nalgebra/src/geometry/rotation.rs

539 lines
17 KiB
Rust
Raw Normal View History

2018-05-19 21:41:58 +08:00
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
2018-02-02 19:26:35 +08:00
use num::{One, Zero};
use std::fmt;
2018-05-19 21:41:58 +08:00
use std::hash;
2018-07-20 21:25:55 +08:00
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde-serialize")]
use base::storage::Owned;
2017-08-14 18:41:03 +08:00
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::Real;
use base::allocator::Allocator;
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use geometry::Point;
/// A rotation matrix.
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D>
2018-02-02 19:26:35 +08:00
{
matrix: MatrixN<N, D>,
}
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.matrix.hash(state)
}
}
impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
2018-11-03 20:35:56 +08:00
{
}
impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
{
#[inline]
fn clone(&self) -> Self {
Rotation::from_matrix_unchecked(self.matrix.clone())
}
}
2017-08-14 18:41:03 +08:00
#[cfg(feature = "abomonation-serialize")]
2017-08-16 01:36:38 +08:00
impl<N, D> Abomonation for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
N: Scalar,
D: DimName,
MatrixN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D, D>,
2017-08-14 18:41:03 +08:00
{
2018-07-20 21:25:55 +08:00
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
2017-08-14 18:41:03 +08:00
self.matrix.entomb(writer)
}
2018-07-20 21:25:55 +08:00
fn extent(&self) -> usize {
self.matrix.extent()
2017-08-14 18:41:03 +08:00
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.matrix.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Serialize,
2018-02-02 19:26:35 +08:00
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
2018-10-22 13:00:10 +08:00
where S: Serializer {
2018-02-02 19:26:35 +08:00
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Deserialize<'a>,
2018-02-02 19:26:35 +08:00
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
2018-10-22 13:00:10 +08:00
where Des: Deserializer<'a> {
2018-02-02 19:26:35 +08:00
let matrix = MatrixN::<N, D>::deserialize(deserializer)?;
2018-02-02 19:26:35 +08:00
Ok(Rotation::from_matrix_unchecked(matrix))
}
}
impl<N: Scalar, D: DimName> Rotation<N, D>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D>
2018-02-02 19:26:35 +08:00
{
/// A reference to the underlying matrix representation of this rotation.
2018-11-03 20:35:56 +08:00
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(*rot.matrix(), expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// assert_eq!(*rot.matrix(), expected);
/// ```
#[inline]
pub fn matrix(&self) -> &MatrixN<N, D> {
&self.matrix
}
2018-11-03 20:35:56 +08:00
/// A mutable reference to the underlying matrix representation of this rotation.
#[inline]
#[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
&mut self.matrix
}
/// A mutable reference to the underlying matrix representation of this rotation.
///
2018-11-03 20:35:56 +08:00
/// This is suffixed by "_unchecked" because this allows the user to replace the matrix by another one that is
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
/// subsequent method calls may be UB.
#[inline]
2018-11-03 20:35:56 +08:00
pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, D> {
&mut self.matrix
}
/// Unwraps the underlying matrix.
2018-11-03 20:35:56 +08:00
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let mat = rot.into_inner();
2018-11-03 20:35:56 +08:00
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(mat, expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let mat = rot.into_inner();
2018-11-03 20:35:56 +08:00
/// let expected = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// assert_eq!(mat, expected);
/// ```
#[inline]
pub fn into_inner(self) -> MatrixN<N, D> {
self.matrix
}
/// Unwraps the underlying matrix.
/// Deprecated: Use [Rotation::into_inner] instead.
#[deprecated(note="use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> MatrixN<N, D> {
self.matrix
}
/// Converts this rotation into its equivalent homogeneous transformation matrix.
2018-11-03 20:35:56 +08:00
///
/// This is the same as `self.into()`.
