2020-04-03 17:11:14 +08:00
|
|
|
//! This module provides the matrix exponent (exp) function to square matrices.
|
|
|
|
//!
|
2020-04-02 04:36:05 +08:00
|
|
|
use crate::{
|
|
|
|
base::{
|
|
|
|
allocator::Allocator,
|
|
|
|
dimension::{DimMin, DimMinimum, DimName},
|
|
|
|
DefaultAllocator,
|
|
|
|
},
|
|
|
|
try_convert, ComplexField, MatrixN, RealField,
|
|
|
|
};
|
|
|
|
|
|
|
|
// https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py
|
|
|
|
struct ExpmPadeHelper<N, R>
|
|
|
|
where
|
|
|
|
N: RealField,
|
|
|
|
R: DimName + DimMin<R>,
|
|
|
|
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
|
|
|
|
{
|
|
|
|
use_exact_norm: bool,
|
|
|
|
ident: MatrixN<N, R>,
|
|
|
|
|
|
|
|
a: MatrixN<N, R>,
|
|
|
|
a2: Option<MatrixN<N, R>>,
|
|
|
|
a4: Option<MatrixN<N, R>>,
|
|
|
|
a6: Option<MatrixN<N, R>>,
|
|
|
|
a8: Option<MatrixN<N, R>>,
|
|
|
|
a10: Option<MatrixN<N, R>>,
|
|
|
|
|
|
|
|
d4_exact: Option<N>,
|
|
|
|
d6_exact: Option<N>,
|
|
|
|
d8_exact: Option<N>,
|
|
|
|
d10_exact: Option<N>,
|
|
|
|
|
|
|
|
d4_approx: Option<N>,
|
|
|
|
d6_approx: Option<N>,
|
|
|
|
d8_approx: Option<N>,
|
|
|
|
d10_approx: Option<N>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N, R> ExpmPadeHelper<N, R>
|
|
|
|
where
|
|
|
|
N: RealField,
|
|
|
|
R: DimName + DimMin<R>,
|
|
|
|
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
|
|
|
|
{
|
|
|
|
fn new(a: MatrixN<N, R>, use_exact_norm: bool) -> Self {
|
|
|
|
ExpmPadeHelper {
|
|
|
|
use_exact_norm,
|
|
|
|
ident: MatrixN::<N, R>::identity(),
|
|
|
|
a,
|
|
|
|
a2: None,
|
|
|
|
a4: None,
|
|
|
|
a6: None,
|
|
|
|
a8: None,
|
|
|
|
a10: None,
|
|
|
|
d4_exact: None,
|
|
|
|
d6_exact: None,
|
|
|
|
d8_exact: None,
|
|
|
|
d10_exact: None,
|
|
|
|
d4_approx: None,
|
|
|
|
d6_approx: None,
|
|
|
|
d8_approx: None,
|
|
|
|
d10_approx: None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn a2(&self) -> &MatrixN<N, R> {
|
|
|
|
if self.a2.is_none() {
|
|
|
|
let ap = &self.a2 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
|
|
|
|
unsafe {
|
|
|
|
*ap = Some(&self.a * &self.a);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.a2.as_ref().unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn a4(&self) -> &MatrixN<N, R> {
|
|
|
|
if self.a4.is_none() {
|
|
|
|
let ap = &self.a4 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
|
|
|
|
let a2 = self.a2();
|
|
|
|
unsafe {
|
|
|
|
*ap = Some(a2 * a2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.a4.as_ref().unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn a6(&self) -> &MatrixN<N, R> {
|
|
|
|
if self.a6.is_none() {
|
|
|
|
let a2 = self.a2();
|
|
|
|
let a4 = self.a4();
|
|
|
|
let ap = &self.a6 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
|
|
|
|
unsafe {
|
|
|
|
*ap = Some(a4 * a2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.a6.as_ref().unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn a8(&self) -> &MatrixN<N, R> {
|
|
|
|
if self.a8.is_none() {
|
|
|
|
let a2 = self.a2();
|
|
|
|
let a6 = self.a6();
|
|
|
|
let ap = &self.a8 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
|
|
|
|
unsafe {
|
|
|
|
*ap = Some(a6 * a2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.a8.as_ref().unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn a10(&mut self) -> &MatrixN<N, R> {
|
|
|
|
if self.a10.is_none() {
|
|
|
|
let a4 = self.a4();
|
|
|
|
let a6 = self.a6();
|
|
|
|
let ap = &self.a10 as *const Option<MatrixN<N, R>> as *mut Option<MatrixN<N, R>>;
|
|
|
|
unsafe {
|
|
|
|
*ap = Some(a6 * a4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.a10.as_ref().unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d4_tight(&mut self) -> N {
