451 lines
16 KiB
Python
451 lines
16 KiB
Python
|
"""First-in first-out queues."""
|
||
|
|
||
|
from .. import *
|
||
|
from ..asserts import *
|
||
|
from .._utils import log2_int, deprecated
|
||
|
from .coding import GrayEncoder
|
||
|
from .cdc import FFSynchronizer
|
||
|
|
||
|
|
||
|
__all__ = ["FIFOInterface", "SyncFIFO", "SyncFIFOBuffered", "AsyncFIFO", "AsyncFIFOBuffered"]
|
||
|
|
||
|
|
||
|
class FIFOInterface:
|
||
|
_doc_template = """
|
||
|
{description}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
width : int
|
||
|
Bit width of data entries.
|
||
|
depth : int
|
||
|
Depth of the queue. If zero, the FIFO cannot be read from or written to.
|
||
|
{parameters}
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
{attributes}
|
||
|
w_data : in, width
|
||
|
Input data.
|
||
|
w_rdy : out
|
||
|
Asserted if there is space in the queue, i.e. ``w_en`` can be asserted to write
|
||
|
a new entry.
|
||
|
w_en : in
|
||
|
Write strobe. Latches ``w_data`` into the queue. Does nothing if ``w_rdy`` is not asserted.
|
||
|
{w_attributes}
|
||
|
r_data : out, width
|
||
|
Output data. {r_data_valid}
|
||
|
r_rdy : out
|
||
|
Asserted if there is an entry in the queue, i.e. ``r_en`` can be asserted to read
|
||
|
an existing entry.
|
||
|
r_en : in
|
||
|
Read strobe. Makes the next entry (if any) available on ``r_data`` at the next cycle.
|
||
|
Does nothing if ``r_rdy`` is not asserted.
|
||
|
{r_attributes}
|
||
|
"""
|
||
|
|
||
|
__doc__ = _doc_template.format(description="""
|
||
|
Data written to the input interface (``w_data``, ``w_rdy``, ``w_en``) is buffered and can be
|
||
|
read at the output interface (``r_data``, ``r_rdy``, ``r_en`). The data entry written first
|
||
|
to the input also appears first on the output.
|
||
|
""",
|
||
|
parameters="",
|
||
|
r_data_valid="The conditions in which ``r_data`` is valid depends on the type of the queue.",
|
||
|
attributes="""
|
||
|
fwft : bool
|
||
|
First-word fallthrough. If set, when ``r_rdy`` rises, the first entry is already
|
||
|
available, i.e. ``r_data`` is valid. Otherwise, after ``r_rdy`` rises, it is necessary
|
||
|
to strobe ``r_en`` for ``r_data`` to become valid.
|
||
|
""".strip(),
|
||
|
w_attributes="",
|
||
|
r_attributes="")
|
||
|
|
||
|
def __init__(self, *, width, depth, fwft):
|
||
|
if not isinstance(width, int) or width < 0:
|
||
|
raise TypeError("FIFO width must be a non-negative integer, not {!r}"
|
||
|
.format(width))
|
||
|
if not isinstance(depth, int) or depth < 0:
|
||
|
raise TypeError("FIFO depth must be a non-negative integer, not {!r}"
|
||
|
.format(depth))
|
||
|
self.width = width
|
||
|
self.depth = depth
|
||
|
self.fwft = fwft
|
||
|
|
||
|
self.w_data = Signal(width, reset_less=True)
|
||
|
self.w_rdy = Signal() # writable; not full
|
||
|
self.w_en = Signal()
|
||
|
|
||
|
self.r_data = Signal(width, reset_less=True)
|
||
|
self.r_rdy = Signal() # readable; not empty
|
||
|
self.r_en = Signal()
|
||
|
|
||
|
|
||
|
def _incr(signal, modulo):
|
||
|
if modulo == 2 ** len(signal):
|
||
|
return signal + 1
|
||
|
else:
|
||
|
return Mux(signal == modulo - 1, 0, signal + 1)
|
||
|
|
||
|
|
||
|
class SyncFIFO(Elaboratable, FIFOInterface):
|
||
|
__doc__ = FIFOInterface._doc_template.format(
|
||
|
description="""
|
||
|
Synchronous first in, first out queue.
|
||
|
|
||
|
Read and write interfaces are accessed from the same clock domain. If different clock domains
|
||
|
are needed, use :class:`AsyncFIFO`.