///
/// # Example
/// ```
2018-11-05 17:15:49 +08:00
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
2018-11-03 20:35:56 +08:00
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
/// 0.5, 0.8660254, 0.0, 0.0,
/// 0.0, 0.0, 1.0, 0.0,
/// 0.0, 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
2018-02-02 19:26:35 +08:00
where
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
// We could use `MatrixN::to_homogeneous()` here, but that would imply
// adding the additional traits `DimAdd` and `IsNotStaticOne`. Maybe
// these things will get nicer once specialization lands in Rust.
let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
res
}
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
2018-11-03 20:35:56 +08:00
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
/// # use std::f32;
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// let rot = Rotation3::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
///
///
/// let mat = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// let rot = Rotation2::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
2018-02-02 19:26:35 +08:00
assert!(
matrix.is_square(),
"Unable to create a rotation from a non-square matrix."
);
2018-02-02 19:26:35 +08:00
Rotation { matrix: matrix }
}
/// Transposes `self`.
2018-11-04 14:17:24 +08:00
///
/// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let tr_rot = rot.transpose();
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let tr_rot = rot.transpose();
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transpose(&self) -> Rotation<N, D> {
Rotation::from_matrix_unchecked(self.matrix.transpose())
}
/// Inverts `self`.
2018-11-03 20:35:56 +08:00
///
2018-11-04 14:17:24 +08:00
/// Same as `.transpose()` because the inverse of a rotation matrix is its transform.
///
2018-11-03 20:35:56 +08:00
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse(&self) -> Rotation<N, D> {
self.transpose()
}
/// Transposes `self` in-place.
2018-11-04 14:17:24 +08:00
///
/// Same as `.inverse_mut()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// tr_rot.transpose_mut();
///
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let mut tr_rot = Rotation2::new(1.2);
/// tr_rot.transpose_mut();
///
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transpose_mut(&mut self) {
self.matrix.transpose_mut()
}
/// Inverts `self` in-place.
2018-11-04 14:17:24 +08:00
///
/// Same as `.transpose_mut()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// inv.inverse_mut();
///
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let mut inv = Rotation2::new(1.2);
/// inv.inverse_mut();
///
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: Real, D: DimName> Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
/// Rotate the given point.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self * pt
}
/// Rotate the given vector.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self * v
}
/// Rotate the given point by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// point.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
Point::from(self.inverse_transform_vector(&pt.coords))
}
/// Rotate the given vector by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.matrix().tr_mul(v)
}
}
2018-10-22 13:00:10 +08:00
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D>
2018-02-02 19:26:35 +08:00
{
#[inline]
fn eq(&self, right: &Rotation<N, D>) -> bool {
self.matrix == right.matrix
}
}
2018-05-19 21:41:58 +08:00
impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
2018-05-19 21:41:58 +08:00
N: Scalar + AbsDiffEq,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
2018-05-19 21:41:58 +08:00
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.matrix.abs_diff_eq(&other.matrix, epsilon)
}
2018-05-19 21:41:58 +08:00
}
2018-05-19 21:41:58 +08:00
impl<N, D: DimName> RelativeEq for Rotation<N, D>
where
N: Scalar + RelativeEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
#[inline]
2018-05-19 21:41:58 +08:00
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
2018-02-02 19:26:35 +08:00
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
2018-10-22 13:00:10 +08:00
) -> bool
{
2018-02-02 19:26:35 +08:00
self.matrix
.relative_eq(&other.matrix, epsilon, max_relative)
}
2018-05-19 21:41:58 +08:00
}
impl<N, D: DimName> UlpsEq for Rotation<N, D>
where
N: Scalar + UlpsEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName> fmt::Display for Rotation<N, D>
2018-02-02 19:26:35 +08:00
where
N: Real + fmt::Display,
DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "Rotation matrix {{"));
try!(write!(f, "{:.*}", precision, self.matrix));
writeln!(f, "}}")
}
}
// // /*
// // *
// // * Absolute
// // *
// // */
// // impl<N: Absolute> Absolute for $t<N> {
// // type AbsoluteValue = $submatrix<N::AbsoluteValue>;
// //
// // #[inline]
// // fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// // Absolute::abs(&m.submatrix)
// // }
// // }