pounder_test/dsp/src/trig.rs

268 lines
8.4 KiB
Rust
Raw Normal View History

use super::{abs, shift_round, Complex};
use core::f64::consts::PI;
2020-12-08 02:22:09 +08:00
2020-12-11 00:17:09 +08:00
include!(concat!(env!("OUT_DIR"), "/cossin_table.rs"));
/// 2-argument arctangent function.
///
/// This implementation uses all integer arithmetic for fast
/// computation. It is designed to have high accuracy near the axes
/// and lower away from the axes. It is additionally designed so that
/// the error changes slowly with respect to the angle.
///
/// # Arguments
///
/// * `y` - Y-axis component.
/// * `x` - X-axis component.
///
/// # Returns
///
/// The angle between the x-axis and the ray to the point (x,y). The
/// result range is from i32::MIN to i32::MAX, where i32::MIN
/// corresponds to an angle of -pi and i32::MAX corresponds to an
/// angle of +pi.
pub fn atan2(y: i32, x: i32) -> i32 {
let y = y >> 16;
let x = x >> 16;
let ux = abs::<i32>(x);
let uy = abs::<i32>(y);
// Uses the general procedure described in the following
// Mathematics stack exchange answer:
//
// https://math.stackexchange.com/a/1105038/583981
//
// The atan approximation method has been modified to be cheaper
// to compute and to be more compatible with integer
// arithmetic. The approximation technique used here is
//
// pi / 4 * x + 0.285 * x * (1 - abs(x))
//
// which is taken from Rajan 2006: Efficient Approximations for
// the Arctangent Function.
let (min, max) = if ux < uy { (ux, uy) } else { (uy, ux) };
if max == 0 {
return 0;
}
let ratio = (min << 15) / max;
let mut angle = {
// pi/4, referenced to i16::MAX
const PI_4_FACTOR: i32 = 25735;
// 0.285, referenced to i16::MAX
const FACTOR_0285: i32 = 9339;
// 1/pi, referenced to u16::MAX
const PI_INVERTED_FACTOR: i32 = 20861;
let r1 = shift_round(ratio * PI_4_FACTOR, 15);
let r2 = shift_round(
(shift_round(ratio * FACTOR_0285, 15)) * (i16::MAX as i32 - ratio),
15,
);
(r1 + r2) * PI_INVERTED_FACTOR
};
if uy > ux {
angle = (i32::MAX >> 1) - angle;
}
if x < 0 {
angle = i32::MAX - angle;
}
if y < 0 {
angle *= -1;
}
angle
}
2020-12-08 02:22:09 +08:00
/// Compute the cosine and sine of an angle.
/// This is ported from the MiSoC cossin core.
/// (https://github.com/m-labs/misoc/blob/master/misoc/cores/cossin.py)
2020-12-08 02:22:09 +08:00
///
/// # Arguments
/// * `phase` - 32-bit phase.
2020-12-08 02:22:09 +08:00
///
/// # Returns
/// The cos and sin values of the provided phase as a `Complex<i32>`
/// value. With a 7-bit deep LUT there is 1e-5 max and 6e-8 RMS error
/// in each quadrature over 20 bit phase.
2020-12-08 02:22:09 +08:00
pub fn cossin(phase: i32) -> Complex<i32> {
// Phase bits excluding the three highes MSB
const OCTANT_BITS: usize = 32 - 3;
// This is a slightly more compact way to compute the four flags for
// octant mapping/unmapping used below.
let mut octant = (phase as u32) >> OCTANT_BITS;
octant ^= octant << 1;
// Mask off octant bits. This leaves the angle in the range [0, pi/4).
let mut phase = phase & ((1 << OCTANT_BITS) - 1);
if octant & 1 != 0 {
2020-12-08 02:22:09 +08:00
// phase = pi/4 - phase
phase = (1 << OCTANT_BITS) - 1 - phase;
2020-12-08 02:22:09 +08:00
}
let lookup = COSSIN[(phase >> (OCTANT_BITS - COSSIN_DEPTH)) as usize];
// 1/2 < cos(0 <= x <= pi/4) <= 1: Shift the cos
// values and scale the sine values as encoded in the LUT.
let mut cos = lookup.0 as i32 + u16::MAX as i32;
let mut sin = (lookup.1 as i32) << 1;
// 16 + 1 bits for cos/sin and 15 for dphi to saturate the i32 range.
const ALIGN_MSB: usize = 32 - 16 - 1;
phase >>= OCTANT_BITS - COSSIN_DEPTH - ALIGN_MSB;
phase &= (1 << ALIGN_MSB) - 1;
// The phase values used for the LUT are at midpoint for the truncated phase.