|
||
|
""".strip(),
|
||
|
parameters="""
|
||
|
fwft : bool
|
||
|
First-word fallthrough. If set, when the queue is empty and an entry is written into it,
|
||
|
that entry becomes available on the output on the same clock cycle. Otherwise, it is
|
||
|
necessary to assert ``r_en`` for ``r_data`` to become valid.
|
||
|
""".strip(),
|
||
|
r_data_valid="""
|
||
|
For FWFT queues, valid if ``r_rdy`` is asserted. For non-FWFT queues, valid on the next
|
||
|
cycle after ``r_rdy`` and ``r_en`` have been asserted.
|
||
|
""".strip(),
|
||
|
attributes="",
|
||
|
r_attributes="""
|
||
|
level : out
|
||
|
Number of unread entries.
|
||
|
""".strip(),
|
||
|
w_attributes="")
|
||
|
|
||
|
def __init__(self, *, width, depth, fwft=True):
|
||
|
super().__init__(width=width, depth=depth, fwft=fwft)
|
||
|
|
||
|
self.level = Signal(range(depth + 1))
|
||
|
|
||
|
def elaborate(self, platform):
|
||
|
m = Module()
|
||
|
if self.depth == 0:
|
||
|
m.d.comb += [
|
||
|
self.w_rdy.eq(0),
|
||
|
self.r_rdy.eq(0),
|
||
|
]
|
||
|
return m
|
||
|
|
||
|
m.d.comb += [
|
||
|
self.w_rdy.eq(self.level != self.depth),
|
||
|
self.r_rdy.eq(self.level != 0)
|
||
|
]
|
||
|
|
||
|
do_read = self.r_rdy & self.r_en
|
||
|
do_write = self.w_rdy & self.w_en
|
||
|
|
||
|
storage = Memory(width=self.width, depth=self.depth)
|
||
|
w_port = m.submodules.w_port = storage.write_port()
|
||
|
r_port = m.submodules.r_port = storage.read_port(
|
||
|
domain="comb" if self.fwft else "sync", transparent=self.fwft)
|
||
|
produce = Signal(range(self.depth))
|
||
|
consume = Signal(range(self.depth))
|
||
|
|
||
|
m.d.comb += [
|
||
|
w_port.addr.eq(produce),
|
||
|
w_port.data.eq(self.w_data),
|
||
|
w_port.en.eq(self.w_en & self.w_rdy)
|
||
|
]
|
||
|
with m.If(do_write):
|
||
|
m.d.sync += produce.eq(_incr(produce, self.depth))
|
||
|
|
||
|
m.d.comb += [
|
||
|
r_port.addr.eq(consume),
|
||
|
self.r_data.eq(r_port.data),
|
||
|
]
|
||
|
if not self.fwft:
|
||
|
m.d.comb += r_port.en.eq(self.r_en)
|
||
|
with m.If(do_read):
|
||
|
m.d.sync += consume.eq(_incr(consume, self.depth))
|
||
|
|
||
|
with m.If(do_write & ~do_read):
|
||
|
m.d.sync += self.level.eq(self.level + 1)
|
||
|
with m.If(do_read & ~do_write):
|
||
|
m.d.sync += self.level.eq(self.level - 1)
|
||
|
|
||
|
if platform == "formal":
|
||
|
# TODO: move this logic to SymbiYosys
|
||
|
with m.If(Initial()):
|
||
|
m.d.comb += [
|
||
|
Assume(produce < self.depth),
|
||
|
Assume(consume < self.depth),
|
||
|
]
|
||
|
with m.If(produce == consume):
|
||
|
m.d.comb += Assume((self.level == 0) | (self.level == self.depth))
|
||
|
with m.If(produce > consume):
|
||
|
m.d.comb += Assume(self.level == (produce - consume))
|
||
|
with m.If(produce < consume):
|
||
|
m.d.comb += Assume(self.level == (self.depth + produce - consume))
|
||
|
with m.Else():
|
||
|
m.d.comb += [
|
||
|
Assert(produce < self.depth),
|
||
|
Assert(consume < self.depth),
|
||
|
]
|
||
|
with m.If(produce == consume):
|
||
|
m.d.comb += Assert((self.level == 0) | (self.level == self.depth))
|
||
|
with m.If(produce > consume):
|
||
|
m.d.comb += Assert(self.level == (produce - consume))
|
||
|
with m.If(produce < consume):
|
||
|
m.d.comb += Assert(self.level == (self.depth + produce - consume))
|
||
|
|
||
|
return m
|
||
|
|
||
|
|
||
|
class SyncFIFOBuffered(Elaboratable, FIFOInterface):
|
||
|
__doc__ = FIFOInterface._doc_template.format(
|
||
|
description="""
|
||
|
Buffered synchronous first in, first out queue.
