//! This module provides the matrix exponent (exp) function to square matrices. //! use crate::{ base::{ allocator::Allocator, dimension::{DimMin, DimMinimum, DimName}, DefaultAllocator, }, try_convert, ComplexField, MatrixN, RealField, }; // https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py struct ExpmPadeHelper where N: RealField, R: DimName + DimMin, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, { use_exact_norm: bool, ident: MatrixN, a: MatrixN, a2: Option>, a4: Option>, a6: Option>, a8: Option>, a10: Option>, d4_exact: Option, d6_exact: Option, d8_exact: Option, d10_exact: Option, d4_approx: Option, d6_approx: Option, d8_approx: Option, d10_approx: Option, } impl ExpmPadeHelper where N: RealField, R: DimName + DimMin, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, { fn new(a: MatrixN, use_exact_norm: bool) -> Self { ExpmPadeHelper { use_exact_norm, ident: MatrixN::::identity(), a, a2: None, a4: None, a6: None, a8: None, a10: None, d4_exact: None, d6_exact: None, d8_exact: None, d10_exact: None, d4_approx: None, d6_approx: None, d8_approx: None, d10_approx: None, } } fn a2(&self) -> &MatrixN { if self.a2.is_none() { let ap = &self.a2 as *const Option> as *mut Option>; unsafe { *ap = Some(&self.a * &self.a); } } self.a2.as_ref().unwrap() } fn a4(&self) -> &MatrixN { if self.a4.is_none() { let ap = &self.a4 as *const Option> as *mut Option>; let a2 = self.a2(); unsafe { *ap = Some(a2 * a2); } } self.a4.as_ref().unwrap() } fn a6(&self) -> &MatrixN { if self.a6.is_none() { let a2 = self.a2(); let a4 = self.a4(); let ap = &self.a6 as *const Option> as *mut Option>; unsafe { *ap = Some(a4 * a2); } } self.a6.as_ref().unwrap() } fn a8(&self) -> &MatrixN { if self.a8.is_none() { let a2 = self.a2(); let a6 = self.a6(); let ap = &self.a8 as *const Option> as *mut Option>; unsafe { *ap = Some(a6 * a2); } } self.a8.as_ref().unwrap() } fn a10(&mut self) -> &MatrixN { if self.a10.is_none() { let a4 = self.a4(); let a6 = self.a6(); let ap = &self.a10 as *const Option> as *mut Option>; unsafe { *ap = Some(a6 * a4); } } self.a10.as_ref().unwrap() } fn d4_tight(&mut self) -> N { if self.d4_exact.is_none() { self.d4_exact = Some(one_norm(self.a4()).powf(N::from_f64(0.25).unwrap())); } self.d4_exact.unwrap() } fn d6_tight(&mut self) -> N { if self.d6_exact.is_none() { self.d6_exact = Some(one_norm(self.a6()).powf(N::from_f64(1.0 / 6.0).unwrap())); } self.d6_exact.unwrap() } fn d8_tight(&mut self) -> N { if self.d8_exact.is_none() { self.d8_exact = Some(one_norm(self.a8()).powf(N::from_f64(1.0 / 8.0).unwrap())); } self.d8_exact.unwrap() } fn d10_tight(&mut self) -> N { if self.d10_exact.is_none() { self.d10_exact = Some(one_norm(self.a10()).powf(N::from_f64(1.0 / 10.0).unwrap())); } self.d10_exact.unwrap() } fn d4_loose(&mut self) -> N { if self.use_exact_norm { return self.d4_tight(); } if self.d4_exact.is_some() { return self.d4_exact.unwrap(); } if self.d4_approx.is_none() { self.d4_approx = Some(one_norm(self.a4()).powf(N::from_f64(0.25).unwrap())); } self.d4_approx.unwrap() } fn d6_loose(&mut self) -> N { if self.use_exact_norm { return self.d6_tight(); } if self.d6_exact.is_some() { return self.d6_exact.unwrap(); } if self.d6_approx.is_none() { self.d6_approx = Some(one_norm(self.a6()).powf(N::from_f64(1.0 / 6.0).unwrap())); } self.d6_approx.unwrap() } fn d8_loose(&mut self) -> N { if self.use_exact_norm { return self.d8_tight(); } if self.d8_exact.is_some() { return self.d8_exact.unwrap(); } if self.d8_approx.is_none() { self.d8_approx = Some(one_norm(self.a8()).powf(N::from_f64(1.0 / 8.0).unwrap())); } self.d8_approx.unwrap() } fn d10_loose(&mut self) -> N { if self.use_exact_norm { return self.d10_tight(); } if self.d10_exact.is_some() { return self.d10_exact.unwrap(); } if self.d10_approx.is_none() { self.d10_approx = Some(one_norm(self.a10()).powf(N::from_f64(1.0 / 10.0).unwrap())); } self.d10_approx.unwrap() } fn pade3(&mut self) -> (MatrixN, MatrixN) { let b = [ N::from_f64(120.0).unwrap(), N::from_f64(60.0).unwrap(), N::from_f64(12.0).unwrap(), N::from_f64(1.0).unwrap(), ]; let u = &self.a * (self.a2() * b[3] + &self.ident * b[1]); let v = self.a2() * b[2] + &self.ident * b[0]; (u, v) } fn pade5(&mut self) -> (MatrixN, MatrixN) { let b = [ N::from_f64(30240.0).unwrap(), N::from_f64(15120.0).unwrap(), N::from_f64(3360.0).unwrap(), N::from_f64(420.0).unwrap(), N::from_f64(30.0).unwrap(), N::from_f64(1.0).unwrap(), ]; let u = &self.a * (self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]); let v = self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0]; (u, v) } fn pade7(&mut self) -> (MatrixN, MatrixN) { let b = [ N::from_f64(17297280.0).unwrap(), N::from_f64(8648640.0).unwrap(), N::from_f64(1995840.0).unwrap(), N::from_f64(277200.0).unwrap(), N::from_f64(25200.0).unwrap(), N::from_f64(1512.0).unwrap(), N::from_f64(56.0).unwrap(), N::from_f64(1.0).unwrap(), ]; let u = &self.a * (self.a6() * b[7] + self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]); let v = self.a6() * b[6] + self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0]; (u, v) } fn pade9(&mut self) -> (MatrixN, MatrixN) { let b = [ N::from_f64(17643225600.0).unwrap(), N::from_f64(8821612800.0).unwrap(), N::from_f64(2075673600.0).unwrap(), N::from_f64(302702400.0).unwrap(), N::from_f64(30270240.0).unwrap(), N::from_f64(2162160.0).unwrap(), N::from_f64(110880.0).unwrap(), N::from_f64(3960.0).unwrap(), N::from_f64(90.0).unwrap(), N::from_f64(1.0).unwrap(), ]; let u = &self.a * (self.a8() * b[9] + self.a6() * b[7] + self.a4() * b[5] + self.a2() * b[3] + &self.ident * b[1]); let v = self.a8() * b[8] + self.a6() * b[6] + self.a4() * b[4] + self.a2() * b[2] + &self.ident * b[0]; (u, v) } fn pade13_scaled(&mut self, s: u64) -> (MatrixN, MatrixN) { let b = [ N::from_f64(64764752532480000.0).unwrap(), N::from_f64(32382376266240000.0).unwrap(), N::from_f64(7771770303897600.0).unwrap(), N::from_f64(1187353796428800.0).unwrap(), N::from_f64(129060195264000.0).unwrap(), N::from_f64(10559470521600.0).unwrap(), N::from_f64(670442572800.0).unwrap(), N::from_f64(33522128640.0).unwrap(), N::from_f64(1323241920.0).unwrap(), N::from_f64(40840800.0).unwrap(), N::from_f64(960960.0).unwrap(), N::from_f64(16380.0).unwrap(), N::from_f64(182.0).unwrap(), N::from_f64(1.0).unwrap(), ]; let s = s as f64; let mb = &self.a * N::from_f64(2.0.powf(-s)).unwrap(); let mb2 = self.a2() * N::from_f64(2.0.powf(-2.0 * s)).unwrap(); let mb4 = self.a4() * N::from_f64(2.0.powf(-4.0 * s)).unwrap(); let mb6 = self.a6() * N::from_f64(2.0.powf(-6.0 * s)).unwrap(); let u2 = &mb6 * (&mb6 * b[13] + &mb4 * b[11] + &mb2 * b[9]); let u = &mb * (&u2 + &mb6 * b[7] + &mb4 * b[5] + &mb2 * b[3] + &self.ident * b[1]); let v2 = &mb6 * (&mb6 * b[12] + &mb4 * b[10] + &mb2 * b[8]); let v = v2 + &mb6 * b[6] + &mb4 * b[4] + &mb2 * b[2] + &self.ident * b[0]; (u, v) } } fn factorial(n: u128) -> u128 { if n == 1 { return 1; } n * factorial(n - 1) } /// Compute the 1-norm of a non-negative integer power of a non-negative matrix. fn onenorm_matrix_power_nonm(a: &MatrixN, p: u64) -> N where N: RealField, R: DimName, DefaultAllocator: Allocator + Allocator, { let mut v = crate::VectorN::::repeat(N::from_f64(1.0).unwrap()); let m = a.transpose(); for _ in 0..p { v = &m * v; } v.max() } fn ell(a: &MatrixN, m: u64) -> u64 where N: RealField, R: DimName, DefaultAllocator: Allocator + Allocator, { // 2m choose m = (2m)!/(m! * (2m-m)!) let a_abs_onenorm = onenorm_matrix_power_nonm(&a.abs(), 2 * m + 1); if a_abs_onenorm == N::zero() { return 0; } let choose_2m_m = factorial(2 * m as u128) / (factorial(m as u128) * factorial(2 * m as u128 - m as u128)); let abs_c_recip = choose_2m_m * factorial(2 * m as u128 + 1); let alpha = a_abs_onenorm / one_norm(a); let alpha = alpha / N::from_u128(abs_c_recip).unwrap(); let u = N::from_f64(2_f64.powf(-53.0)).unwrap(); let log2_alpha_div_u = try_convert((alpha / u).log2()).unwrap(); let value = (log2_alpha_div_u / (2.0 * m as f64)).ceil(); if value > 0.0 { value as u64 } else { 0 } } fn solve_p_q(u: MatrixN, v: MatrixN) -> MatrixN where N: ComplexField, R: DimMin + DimName, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, { let p = &u + &v; let q = &v - &u; q.lu().solve(&p).unwrap() } fn one_norm(m: &MatrixN) -> N where N: RealField, R: DimName, DefaultAllocator: Allocator, { let mut col_sums = vec![N::zero(); m.ncols()]; for i in 0..m.ncols() { let col = m.column(i); col.iter().for_each(|v| col_sums[i] += v.abs()); } let mut max = col_sums[0]; for i in 1..col_sums.len() { max = N::max(max, col_sums[i]); } max } impl MatrixN where R: DimMin + DimName, DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> + Allocator, { /// Computes exponential of this matrix pub fn exp(&self) -> Self { // Simple case if self.nrows() == 1 { return self.clone().map(|v| v.exp()); } let mut h = ExpmPadeHelper::new(self.clone(), true); let eta_1 = N::max(h.d4_loose(), h.d6_loose()); if eta_1 < N::from_f64(1.495585217958292e-002).unwrap() && ell(&h.a, 3) == 0 { let (u, v) = h.pade3(); return solve_p_q(u, v); } let eta_2 = N::max(h.d4_tight(), h.d6_loose()); if eta_2 < N::from_f64(2.539398330063230e-001).unwrap() && ell(&h.a, 5) == 0 { let (u, v) = h.pade5(); return solve_p_q(u, v); } let eta_3 = N::max(h.d6_tight(), h.d8_loose()); if eta_3 < N::from_f64(9.504178996162932e-001).unwrap() && ell(&h.a, 7) == 0 { let (u, v) = h.pade7(); return solve_p_q(u, v); } if eta_3 < N::from_f64(2.097847961257068e+000).unwrap() && ell(&h.a, 9) == 0 { let (u, v) = h.pade9(); return solve_p_q(u, v); } let eta_4 = N::max(h.d8_loose(), h.d10_loose()); let eta_5 = N::min(eta_3, eta_4); let theta_13 = N::from_f64(4.25).unwrap(); let mut s = if eta_5 == N::zero() { 0 } else { let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap(); if l2 < 0.0 { 0 } else { l2 as u64 } }; s += ell( &(&h.a * N::from_f64(2.0_f64.powf(-(s as f64))).unwrap()), 13, ); let (u, v) = h.pade13_scaled(s); let mut x = solve_p_q(u, v); for _ in 0..s { x = &x * &x; } x } } #[cfg(test)] mod tests { #[test] fn one_norm() { use crate::Matrix3; let m = Matrix3::new(-3.0, 5.0, 7.0, 2.0, 6.0, 4.0, 0.0, 2.0, 8.0); assert_eq!(super::one_norm(&m), 19.0); } }