|
|
|
|
if self.d4_exact.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d4_exact = Some(one_norm(self.a4()).powf(N::from_f64(0.25).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
self.d4_exact.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d6_tight(&mut self) -> N {
|
|
|
|
if self.d6_exact.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d6_exact = Some(one_norm(self.a6()).powf(N::from_f64(1.0 / 6.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
self.d6_exact.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d8_tight(&mut self) -> N {
|
|
|
|
if self.d8_exact.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d8_exact = Some(one_norm(self.a8()).powf(N::from_f64(1.0 / 8.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
self.d8_exact.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d10_tight(&mut self) -> N {
|
|
|
|
if self.d10_exact.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d10_exact = Some(one_norm(self.a10()).powf(N::from_f64(1.0 / 10.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
self.d10_exact.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d4_loose(&mut self) -> N {
|
|
|
|
if self.use_exact_norm {
|
|
|
|
return self.d4_tight();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d4_exact.is_some() {
|
|
|
|
return self.d4_exact.unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d4_approx.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d4_approx = Some(one_norm(self.a4()).powf(N::from_f64(0.25).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
self.d4_approx.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d6_loose(&mut self) -> N {
|
|
|
|
if self.use_exact_norm {
|
|
|
|
return self.d6_tight();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d6_exact.is_some() {
|
|
|
|
return self.d6_exact.unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d6_approx.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d6_approx = Some(one_norm(self.a6()).powf(N::from_f64(1.0 / 6.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
self.d6_approx.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d8_loose(&mut self) -> N {
|
|
|
|
if self.use_exact_norm {
|
|
|
|
return self.d8_tight();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d8_exact.is_some() {
|
|
|
|
return self.d8_exact.unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d8_approx.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d8_approx = Some(one_norm(self.a8()).powf(N::from_f64(1.0 / 8.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
self.d8_approx.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn d10_loose(&mut self) -> N {
|
|
|
|
if self.use_exact_norm {
|
|
|
|
return self.d10_tight();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d10_exact.is_some() {
|
|
|
|
return self.d10_exact.unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.d10_approx.is_none() {
|
2020-04-02 15:38:18 +08:00
|
|
|
self.d10_approx = Some(one_norm(self.a10()).powf(N::from_f64(1.0 / 10.0).unwrap()));
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
self.d10_approx.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pade3(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
|
|
|
|
let b = [
|
|
|
|
N::from_f64(120.0).unwrap(),
|
|
|
|
N::from_f64(60.0).unwrap(),
|
|
|
|
N::from_f64(12.0).unwrap(),
|
|
|
|
N::from_f64(1.0).unwrap(),
|
|
|
|
];
|
|
|
|
let u = &self.a * (self.a2() * b[3] + &self.ident * b[1]);
|
|
|
|
let v = self.a2() * b[2] + &self.ident * b[0];
|
|
|
|
(u, v)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pade5(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
|
|
|
|
let b = [
|
|
|
|
N::from_f64(30240.0).unwrap(),