|
||
|
|
||
|
This queue's interface is identical to :class:`SyncFIFO` configured as ``fwft=True``, but it
|
||
|
does not use asynchronous memory reads, which are incompatible with FPGA block RAMs.
|
||
|
|
||
|
In exchange, the latency between an entry being written to an empty queue and that entry
|
||
|
becoming available on the output is increased by one cycle compared to :class:`SyncFIFO`.
|
||
|
""".strip(),
|
||
|
parameters="""
|
||
|
fwft : bool
|
||
|
Always set.
|
||
|
""".strip(),
|
||
|
attributes="",
|
||
|
r_data_valid="Valid if ``r_rdy`` is asserted.",
|
||
|
r_attributes="""
|
||
|
level : out
|
||
|
Number of unread entries.
|
||
|
""".strip(),
|
||
|
w_attributes="")
|
||
|
|
||
|
def __init__(self, *, width, depth):
|
||
|
super().__init__(width=width, depth=depth, fwft=True)
|
||
|
|
||
|
self.level = Signal(range(depth + 1))
|
||
|
|
||
|
def elaborate(self, platform):
|
||
|
m = Module()
|
||
|
if self.depth == 0:
|
||
|
m.d.comb += [
|
||
|
self.w_rdy.eq(0),
|
||
|
self.r_rdy.eq(0),
|
||
|
]
|
||
|
return m
|
||
|
|
||
|
# Effectively, this queue treats the output register of the non-FWFT inner queue as
|
||
|
# an additional storage element.
|
||
|
m.submodules.unbuffered = fifo = SyncFIFO(width=self.width, depth=self.depth - 1,
|
||
|
fwft=False)
|
||
|
|
||
|
m.d.comb += [
|
||
|
fifo.w_data.eq(self.w_data),
|
||
|
fifo.w_en.eq(self.w_en),
|
||
|
self.w_rdy.eq(fifo.w_rdy),
|
||
|
]
|
||
|
|
||
|
m.d.comb += [
|
||
|
self.r_data.eq(fifo.r_data),
|
||
|
fifo.r_en.eq(fifo.r_rdy & (~self.r_rdy | self.r_en)),
|
||
|
]
|
||
|
with m.If(fifo.r_en):
|
||
|
m.d.sync += self.r_rdy.eq(1)
|
||
|
with m.Elif(self.r_en):
|
||
|
m.d.sync += self.r_rdy.eq(0)
|
||
|
|
||
|
m.d.comb += self.level.eq(fifo.level + self.r_rdy)
|
||
|
|
||
|
return m
|
||
|
|
||
|
|
||
|
class AsyncFIFO(Elaboratable, FIFOInterface):
|
||
|
__doc__ = FIFOInterface._doc_template.format(
|
||
|
description="""
|
||
|
Asynchronous first in, first out queue.
|
||
|
|
||
|
Read and write interfaces are accessed from different clock domains, which can be set when
|
||
|
constructing the FIFO.
|
||
|
|
||
|
:class:`AsyncFIFO` only supports power of 2 depths. Unless ``exact_depth`` is specified,
|
||
|
the ``depth`` parameter is rounded up to the next power of 2.
|
||
|
""".strip(),
|
||
|
parameters="""
|
||
|
r_domain : str
|
||
|
Read clock domain.
|
||
|
w_domain : str
|
||
|
Write clock domain.
|
||
|
""".strip(),
|
||
|
attributes="""
|
||
|
fwft : bool
|
||
|
Always set.
