Add doc-tests to unit_complex.rs.
This commit is contained in:
parent
536923f9fc
commit
ff5b64e35d
|
@ -178,7 +178,7 @@ where DefaultAllocator: Allocator<N, D, D>
|
|||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3, Matrix4};
|
||||
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
|
||||
/// # use std::f32;
|
||||
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
|
||||
|
|
|
@ -126,6 +126,7 @@ impl<N: Real> Rotation2<N> {
|
|||
/// let rot1 = Rotation2::new(0.1);
|
||||
/// let rot2 = Rotation2::new(1.7);
|
||||
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn angle_to(&self, other: &Rotation2<N>) -> N {
|
||||
self.rotation_to(other).angle()
|
||||
|
@ -160,7 +161,7 @@ impl<N: Real> Rotation2<N> {
|
|||
/// # use nalgebra::Rotation2;
|
||||
/// let rot = Rotation2::new(0.78);
|
||||
/// let pow = rot.powf(2.0);
|
||||
/// assert_eq!(pow.angle(), 1.56);
|
||||
/// assert_eq!(pow.angle(), 2.0 * 0.78);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn powf(&self, n: N) -> Rotation2<N> {
|
||||
|
|
|
@ -11,24 +11,50 @@ pub type UnitComplex<N> = Unit<Complex<N>>;
|
|||
|
||||
impl<N: Real> UnitComplex<N> {
|
||||
/// The rotation angle in `]-pi; pi]` of this unit complex number.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot = UnitComplex::new(1.78);
|
||||
/// assert_eq!(rot.angle(), 1.78);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn angle(&self) -> N {
|
||||
self.im.atan2(self.re)
|
||||
}
|
||||
|
||||
/// The sine of the rotation angle.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let angle = 1.78f32;
|
||||
/// let rot = UnitComplex::new(angle);
|
||||
/// assert_eq!(rot.sin_angle(), angle.sin());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn sin_angle(&self) -> N {
|
||||
self.im
|
||||
}
|
||||
|
||||
/// The cosine of the rotation angle.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let angle = 1.78f32;
|
||||
/// let rot = UnitComplex::new(angle);
|
||||
/// assert_eq!(rot.cos_angle(),angle.cos());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn cos_angle(&self) -> N {
|
||||
self.re
|
||||
}
|
||||
|
||||
/// The rotation angle returned as a 1-dimensional vector.
|
||||
///
|
||||
/// This is generally used in the context of generic programming. Using
|
||||
/// the `.angle()` method instead is more common.
|
||||
#[inline]
|
||||
pub fn scaled_axis(&self) -> Vector1<N> {
|
||||
Vector1::new(self.angle())
|
||||
|
@ -36,6 +62,8 @@ impl<N: Real> UnitComplex<N> {
|
|||
|
||||
/// The rotation axis and angle in ]0, pi] of this complex number.
|
||||
///
|
||||
/// This is generally used in the context of generic programming. Using
|
||||
/// the `.angle()` method instead is more common.
|
||||
/// Returns `None` if the angle is zero.
|
||||
#[inline]
|
||||
pub fn axis_angle(&self) -> Option<(Unit<Vector1<N>>, N)> {
|
||||
|
@ -53,24 +81,65 @@ impl<N: Real> UnitComplex<N> {
|
|||
/// The underlying complex number.
