-21 21:55:33 +08:00
|
|
|
|
|
|
|
let lockin = Lockin::new(
|
2021-01-27 01:49:58 +08:00
|
|
|
&iir_int::IIRState::lowpass(1e-3, 0.707, 2.), // TODO: expose
|
2021-01-21 21:55:33 +08:00
|
|
|
);
|
2021-01-20 21:29:29 +08:00
|
|
|
|
2021-01-20 21:19:28 +08:00
|
|
|
// Enable ADC/DAC events
|
|
|
|
stabilizer.adcs.0.start();
|
|
|
|
stabilizer.adcs.1.start();
|
|
|
|
stabilizer.dacs.0.start();
|
|
|
|
stabilizer.dacs.1.start();
|
|
|
|
|
2021-01-21 21:55:33 +08:00
|
|
|
// Start recording digital input timestamps.
|
|
|
|
stabilizer.timestamp_timer.start();
|
|
|
|
|
2021-01-21 23:12:59 +08:00
|
|
|
// Start sampling ADCs.
|
|
|
|
stabilizer.adc_dac_timer.start();
|
|
|
|
|
2021-01-20 21:19:28 +08:00
|
|
|
init::LateResources {
|
|
|
|
afes: stabilizer.afes,
|
|
|
|
adcs: stabilizer.adcs,
|
|
|
|
dacs: stabilizer.dacs,
|
2021-01-28 01:15:35 +08:00
|
|
|
stack: stabilizer.net.stack,
|
2021-01-20 21:29:29 +08:00
|
|
|
timestamper: stabilizer.timestamper,
|
|
|
|
|
2021-01-21 21:55:33 +08:00
|
|
|
pll,
|
|
|
|
lockin,
|
2021-01-20 21:19:28 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Main DSP processing routine for Stabilizer.
|
|
|
|
///
|
|
|
|
/// # Note
|
|
|
|
/// Processing time for the DSP application code is bounded by the following constraints:
|
|
|
|
///
|
|
|
|
/// DSP application code starts after the ADC has generated a batch of samples and must be
|
|
|
|
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
|
|
|
|
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
|
|
|
|
///
|
|
|
|
/// The DSP application code must also fill out the next DAC output buffer in time such that the
|
|
|
|
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
|
|
|
|
/// it's possible that old DAC codes will be generated on the output and the output samples will
|
|
|
|
/// be delayed by 1 batch.
|
|
|
|
///
|
|
|
|
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
|
|
|
|
/// the same time bounds, meeting one also means the other is also met.
|
2021-01-21 21:55:33 +08:00
|
|
|
///
|
|
|
|
/// TODO: document lockin
|
|
|
|
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch, lockin, timestamper, pll], priority=2)]
|
2021-01-20 21:19:28 +08:00
|
|
|
fn process(c: process::Context) {
|
|
|
|
let adc_samples = [
|
|
|
|
c.resources.adcs.0.acquire_buffer(),
|
|
|
|
c.resources.adcs.1.acquire_buffer(),
|
|
|
|
];
|
|
|
|
|
|
|
|
let dac_samples = [
|
|
|
|
c.resources.dacs.0.acquire_buffer(),
|
|
|
|
c.resources.dacs.1.acquire_buffer(),
|
|
|
|
];
|
|
|
|
|
|
|
|
let iir_ch = c.resources.iir_ch;
|
|
|
|
let iir_state = c.resources.iir_state;
|
2021-01-21 21:55:33 +08:00
|
|
|
let lockin = c.resources.lockin;
|
2021-01-20 21:19:28 +08:00
|
|
|
|
2021-01-25 18:45:55 +08:00
|
|
|
let (pll_phase, pll_frequency) = c.resources.pll.update(
|
|
|
|
c.resources.timestamper.latest_timestamp().map(|t| t as i32),
|
2021-01-27 01:49:58 +08:00
|
|
|
22, // relative PLL frequency bandwidth: 2**-22, TODO: expose
|
|
|
|
22, // relative PLL phase bandwidth: 2**-22, TODO: expose
|
2021-01-25 18:45:55 +08:00
|
|
|
);
|
2021-01-20 21:19:28 +08:00
|
|
|
|
2021-01-21 23:12:59 +08:00
|
|
|
// Harmonic index of the LO: -1 to _de_modulate the fundamental
|
2021-01-21 21:55:33 +08:00
|
|
|
let harmonic: i32 = -1;
|
|
|
|
// Demodulation LO phase offset
|
|
|
|
let phase_offset: i32 = 0;
|
2021-01-26 21:40:44 +08:00
|
|
|
let sample_frequency =
|
|
|
|
(pll_frequency >> SAMPLE_BUFFER_SIZE_LOG2).wrapping_mul(harmonic);
|
|
|
|
let mut sample_phase =
|
|
|
|
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
|
2021-01-20 21:19:28 +08:00
|
|
|
|
2021-01-21 21:55:33 +08:00
|
|
|
for i in 0..adc_samples[0].len() {
|
|
|
|
// Convert to signed, MSB align the ADC sample.