|
||
|
""".strip(),
|
||
|
r_data_valid="Valid if ``r_rdy`` is asserted.",
|
||
|
r_attributes="",
|
||
|
w_attributes="")
|
||
|
|
||
|
def __init__(self, *, width, depth, r_domain="read", w_domain="write", exact_depth=False):
|
||
|
if depth != 0:
|
||
|
try:
|
||
|
depth_bits = log2_int(depth, need_pow2=exact_depth)
|
||
|
depth = 1 << depth_bits
|
||
|
except ValueError as e:
|
||
|
raise ValueError("AsyncFIFO only supports depths that are powers of 2; requested "
|
||
|
"exact depth {} is not"
|
||
|
.format(depth)) from None
|
||
|
else:
|
||
|
depth_bits = 0
|
||
|
super().__init__(width=width, depth=depth, fwft=True)
|
||
|
|
||
|
self._r_domain = r_domain
|
||
|
self._w_domain = w_domain
|
||
|
self._ctr_bits = depth_bits + 1
|
||
|
|
||
|
def elaborate(self, platform):
|
||
|
m = Module()
|
||
|
if self.depth == 0:
|
||
|
m.d.comb += [
|
||
|
self.w_rdy.eq(0),
|
||
|
self.r_rdy.eq(0),
|
||
|
]
|
||
|
return m
|
||
|
|
||
|
# The design of this queue is the "style #2" from Clifford E. Cummings' paper "Simulation
|
||
|
# and Synthesis Techniques for Asynchronous FIFO Design":
|
||
|
# http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
|
||
|
|
||
|
do_write = self.w_rdy & self.w_en
|
||
|
do_read = self.r_rdy & self.r_en
|
||
|
|
||
|
# TODO: extract this pattern into lib.cdc.GrayCounter
|
||
|
produce_w_bin = Signal(self._ctr_bits)
|
||
|
produce_w_nxt = Signal(self._ctr_bits)
|
||
|
m.d.comb += produce_w_nxt.eq(produce_w_bin + do_write)
|
||
|
m.d[self._w_domain] += produce_w_bin.eq(produce_w_nxt)
|
||
|
|
||
|
consume_r_bin = Signal(self._ctr_bits)
|
||
|
consume_r_nxt = Signal(self._ctr_bits)
|
||
|
m.d.comb += consume_r_nxt.eq(consume_r_bin + do_read)
|
||
|
m.d[self._r_domain] += consume_r_bin.eq(consume_r_nxt)
|
||
|
|
||
|
produce_w_gry = Signal(self._ctr_bits)
|
||
|
produce_r_gry = Signal(self._ctr_bits)
|
||
|
produce_enc = m.submodules.produce_enc = \
|
||
|
GrayEncoder(self._ctr_bits)
|
||
|
produce_cdc = m.submodules.produce_cdc = \
|
||
|
FFSynchronizer(produce_w_gry, produce_r_gry, o_domain=self._r_domain)
|
||
|
m.d.comb += produce_enc.i.eq(produce_w_nxt),
|
||
|
m.d[self._w_domain] += produce_w_gry.eq(produce_enc.o)
|
||
|
|
||
|
consume_r_gry = Signal(self._ctr_bits)
|
||
|
consume_w_gry = Signal(self._ctr_bits)
|
||
|
consume_enc = m.submodules.consume_enc = \
|
||
|
GrayEncoder(self._ctr_bits)
|
||
|
consume_cdc = m.submodules.consume_cdc = \
|
||
|
FFSynchronizer(consume_r_gry, consume_w_gry, o_domain=self._w_domain)
|
||
|
m.d.comb += consume_enc.i.eq(consume_r_nxt)
|
||
|
m.d[self._r_domain] += consume_r_gry.eq(consume_enc.o)
|
||
|
|
||
|
w_full = Signal()
|
||
|
r_empty = Signal()
|
||
|
m.d.comb += [
|
||
|
w_full.eq((produce_w_gry[-1] != consume_w_gry[-1]) &
|
||
|
(produce_w_gry[-2] != consume_w_gry[-2]) &
|
||
|
(produce_w_gry[:-2] == consume_w_gry[:-2])),
|
||
|
r_empty.eq(consume_r_gry == produce_r_gry),
|
||
|
]
|
||
|
|
||
|
storage = Memory(width=self.width, depth=self.depth)
|
||
|
w_port = m.submodules.w_port = storage.write_port(domain=self._w_domain)
|
||
|
r_port = m.submodules.r_port = storage.read_port (domain=self._r_domain,
|
||
|
transparent=False)
|
||
|
m.d.comb += [
|
||
|
w_port.addr.eq(produce_w_bin[:-1]),
|
||
|
w_port.data.eq(self.w_data),
|
||
|
w_port.en.eq(do_write),
|
||
|
self.w_rdy.eq(~w_full),
|
||
|
]
|
||
|
m.d.comb += [
|
||
|
r_port.addr.eq(consume_r_nxt[:-1]),
|
||
|
self.r_data.eq(r_port.data),
|
||
|
r_port.en.eq(1),
|
||
|
self.r_rdy.eq(~r_empty),
|
||
|
]
|
||
|
|
||
|
if platform == "formal":
|
||
|
with m.If(Initial()):
|
||
|
m.d.comb += Assume(produce_w_gry == (produce_w_bin ^ produce_w_bin[1:]))
|
||
|
m.d.comb += Assume(consume_r_gry == (consume_r_bin ^ consume_r_bin[1:]))
|
||
|
|
||
|
return m
|
||
|
|
||
|
|
||
|
class AsyncFIFOBuffered(Elaboratable, FIFOInterface):
|
||
|
__doc__ = FIFOInterface._doc_template.format(
|
||
|
description="""
|
||
|
Buffered asynchronous first in, first out queue.