// Interpolate relative to the LUT entry midpoint.
phase -= (1 << (ALIGN_MSB - 1)) - (octant & 1) as i32;
// Fixed point pi/4.
const PI4: i32 = (PI / 4. * (1 << (32 - ALIGN_MSB)) as f64) as i32;
// No rounding bias necessary here since we keep enough low bits.
let dphi = (phase * PI4) >> (32 - ALIGN_MSB);
// Make room for the sign bit.
let dcos = (sin * dphi) >> (COSSIN_DEPTH + 1);
let dsin = (cos * dphi) >> (COSSIN_DEPTH + 1);
cos = (cos << (ALIGN_MSB - 1)) - dcos;
sin = (sin << (ALIGN_MSB - 1)) + dsin;
// Unmap using octant bits.
if octant & 2 != 0 {
core::mem::swap(&mut sin, &mut cos);
2020-12-08 02:22:09 +08:00
}
if octant & 4 != 0 {
2020-12-08 02:22:09 +08:00
cos *= -1;
}
if octant & 8 != 0 {
2020-12-08 02:22:09 +08:00
sin *= -1;
}
(cos, sin)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::isclose;
use core::f64::consts::PI;
fn angle_to_axis(angle: f64) -> f64 {
let angle = angle % (PI / 2.);
(PI / 2. - angle).min(angle)
}
2020-12-08 02:22:09 +08:00
#[test]
fn error_max_rms_all_phase() {
// Constant amplitude error due to LUT data range.
const AMPLITUDE: f64 = ((1i64 << 31) - (1i64 << 15)) as f64;
const MAX_PHASE: f64 = (1i64 << 32) as f64;
2020-12-08 02:22:09 +08:00
let mut rms_err: Complex<f64> = (0., 0.);
let mut sum_err: Complex<f64> = (0., 0.);
let mut max_err: Complex<f64> = (0., 0.);
let mut sum: Complex<f64> = (0., 0.);
let mut demod: Complex<f64> = (0., 0.);
2020-12-13 19:36:23 +08:00
// use std::{fs::File, io::{BufWriter, prelude::*}, path::Path};
// let mut file = BufWriter::new(File::create(Path::new("data.bin")).unwrap());
const PHASE_DEPTH: usize = 20;
for phase in 0..(1 << PHASE_DEPTH) {
let phase = (phase << (32 - PHASE_DEPTH)) as i32;
let have = cossin(phase);
2020-12-13 19:36:23 +08:00
// file.write(&have.0.to_le_bytes()).unwrap();
// file.write(&have.1.to_le_bytes()).unwrap();
let have = (have.0 as f64 / AMPLITUDE, have.1 as f64 / AMPLITUDE);
2020-12-08 02:22:09 +08:00
let radian_phase = 2. * PI * phase as f64 / MAX_PHASE;
let want = (radian_phase.cos(), radian_phase.sin());
sum.0 += have.0;
sum.1 += have.1;
demod.0 += have.0 * want.0 - have.1 * want.1;
demod.1 += have.1 * want.0 + have.0 * want.1;
let err = (have.0 - want.0, have.1 - want.1);
sum_err.0 += err.0;
sum_err.1 += err.1;
rms_err.0 += err.0 * err.0;
rms_err.1 += err.1 * err.1;
max_err.0 = max_err.0.max(err.0.abs());
max_err.1 = max_err.1.max(err.1.abs());
2020-12-08 02:22:09 +08:00
}
rms_err.0 /= MAX_PHASE;
rms_err.1 /= MAX_PHASE;
println!("sum: {:.2e} {:.2e}", sum.0, sum.1);
println!("demod: {:.2e} {:.2e}", demod.0, demod.1);
println!("sum_err: {:.2e} {:.2e}", sum_err.0, sum_err.1);
println!("rms: {:.2e} {:.2e}", rms_err.0.sqrt(), rms_err.1.sqrt());
println!("max: {:.2e} {:.2e}", max_err.0, max_err.1);
assert!(sum.0.abs() < 4e-10);
assert!(sum.1.abs() < 4e-10);
assert!(demod.0.abs() < 4e-10);
assert!(demod.1.abs() < 4e-10);
assert!(sum_err.0.abs() < 4e-10);
assert!(sum_err.1.abs() < 4e-10);
assert!(rms_err.0.sqrt() < 6e-8);
assert!(rms_err.1.sqrt() < 6e-8);
assert!(max_err.0 < 1.1e-5);
assert!(max_err.1 < 1.1e-5);
2020-12-08 02:22:09 +08:00
}
#[test]
fn absolute_error() {
const NUM_VALS: usize = 1_001;
let mut test_vals: [f64; NUM_VALS] = [0.; NUM_VALS];
let val_bounds: (f64, f64) = (-1., 1.);
let val_delta: f64 =
(val_bounds.1 - val_bounds.0) / (NUM_VALS - 1) as f64;
for i in 0..NUM_VALS {
test_vals[i] = val_bounds.0 + i as f64 * val_delta;
}
for &x in test_vals.iter() {
for &y in test_vals.iter() {
let atol: f64 = 4e-5;
let rtol: f64 = 0.127;
let actual = (y.atan2(x) as f64 * i16::MAX as f64).round()
/ i16::MAX as f64;
let tol = atol + rtol * angle_to_axis(actual).abs();
let computed = (atan2(
((y * i16::MAX as f64) as i32) << 16,
((x * i16::MAX as f64) as i32) << 16,
) >> 16) as f64
/ i16::MAX as f64
* PI;
if !isclose(computed, actual, 0., tol) {
println!("(x, y) : {}, {}", x, y);
println!("actual : {}", actual);
println!("computed : {}", computed);
println!("tolerance: {}\n", tol);
assert!(false);
}
}
}
}
2020-12-08 02:22:09 +08:00
}