riscv-formal-nmigen/nmigen/vendor/lattice_machxo2.py

390 lines
15 KiB
Python

from abc import abstractproperty
from ..hdl import *
from ..build import *
__all__ = ["LatticeMachXO2Platform"]
class LatticeMachXO2Platform(TemplatedPlatform):
"""
Required tools:
* ``pnmainc``
* ``ddtcmd``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Diamond``, if present.
Available overrides:
* ``script_project``: inserts commands before ``prj_project save`` in Tcl script.
* ``script_after_export``: inserts commands after ``prj_run Export`` in Tcl script.
* ``add_preferences``: inserts commands at the end of the LPF file.
* ``add_constraints``: inserts commands at the end of the XDC file.
Build products:
* ``{{name}}_impl/{{name}}_impl.htm``: consolidated log.
* ``{{name}}.jed``: JEDEC fuse file.
* ``{{name}}.svf``: JTAG programming vector.
"""
toolchain = "Diamond"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
grade = "C" # [C]ommercial, [I]ndustrial
required_tools = [
"yosys",
"pnmainc",
"ddtcmd"
]
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
if [ -n "${{platform._toolchain_env_var}}" ]; then
bindir=$(dirname "${{platform._toolchain_env_var}}")
. "${{platform._toolchain_env_var}}"
fi
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
prj_project new -name {{name}} -impl impl -impl_dir top_impl \
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}} \
-lpf {{name}}.lpf \
-synthesis synplify
{% for file in platform.iter_extra_files(".v", ".sv", ".vhd", ".vhdl") -%}
prj_src add "{{file}}"
{% endfor %}
prj_src add {{name}}.v
prj_impl option top {{name}}
prj_src add {{name}}.sdc
{{get_override("script_project")|default("# (script_project placeholder)")}}
prj_project save
prj_run Synthesis -impl impl -forceAll
prj_run Translate -impl impl -forceAll
prj_run Map -impl impl -forceAll
prj_run PAR -impl impl -forceAll
prj_run Export -impl impl -forceAll -task Jedecgen
{{get_override("script_after_export")|default("# (script_after_export placeholder)")}}
""",
"{{name}}.lpf": r"""
# {{autogenerated}}
BLOCK ASYNCPATHS;
BLOCK RESETPATHS;
{% for port_name, pin_name, extras in platform.iter_port_constraints_bits() -%}
LOCATE COMP "{{port_name}}" SITE "{{pin_name}}";
{% if extras -%}
IOBUF PORT "{{port_name}}"
{%- for key, value in extras.items() %} {{key}}={{value}}{% endfor %};
{% endif %}
{% endfor %}
{{get_override("add_preferences")|default("# (add_preferences placeholder)")}}
""",
"{{name}}.sdc": r"""
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name}} -period {{1000000000/frequency}} [get_ports {{port_signal.name}}]
{% else -%}
create_clock -name {{net_signal.name}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
}
command_templates = [
# These don't have any usable command-line option overrides.
r"""
{{invoke_tool("pnmainc")}}
{{name}}.tcl
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -jed
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}}
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}.jed
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -svfsingle -revd -op "FLASH Erase,Program,Verify"
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}.svf
""",
]
def create_missing_domain(self, name):
# Lattice MachXO2 devices have two global set/reset signals: PUR, which is driven at
# startup by the configuration logic and unconditionally resets every storage element,
# and GSR, which is driven by user logic and each storage element may be configured as
# affected or unaffected by GSR. PUR is purely asynchronous, so even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. To avoid this, a GSR/SGSR instance should be driven
# synchronized to user clock.
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
gsr0 = Signal()
gsr1 = Signal()
m = Module()
# There is no end-of-startup signal on MachXO2, but PUR is released after IOB enable,
# so a simple reset synchronizer (with PUR as the asynchronous reset) does the job.
m.submodules += [
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=~rst_i, o_Q=gsr0),
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=gsr0, o_Q=gsr1),
# Although we already synchronize the reset input to user clock, SGSR has dedicated
# clock routing to the center of the FPGA; use that just in case it turns out to be
# more reliable. (None of this is documented.)
Instance("SGSR", i_CLK=clk_i, i_GSR=gsr1),
]
# GSR implicitly connects to every appropriate storage element. As such, the sync
# domain is reset-less; domains driven by other clocks would need to have dedicated
# reset circuitry or otherwise meet setup/hold constraints on their own.
m.domains += ClockDomain("sync", reset_less=True)
m.d.comb += ClockSignal("sync").eq(clk_i)
return m
_single_ended_io_types = [
"PCI33", "LVTTL33", "LVCMOS33", "LVCMOS25", "LVCMOS18", "LVCMOS15", "LVCMOS12",
"LVCMOS25R33", "LVCMOS18R33", "LVCMOS18R25", "LVCMOS15R33", "LVCMOS15R25", "LVCMOS12R33",
"LVCMOS12R25", "LVCMOS10R33", "LVCMOS10R25", "SSTL25_I", "SSTL25_II", "SSTL18_I",
"SSTL18_II", "HSTL18_I", "HSTL18_II",
]
_differential_io_types = [
"LVDS25", "LVDS25E", "RSDS25", "RSDS25E", "BLVDS25", "BLVDS25E", "MLVDS25", "MLVDS25E",
"LVPECL33", "LVPECL33E", "SSTL25D_I", "SSTL25D_II", "SSTL18D_I", "SSTL18D_II",
"HSTL18D_I", "HSTL18D_II", "LVTTL33D", "LVCMOS33D", "LVCMOS25D", "LVCMOS18D", "LVCMOS15D",
"LVCMOS12D", "MIPI",
]
def should_skip_port_component(self, port, attrs, component):
# On ECP5, a differential IO is placed by only instantiating an IO buffer primitive at
# the PIOA or PIOC location, which is always the non-inverting pin.
if attrs.get("IO_TYPE", "LVCMOS25") in self._differential_io_types and component == "n":
return True
return False
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_ireg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("IFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_oreg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("OFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(sclk, d, q0, q1):
for bit in range(len(d)):
m.submodules += Instance("IDDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_oddr(sclk, d0, d1, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_ineg(z, invert):
if invert:
a = Signal.like(z, name_suffix="_n")
m.d.comb += z.eq(~a)
return a
else:
return z
def get_oneg(a, invert):
if invert:
z = Signal.like(a, name_suffix="_n")
m.d.comb += z.eq(~a)
return z
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
# Note that currently nextpnr will not pack an FF (*FS1P3DX) into the PIO.
if "i" in pin.dir:
get_ireg(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_oreg(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_oreg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
# It looks like Diamond will not pack an OREG as a tristate register in a DDR PIO.
# It is not clear what is the recommended set of primitives for this task.
# Similarly, nextpnr will not pack anything as a tristate register in a DDR PIO.
get_oreg(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=port[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=port[bit]
)
return m
def get_diff_input(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=p_port[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=p_port[bit],
)
return m
def get_diff_tristate(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=p_port[bit],
)
return m
def get_diff_input_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=p_port[bit],
)
return m
# CDC primitives are not currently specialized for MachXO2.