|
||
|
|
||
|
Read and write interfaces are accessed from different clock domains, which can be set when
|
||
|
constructing the FIFO.
|
||
|
|
||
|
:class:`AsyncFIFOBuffered` only supports power of 2 plus one depths. Unless ``exact_depth``
|
||
|
is specified, the ``depth`` parameter is rounded up to the next power of 2 plus one.
|
||
|
(The output buffer acts as an additional queue element.)
|
||
|
|
||
|
This queue's interface is identical to :class:`AsyncFIFO`, but it has an additional register
|
||
|
on the output, improving timing in case of block RAM that has large clock-to-output delay.
|
||
|
|
||
|
In exchange, the latency between an entry being written to an empty queue and that entry
|
||
|
becoming available on the output is increased by one cycle compared to :class:`AsyncFIFO`.
|
||
|
""".strip(),
|
||
|
parameters="""
|
||
|
r_domain : str
|
||
|
Read clock domain.
|
||
|
w_domain : str
|
||
|
Write clock domain.
|
||
|
""".strip(),
|
||
|
attributes="""
|
||
|
fwft : bool
|
||
|
Always set.
|
||
|
""".strip(),
|
||
|
r_data_valid="Valid if ``r_rdy`` is asserted.",
|
||
|
r_attributes="",
|
||
|
w_attributes="")
|
||
|
|
||
|
def __init__(self, *, width, depth, r_domain="read", w_domain="write", exact_depth=False):
|
||
|
if depth != 0:
|
||
|
try:
|
||
|
depth_bits = log2_int(max(0, depth - 1), need_pow2=exact_depth)
|
||
|
depth = (1 << depth_bits) + 1
|
||
|
except ValueError as e:
|
||
|
raise ValueError("AsyncFIFOBuffered only supports depths that are one higher "
|
||
|
"than powers of 2; requested exact depth {} is not"
|
||
|
.format(depth)) from None
|
||
|
super().__init__(width=width, depth=depth, fwft=True)
|
||
|
|
||
|
self._r_domain = r_domain
|
||
|
self._w_domain = w_domain
|
||
|
|
||
|
def elaborate(self, platform):
|
||
|
m = Module()
|
||
|
if self.depth == 0:
|
||
|
m.d.comb += [
|
||
|
self.w_rdy.eq(0),
|
||
|
self.r_rdy.eq(0),
|
||
|
]
|
||
|
return m
|
||
|
|
||
|
m.submodules.unbuffered = fifo = AsyncFIFO(width=self.width, depth=self.depth - 1,
|
||
|
r_domain=self._r_domain, w_domain=self._w_domain)
|
||
|
|
||
|
m.d.comb += [
|
||
|
fifo.w_data.eq(self.w_data),
|
||
|
self.w_rdy.eq(fifo.w_rdy),
|
||
|
fifo.w_en.eq(self.w_en),
|
||
|
]
|
||
|
|
||
|
with m.If(self.r_en | ~self.r_rdy):
|
||
|
m.d[self._r_domain] += [
|
||
|
self.r_data.eq(fifo.r_data),
|
||
|
self.r_rdy.eq(fifo.r_rdy),
|
||
|
]
|
||
|
m.d.comb += [
|
||
|
fifo.r_en.eq(1)
|
||
|
]
|
||
|
|
||
|
return m
|