|
|
|
|
let input = (adc_samples[0][i] as i16 as i32) << 16;
|
|
|
|
// Obtain demodulated, filtered IQ sample.
|
2021-01-21 23:12:59 +08:00
|
|
|
let output = lockin.update(input, sample_phase);
|
2021-01-21 21:55:33 +08:00
|
|
|
// Advance the sample phase.
|
|
|
|
sample_phase = sample_phase.wrapping_add(sample_frequency);
|
|
|
|
|
|
|
|
// Convert from IQ to power and phase.
|
2021-01-21 23:12:59 +08:00
|
|
|
let mut power = output.power() as _;
|
|
|
|
let mut phase = output.phase() as _;
|
2021-01-21 21:55:33 +08:00
|
|
|
|
|
|
|
// Filter power and phase through IIR filters.
|
|
|
|
// Note: Normalization to be done in filters. Phase will wrap happily.
|
2021-01-20 21:19:28 +08:00
|
|
|
for j in 0..iir_state[0].len() {
|
2021-01-21 21:55:33 +08:00
|
|
|
power = iir_ch[0][j].update(&mut iir_state[0][j], power);
|
2021-01-20 21:19:28 +08:00
|
|
|
phase = iir_ch[1][j].update(&mut iir_state[1][j], phase);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note(unsafe): range clipping to i16 is ensured by IIR filters above.
|
2021-01-21 21:55:33 +08:00
|
|
|
// Convert to DAC data.
|
2021-01-20 21:19:28 +08:00
|
|
|
unsafe {
|
|
|
|
dac_samples[0][i] =
|
2021-01-21 21:55:33 +08:00
|
|
|
power.to_int_unchecked::<i16>() as u16 ^ 0x8000;
|
2021-01-20 21:19:28 +08:00
|
|
|
dac_samples[1][i] =
|
|
|
|
phase.to_int_unchecked::<i16>() as u16 ^ 0x8000;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-28 01:15:35 +08:00
|
|
|
#[idle(resources=[stack, iir_state, iir_ch, afes])]
|
|
|
|
fn idle(c: idle::Context) -> ! {
|
2021-01-20 21:19:28 +08:00
|
|
|
let mut time = 0u32;
|
|
|
|
let mut next_ms = Instant::now();
|
|
|
|
|
|
|
|
// TODO: Replace with reference to CPU clock from CCDR.
|
|
|
|
next_ms += 400_000.cycles();
|
|
|
|
|
|
|
|
loop {
|
|
|
|
let tick = Instant::now() > next_ms;
|
|
|
|
|
|
|
|
if tick {
|
|
|
|
next_ms += 400_000.cycles();
|
|
|
|
time += 1;
|
|
|
|
}
|
|
|
|
|
2021-01-28 01:15:35 +08:00
|
|
|
let sleep = c.resources.stack.update(time);
|
2021-01-20 21:19:28 +08:00
|
|
|
|
|
|
|
if sleep {
|
|
|
|
cortex_m::asm::wfi();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[task(binds = ETH, priority = 1)]
|
|
|
|
fn eth(_: eth::Context) {
|
|
|
|
unsafe { hal::ethernet::interrupt_handler() }
|
|
|
|
}
|
|
|
|
|
|
|
|
#[task(binds = SPI2, priority = 3)]
|
|
|
|
fn spi2(_: spi2::Context) {
|
|
|
|
panic!("ADC0 input overrun");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[task(binds = SPI3, priority = 3)]
|
|
|
|
fn spi3(_: spi3::Context) {
|
|
|
|
panic!("ADC0 input overrun");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[task(binds = SPI4, priority = 3)]
|
|
|
|
fn spi4(_: spi4::Context) {
|
|
|
|
panic!("DAC0 output error");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[task(binds = SPI5, priority = 3)]
|
|
|
|
fn spi5(_: spi5::Context) {
|
|
|
|
panic!("DAC1 output error");
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
// hw interrupt handlers for RTIC to use for scheduling tasks
|
|
|
|
// one per priority
|
|
|
|
fn DCMI();
|
|
|
|
fn JPEG();
|
|
|
|
fn SDMMC();
|
|
|
|
}
|
|
|
|
};
|