|
||||
///
|
||||
/// Same as `self.as_ref()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # extern crate num_complex;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use num_complex::Complex;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let angle = 1.78f32;
|
||||
/// let rot = UnitComplex::new(angle);
|
||||
/// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn complex(&self) -> &Complex<N> {
|
||||
self.as_ref()
|
||||
}
|
||||
|
||||
/// Compute the conjugate of this unit complex number.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot = UnitComplex::new(1.78);
|
||||
/// let conj = rot.conjugate();
|
||||
/// assert_eq!(rot.complex().im, -conj.complex().im);
|
||||
/// assert_eq!(rot.complex().re, conj.complex().re);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate(&self) -> Self {
|
||||
UnitComplex::new_unchecked(self.conj())
|
||||
}
|
||||
|
||||
/// Inverts this complex number if it is not zero.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot = UnitComplex::new(1.2);
|
||||
/// let inv = rot.inverse();
|
||||
/// assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6);
|
||||
/// assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse(&self) -> Self {
|
||||
self.conjugate()
|
||||
}
|
||||
|
||||
/// The rotation angle needed to make `self` and `other` coincide.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot1 = UnitComplex::new(0.1);
|
||||
/// let rot2 = UnitComplex::new(1.7);
|
||||
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn angle_to(&self, other: &Self) -> N {
|
||||
let delta = self.rotation_to(other);
|
||||
|
@ -80,12 +149,38 @@ impl<N: Real> UnitComplex<N> {
|
|||
/// The unit complex number needed to make `self` and `other` coincide.
|
||||
///
|
||||
/// The result is such that: `self.rotation_to(other) * self == other`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot1 = UnitComplex::new(0.1);
|
||||
/// let rot2 = UnitComplex::new(1.7);
|
||||
/// let rot_to = rot1.rotation_to(&rot2);
|
||||
///
|
||||
/// assert_relative_eq!(rot_to * rot1, rot2);
|
||||
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn rotation_to(&self, other: &Self) -> Self {
|
||||
other / self
|
||||
}
|
||||
|
||||
/// Compute in-place the conjugate of this unit complex number.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let angle = 1.7;
|
||||
/// let rot = UnitComplex::new(angle);
|
||||
/// let mut conj = UnitComplex::new(angle);
|
||||
/// conj.conjugate_mut();
|
||||
/// assert_eq!(rot.complex().im, -conj.complex().im);
|
||||
/// assert_eq!(rot.complex().re, conj.complex().re);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
let me = self.as_mut_unchecked();
|
||||
|
@ -93,6 +188,18 @@ impl<N: Real> UnitComplex<N> {
|
|||
}
|
||||
|
||||
/// Inverts in-place this unit complex number.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let angle = 1.7;
|
||||
/// let mut rot = UnitComplex::new(angle);
|
||||
/// rot.inverse_mut();
|
||||
/// assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity());
|
||||
/// assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self) {
|
||||
self.conjugate_mut()
|
||||
|
@ -102,12 +209,29 @@ impl<N: Real> UnitComplex<N> {
|
|||
///
|
||||
/// This returns the unit complex number that identifies a rotation angle equal to
|
||||
/// `self.angle() × n`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::UnitComplex;
|
||||
/// let rot = UnitComplex::new(0.78);
|
||||
/// let pow = rot.powf(2.0);
|
||||
/// assert_eq!(pow.angle(), 2.0 * 0.78);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn powf(&self, n: N) -> Self {
|
||||
Self::from_angle(self.angle() * n)
|
||||
}
|
||||
|
||||
/// Builds the rotation matrix corresponding to this unit complex number.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{UnitComplex, Rotation2};
|
||||
/// # use std::f32;
|
||||
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
|
||||
/// let expected = Rotation2::new(f32::consts::FRAC_PI_6);
|
||||
/// assert_eq!(rot.to_rotation_matrix(), expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn to_rotation_matrix(&self) -> Rotation2<N> {
|
||||
let r = self.re;
|
||||
|
@ -117,6 +241,17 @@ impl<N: Real> UnitComplex<N> {
|
|||
}
|
||||
|
||||
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{UnitComplex, Matrix3};
|
||||
/// # use std::f32;
|
||||
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
|
||||
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
||||
/// 0.5, 0.8660254, 0.0,
|
||||
/// 0.0, 0.0, 1.0);
|
||||
/// assert_eq!(rot.to_homogeneous(), expected);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> Matrix3<N> {
|
||||
self.to_rotation_matrix().to_homogeneous()
|
||||
|
|
Loading…
Reference in New Issue