thermostat/src/channels.rs

257 lines
8.5 KiB
Rust
Raw Normal View History

2020-05-13 06:04:55 +08:00
use smoltcp::time::Instant;
2020-05-19 06:15:39 +08:00
use log::info;
2020-05-13 05:16:57 +08:00
use crate::{
2020-05-19 06:15:39 +08:00
ad5680,
2020-05-13 05:16:57 +08:00
ad7172,
channel::{Channel, Channel0, Channel1},
2020-05-13 06:04:55 +08:00
channel_state::ChannelState,
2020-05-13 05:16:57 +08:00
pins,
2020-05-17 06:13:52 +08:00
units::Volts,
2020-05-13 05:16:57 +08:00
};
2020-05-13 06:04:55 +08:00
pub const CHANNELS: usize = 2;
2020-05-19 03:38:13 +08:00
// TODO: -pub
2020-05-13 05:16:57 +08:00
pub struct Channels {
channel0: Channel<Channel0>,
channel1: Channel<Channel1>,
2020-05-13 05:16:57 +08:00
pub adc: ad7172::Adc<pins::AdcSpi, pins::AdcNss>,
2020-05-28 08:01:55 +08:00
/// stm32f4 integrated adc
pins_adc: pins::PinsAdc,
2020-05-13 05:16:57 +08:00
pub pwm: pins::PwmPins,
}
impl Channels {
pub fn new(pins: pins::Pins) -> Self {
let channel0 = Channel::new(pins.channel0);
let channel1 = Channel::new(pins.channel1);
2020-05-28 08:01:55 +08:00
let pins_adc = pins.pins_adc;
2020-05-13 05:16:57 +08:00
let pwm = pins.pwm;
let mut adc = ad7172::Adc::new(pins.adc_spi, pins.adc_nss).unwrap();
// Feature not used
adc.set_sync_enable(false).unwrap();
2020-05-17 08:11:53 +08:00
// Calibrate ADC channels individually
adc.disable_all_channels().unwrap();
adc.setup_channel(0, ad7172::Input::Ain0, ad7172::Input::Ain1).unwrap();
adc.calibrate().unwrap();
adc.disable_channel(0).unwrap();
adc.setup_channel(1, ad7172::Input::Ain2, ad7172::Input::Ain3).unwrap();
adc.calibrate().unwrap();
adc.disable_channel(1).unwrap();
// Setup channels and start ADC
2020-05-13 05:16:57 +08:00
adc.setup_channel(0, ad7172::Input::Ain0, ad7172::Input::Ain1).unwrap();
adc.setup_channel(1, ad7172::Input::Ain2, ad7172::Input::Ain3).unwrap();
2020-05-17 08:11:53 +08:00
adc.start_continuous_conversion().unwrap();
2020-05-13 05:16:57 +08:00
2020-05-28 08:06:32 +08:00
Channels { channel0, channel1, adc, pins_adc, pwm }
2020-05-13 05:16:57 +08:00
}
2020-05-13 06:04:55 +08:00
pub fn channel_state<I: Into<usize>>(&mut self, channel: I) -> &mut ChannelState {
match channel.into() {
0 => &mut self.channel0.state,
1 => &mut self.channel1.state,
_ => unreachable!(),
}
}
/// ADC input + PID processing
pub fn poll_adc(&mut self, instant: Instant) -> Option<u8> {
self.adc.data_ready().unwrap().map(|channel| {
let data = self.adc.read_data().unwrap();
let dac_value = {
let state = self.channel_state(channel);
let pid_output = state.update_pid(instant, data);
2020-05-13 06:04:55 +08:00
if state.pid_engaged {
Some(pid_output)
2020-05-13 06:04:55 +08:00
} else {
None
}
};
if let Some(dac_value) = dac_value {
// Forward PID output to i_set DAC
2020-05-17 07:23:35 +08:00
self.set_dac(channel.into(), Volts(dac_value));
2020-05-13 06:04:55 +08:00
}
channel
})
}
2020-05-13 06:15:29 +08:00
2020-05-14 03:02:26 +08:00
/// i_set DAC
2020-05-17 07:23:35 +08:00
pub fn set_dac(&mut self, channel: usize, voltage: Volts) {
2020-05-19 06:15:39 +08:00
let dac_factor = match channel.into() {
0 => self.channel0.dac_factor,
1 => self.channel1.dac_factor,
_ => unreachable!(),
};
let value = (voltage.0 * dac_factor) as u32;
2020-05-14 03:02:26 +08:00
match channel {
0 => {
2020-05-19 06:15:39 +08:00
self.channel0.dac.set(value).unwrap();
2020-05-17 07:23:35 +08:00
self.channel0.state.dac_value = voltage;
2020-05-14 03:02:26 +08:00
}
1 => {
2020-05-19 06:15:39 +08:00
self.channel1.dac.set(value).unwrap();
2020-05-17 07:23:35 +08:00
self.channel1.state.dac_value = voltage;
2020-05-14 03:02:26 +08:00
}
_ => unreachable!(),
}
}
2020-05-17 08:18:25 +08:00
pub fn read_dac_feedback(&mut self, channel: usize) -> Volts {
2020-05-13 06:15:29 +08:00
match channel {
2020-05-17 06:13:52 +08:00
0 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-17 08:18:25 +08:00
&self.channel0.dac_feedback_pin,
2020-05-17 06:13:52 +08:00
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
info!("dac0_fb: {}/{:03X}", mv, sample);