|
|
|
|
N::from_f64(15120.0).unwrap(),
|
|
|
|
N::from_f64(3360.0).unwrap(),
|
|
|
|
N::from_f64(420.0).unwrap(),
|
|
|
|
N::from_f64(30.0).unwrap(),
|
|
|
|
N::from_f64(1.0).unwrap(),
|
|
|
|
];
|
|
|
|
let u = &self.a * (self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]);
|
|
|
|
let v = self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0];
|
|
|
|
(u, v)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pade7(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
|
|
|
|
let b = [
|
|
|
|
N::from_f64(17297280.0).unwrap(),
|
|
|
|
N::from_f64(8648640.0).unwrap(),
|
|
|
|
N::from_f64(1995840.0).unwrap(),
|
|
|
|
N::from_f64(277200.0).unwrap(),
|
|
|
|
N::from_f64(25200.0).unwrap(),
|
|
|
|
N::from_f64(1512.0).unwrap(),
|
|
|
|
N::from_f64(56.0).unwrap(),
|
|
|
|
N::from_f64(1.0).unwrap(),
|
|
|
|
];
|
|
|
|
let u =
|
|
|
|
&self.a * (self.a6() * b[7] + self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]);
|
|
|
|
let v = self.a6() * b[6] + self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0];
|
|
|
|
(u, v)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pade9(&mut self) -> (MatrixN<N, R>, MatrixN<N, R>) {
|
|
|
|
let b = [
|
|
|
|
N::from_f64(17643225600.0).unwrap(),
|
|
|
|
N::from_f64(8821612800.0).unwrap(),
|
|
|
|
N::from_f64(2075673600.0).unwrap(),
|
|
|
|
N::from_f64(302702400.0).unwrap(),
|
|
|
|
N::from_f64(30270240.0).unwrap(),
|
|
|
|
N::from_f64(2162160.0).unwrap(),
|
|
|
|
N::from_f64(110880.0).unwrap(),
|
|
|
|
N::from_f64(3960.0).unwrap(),
|
|
|
|
N::from_f64(90.0).unwrap(),
|
|
|
|
N::from_f64(1.0).unwrap(),
|
|
|
|
];
|
|
|
|
let u = &self.a
|
|
|
|
* (self.a8() * b[9]
|
|
|
|
+ self.a6() * b[7]
|
|
|
|
+ self.a4() * b[5]
|
|
|
|
+ self.a2() * b[3]
|
|
|
|
+ &self.ident * b[1]);
|
|
|
|
let v = self.a8() * b[8]
|
|
|
|
+ self.a6() * b[6]
|
|
|
|
+ self.a4() * b[4]
|
|
|
|
+ self.a2() * b[2]
|
|
|
|
+ &self.ident * b[0];
|
|
|
|
(u, v)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pade13_scaled(&mut self, s: u64) -> (MatrixN<N, R>, MatrixN<N, R>) {
|
|
|
|
let b = [
|
|
|
|
N::from_f64(64764752532480000.0).unwrap(),
|
|
|
|
N::from_f64(32382376266240000.0).unwrap(),
|
|
|
|
N::from_f64(7771770303897600.0).unwrap(),
|
|
|
|
N::from_f64(1187353796428800.0).unwrap(),
|
|
|
|
N::from_f64(129060195264000.0).unwrap(),
|
|
|
|
N::from_f64(10559470521600.0).unwrap(),
|
|
|
|
N::from_f64(670442572800.0).unwrap(),
|
|
|
|
N::from_f64(33522128640.0).unwrap(),
|
|
|
|
N::from_f64(1323241920.0).unwrap(),
|
|
|
|
N::from_f64(40840800.0).unwrap(),
|
|
|
|
N::from_f64(960960.0).unwrap(),
|
|
|
|
N::from_f64(16380.0).unwrap(),
|
|
|
|
N::from_f64(182.0).unwrap(),
|
|
|
|
N::from_f64(1.0).unwrap(),
|
|
|
|
];
|
|
|
|
let s = s as f64;
|
|
|
|
|
|
|
|
let mb = &self.a * N::from_f64(2.0.powf(-s)).unwrap();
|
|
|
|
let mb2 = self.a2() * N::from_f64(2.0.powf(-2.0 * s)).unwrap();
|
|
|
|
let mb4 = self.a4() * N::from_f64(2.0.powf(-4.0 * s)).unwrap();
|
|
|
|
let mb6 = self.a6() * N::from_f64(2.0.powf(-6.0 * s)).unwrap();
|
|
|
|
|
|
|
|
let u2 = &mb6 * (&mb6 * b[13] + &mb4 * b[11] + &mb2 * b[9]);
|
|
|
|
let u = &mb * (&u2 + &mb6 * b[7] + &mb4 * b[5] + &mb2 * b[3] + &self.ident * b[1]);
|
|
|
|
let v2 = &mb6 * (&mb6 * b[12] + &mb4 * b[10] + &mb2 * b[8]);
|
|
|
|
let v = v2 + &mb6 * b[6] + &mb4 * b[4] + &mb2 * b[2] + &self.ident * b[0];
|
|
|
|
(u, v)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn factorial(n: u128) -> u128 {
|
|
|
|
if n == 1 {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
n * factorial(n - 1)
|
|
|
|
}
|
|
|
|
|
2020-04-02 16:55:00 +08:00
|
|
|
/// Compute the 1-norm of a non-negative integer power of a non-negative matrix.