2020-05-17 06:13:52 +08:00
Volts(mv as f64 / 1000.0)
}
1 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-17 08:18:25 +08:00
&self.channel1.dac_feedback_pin,
2020-05-17 06:13:52 +08:00
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
info!("dac1_fb: {}/{:03X}", mv, sample);
2020-05-17 06:13:52 +08:00
Volts(mv as f64 / 1000.0)
}
2020-05-13 06:15:29 +08:00
_ => unreachable!(),
}
}
2020-05-17 05:59:31 +08:00
pub fn read_dac_feedback_until_stable(&mut self, channel: usize, tolerance: f64) -> Volts {
let mut prev = self.read_dac_feedback(channel);
loop {
let current = self.read_dac_feedback(channel);
use num_traits::float::Float;
if (current - prev).0.abs() < tolerance {
return current;
}
prev = current;
}
}
2020-05-17 06:13:52 +08:00
pub fn read_itec(&mut self, channel: usize) -> Volts {
2020-05-17 05:59:31 +08:00
match channel {
2020-05-17 06:13:52 +08:00
0 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-17 06:13:52 +08:00
&self.channel0.itec_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-17 06:13:52 +08:00
Volts(mv as f64 / 1000.0)
}
1 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-17 06:13:52 +08:00
&self.channel1.itec_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-19 04:43:44 +08:00
Volts(mv as f64 / 1000.0)
}
_ => unreachable!(),
}
}
2020-05-19 06:15:39 +08:00
/// should be 1.5V
2020-05-19 04:43:44 +08:00
pub fn read_vref(&mut self, channel: usize) -> Volts {
match channel {
0 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-19 04:43:44 +08:00
&self.channel0.vref_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-19 04:43:44 +08:00
Volts(mv as f64 / 1000.0)
}
1 => {
2020-05-28 08:01:55 +08:00
let sample = self.pins_adc.convert(
2020-05-19 04:43:44 +08:00
&self.channel1.vref_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:01:55 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-17 06:13:52 +08:00
Volts(mv as f64 / 1000.0)
}
2020-05-17 05:59:31 +08:00
_ => unreachable!(),
}
}
2020-05-19 03:38:13 +08:00
pub fn read_tec_u_meas(&mut self, channel: usize) -> Volts {
match channel {
0 => {
2020-05-28 08:06:32 +08:00
let sample = self.pins_adc.convert(
2020-05-19 03:38:13 +08:00
&self.channel0.tec_u_meas_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:06:32 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-19 03:38:13 +08:00
Volts(mv as f64 / 1000.0)
}
1 => {
2020-05-28 08:06:32 +08:00
let sample = self.pins_adc.convert(
2020-05-19 03:38:13 +08:00
&self.channel1.tec_u_meas_pin,
stm32f4xx_hal::adc::config::SampleTime::Cycles_480
);
2020-05-28 08:06:32 +08:00
let mv = self.pins_adc.sample_to_millivolts(sample);
2020-05-19 03:38:13 +08:00
Volts(mv as f64 / 1000.0)
}
_ => unreachable!(),
}
}
2020-05-19 06:15:39 +08:00
/// for i_set
pub fn calibrate_dac_value(&mut self, channel: usize) {
let vref = self.read_vref(channel);
let value = self.calibrate_dac_value_for_voltage(channel, vref);
info!("best dac value for {}: {}", vref, value);
let dac_factor = value as f64 / vref.0;
match channel {
0 => self.channel0.dac_factor = dac_factor,
1 => self.channel1.dac_factor = dac_factor,
_ => unreachable!(),
}
}
fn calibrate_dac_value_for_voltage(&mut self, channel: usize, voltage: Volts) -> u32 {
2020-05-19 06:15:39 +08:00
let mut best_value = 0;
let mut best_error = Volts(100.0);
for step in (1..=12).rev() {
for value in (best_value..=ad5680::MAX_VALUE).step_by(2usize.pow(step)) {
match channel {
0 => {
self.channel0.dac.set(value).unwrap();
// self.channel0.shdn.set_high().unwrap();
}
1 => {
self.channel1.dac.set(value).unwrap();
// self.channel1.shdn.set_high().unwrap();
}
_ => unreachable!(),
2020-05-19 06:15:39 +08:00
}
let dac_feedback = self.read_dac_feedback_until_stable(channel, 0.001);
let error = voltage - dac_feedback;
if error < Volts(0.0) {
break;
} else if error < best_error {
best_value = value;
best_error = error;
}
2020-05-19 06:15:39 +08:00
}
}
self.set_dac(channel, Volts(0.0));
best_value
2020-05-19 06:15:39 +08:00
}
2020-05-13 05:16:57 +08:00
}