|
|
|
|
fn onenorm_matrix_power_nonm<N, R>(a: &MatrixN<N, R>, p: u64) -> N
|
2020-04-02 04:36:05 +08:00
|
|
|
where
|
|
|
|
N: RealField,
|
|
|
|
R: DimName,
|
2020-04-02 16:55:00 +08:00
|
|
|
DefaultAllocator: Allocator<N, R, R> + Allocator<N, R>,
|
2020-04-02 04:36:05 +08:00
|
|
|
{
|
2020-04-02 16:55:00 +08:00
|
|
|
let mut v = crate::VectorN::<N, R>::repeat(N::from_f64(1.0).unwrap());
|
2020-04-02 04:36:05 +08:00
|
|
|
let m = a.transpose();
|
|
|
|
|
|
|
|
for _ in 0..p {
|
|
|
|
v = &m * v;
|
|
|
|
}
|
|
|
|
|
2020-04-02 16:55:00 +08:00
|
|
|
v.max()
|
2020-04-02 04:36:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
fn ell<N, R>(a: &MatrixN<N, R>, m: u64) -> u64
|
|
|
|
where
|
|
|
|
N: RealField,
|
|
|
|
R: DimName,
|
2020-04-02 16:55:00 +08:00
|
|
|
DefaultAllocator: Allocator<N, R, R> + Allocator<N, R>,
|
2020-04-02 04:36:05 +08:00
|
|
|
{
|
|
|
|
// 2m choose m = (2m)!/(m! * (2m-m)!)
|
|
|
|
|
2020-04-02 16:55:00 +08:00
|
|
|
let a_abs_onenorm = onenorm_matrix_power_nonm(&a.abs(), 2 * m + 1);
|
2020-04-02 04:36:05 +08:00
|
|
|
|
|
|
|
if a_abs_onenorm == N::zero() {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
let choose_2m_m =
|
|
|
|
factorial(2 * m as u128) / (factorial(m as u128) * factorial(2 * m as u128 - m as u128));
|
|
|
|
let abs_c_recip = choose_2m_m * factorial(2 * m as u128 + 1);
|
2020-04-02 15:38:18 +08:00
|
|
|
let alpha = a_abs_onenorm / one_norm(a);
|
2020-04-02 04:36:05 +08:00
|
|
|
let alpha = alpha / N::from_u128(abs_c_recip).unwrap();
|
|
|
|
|
|
|
|
let u = N::from_f64(2_f64.powf(-53.0)).unwrap();
|
|
|
|
let log2_alpha_div_u = try_convert((alpha / u).log2()).unwrap();
|
|
|
|
let value = (log2_alpha_div_u / (2.0 * m as f64)).ceil();
|
|
|
|
if value > 0.0 {
|
|
|
|
value as u64
|
|
|
|
} else {
|
|
|
|
0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn solve_p_q<N, R>(u: MatrixN<N, R>, v: MatrixN<N, R>) -> MatrixN<N, R>
|
|
|
|
where
|
|
|
|
N: ComplexField,
|
|
|
|
R: DimMin<R, Output = R> + DimName,
|
|
|
|
DefaultAllocator: Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>>,
|
|
|
|
{
|
|
|
|
let p = &u + &v;
|
|
|
|
let q = &v - &u;
|
|
|
|
|
|
|
|
q.lu().solve(&p).unwrap()
|
|
|
|
}
|
|
|
|
|
2020-04-02 15:39:50 +08:00
|
|
|
fn one_norm<N, R>(m: &MatrixN<N, R>) -> N
|
2020-04-02 15:38:18 +08:00
|
|
|
where
|
|
|
|
N: RealField,
|
|
|
|
R: DimName,
|
|
|
|
DefaultAllocator: Allocator<N, R, R>,
|
|
|
|
{
|
|
|
|
let mut col_sums = vec![N::zero(); m.ncols()];
|
|
|
|
for i in 0..m.ncols() {
|
|
|
|
let col = m.column(i);
|
|
|
|
col.iter().for_each(|v| col_sums[i] += v.abs());
|
|
|
|
}
|
|
|
|
let mut max = col_sums[0];
|
|
|
|
for i in 1..col_sums.len() {
|
|
|
|
max = N::max(max, col_sums[i]);
|
|
|
|
}
|
|
|
|
max
|
|
|
|
}
|
|
|
|
|
2020-04-02 16:55:00 +08:00
|
|
|
impl<N: RealField, R> MatrixN<N, R>
|
2020-04-02 04:36:05 +08:00
|
|
|
where
|
2020-04-02 16:55:00 +08:00
|
|
|
R: DimMin<R, Output = R> + DimName,
|
|
|
|
DefaultAllocator:
|
|
|
|
Allocator<N, R, R> + Allocator<(usize, usize), DimMinimum<R, R>> + Allocator<N, R>,
|
2020-04-02 04:36:05 +08:00
|
|
|
{
|
2020-04-03 17:11:14 +08:00
|
|
|
/// Computes exponential of this matrix
|
2020-04-02 04:36:05 +08:00
|
|
|
pub fn exp(&self) -> Self {
|
|
|
|
// Simple case
|
|
|
|
if self.nrows() == 1 {
|
|
|
|
return self.clone().map(|v| v.exp());
|
|
|
|
}
|
|
|
|
|
2020-04-03 17:11:14 +08:00
|
|
|
let mut h = ExpmPadeHelper::new(self.clone(), true);
|
2020-04-02 04:36:05 +08:00
|
|
|
|
|
|
|
let eta_1 = N::max(h.d4_loose(), h.d6_loose());
|
|
|
|
if eta_1 < N::from_f64(1.495585217958292e-002).unwrap() && ell(&h.a, 3) == 0 {
|
|
|
|
let (u, v) = h.pade3();
|
|
|
|
return solve_p_q(u, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
let eta_2 = N::max(h.d4_tight(), h.d6_loose());
|
|
|
|
if eta_2 < N::from_f64(2.539398330063230e-001).unwrap() && ell(&h.a, 5) == 0 {
|
|
|
|
let (u, v) = h.pade5();
|
|
|
|
return solve_p_q(u, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
let eta_3 = N::max(h.d6_tight(), h.d8_loose());
|
|
|
|
if eta_3 < N::from_f64(9.504178996162932e-001).unwrap() && ell(&h.a, 7) == 0 {
|
|
|
|
let (u, v) = h.pade7();
|
|
|
|
return solve_p_q(u, v);
|
|
|
|
}
|
|
|
|
if eta_3 < N::from_f64(2.097847961257068e+000).unwrap() && ell(&h.a, 9) == 0 {
|
|
|
|
let (u, v) = h.pade9();
|
|
|
|
return solve_p_q(u, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
let eta_4 = N::max(h.d8_loose(), h.d10_loose());
|
|
|
|
let eta_5 = N::min(eta_3, eta_4);
|
|
|
|
let theta_13 = N::from_f64(4.25).unwrap();
|
|
|
|
|
|
|
|
let mut s = if eta_5 == N::zero() {
|
|
|
|
0
|
|
|
|
} else {
|
|
|
|
let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap();
|
|
|
|
|
|
|
|
if l2 < 0.0 {
|
|
|
|
0
|
|
|
|
} else {
|
|
|
|
l2 as u64
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
s += ell(
|
|
|
|
&(&h.a * N::from_f64(2.0_f64.powf(-(s as f64))).unwrap()),
|
|
|
|
13,
|
|
|
|
);
|
|
|
|
|
|
|
|
let (u, v) = h.pade13_scaled(s);
|
|
|
|
let mut x = solve_p_q(u, v);
|
|
|
|
|
|
|
|
for _ in 0..s {
|
|
|
|
x = &x * &x;
|
|
|
|
}
|
|
|
|
x
|
|
|
|
}
|
|
|
|
}
|
2020-04-02 15:38:18 +08:00
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
#[test]
|
|
|
|
fn one_norm() {
|
|
|
|
use crate::Matrix3;
|
|
|
|
let m = Matrix3::new(-3.0, 5.0, 7.0, 2.0, 6.0, 4.0, 0.0, 2.0, 8.0);
|
|
|
|
|
|
|
|
assert_eq!(super::one_norm(&m), 19.0);
|
|
|
|
}
|
|
|
|
}
|