a2c0a453d3
Co-Authored-By: tpdickso <tpdickso@uwaterloo.ca>
539 lines
17 KiB
Rust
Executable File
539 lines
17 KiB
Rust
Executable File
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
|
use num::{One, Zero};
|
|
use std::fmt;
|
|
use std::hash;
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use std::io::{Result as IOResult, Write};
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
use base::storage::Owned;
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use abomonation::Abomonation;
|
|
|
|
use alga::general::Real;
|
|
|
|
use base::allocator::Allocator;
|
|
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
|
use base::{DefaultAllocator, MatrixN, Scalar, VectorN};
|
|
|
|
use geometry::Point;
|
|
|
|
/// A rotation matrix.
|
|
#[repr(C)]
|
|
#[derive(Debug)]
|
|
pub struct Rotation<N: Scalar, D: DimName>
|
|
where DefaultAllocator: Allocator<N, D, D>
|
|
{
|
|
matrix: MatrixN<N, D>,
|
|
}
|
|
|
|
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
<DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
|
|
{
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.matrix.hash(state)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
|
|
{
|
|
}
|
|
|
|
impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
|
|
{
|
|
#[inline]
|
|
fn clone(&self) -> Self {
|
|
Rotation::from_matrix_unchecked(self.matrix.clone())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
impl<N, D> Abomonation for Rotation<N, D>
|
|
where
|
|
N: Scalar,
|
|
D: DimName,
|
|
MatrixN<N, D>: Abomonation,
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
{
|
|
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
|
|
self.matrix.entomb(writer)
|
|
}
|
|
|
|
fn extent(&self) -> usize {
|
|
self.matrix.extent()
|
|
}
|
|
|
|
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
|
|
self.matrix.exhume(bytes)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
Owned<N, D, D>: Serialize,
|
|
{
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where S: Serializer {
|
|
self.matrix.serialize(serializer)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
Owned<N, D, D>: Deserialize<'a>,
|
|
{
|
|
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
|
where Des: Deserializer<'a> {
|
|
let matrix = MatrixN::<N, D>::deserialize(deserializer)?;
|
|
|
|
Ok(Rotation::from_matrix_unchecked(matrix))
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar, D: DimName> Rotation<N, D>
|
|
where DefaultAllocator: Allocator<N, D, D>
|
|
{
|
|
/// A reference to the underlying matrix representation of this rotation.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(*rot.matrix(), expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// assert_eq!(*rot.matrix(), expected);
|
|
/// ```
|
|
#[inline]
|
|
pub fn matrix(&self) -> &MatrixN<N, D> {
|
|
&self.matrix
|
|
}
|
|
|
|
/// A mutable reference to the underlying matrix representation of this rotation.
|
|
#[inline]
|
|
#[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
|
|
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
|
|
&mut self.matrix
|
|
}
|
|
|
|
/// A mutable reference to the underlying matrix representation of this rotation.
|
|
///
|
|
/// This is suffixed by "_unchecked" because this allows the user to replace the matrix by another one that is
|
|
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
|
|
/// subsequent method calls may be UB.
|
|
#[inline]
|
|
pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, D> {
|
|
&mut self.matrix
|
|
}
|
|
|
|
/// Unwraps the underlying matrix.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let mat = rot.into_inner();
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(mat, expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let mat = rot.into_inner();
|
|
/// let expected = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// assert_eq!(mat, expected);
|
|
/// ```
|
|
#[inline]
|
|
pub fn into_inner(self) -> MatrixN<N, D> {
|
|
self.matrix
|
|
}
|
|
|
|
/// Unwraps the underlying matrix.
|
|
/// Deprecated: Use [Rotation::into_inner] instead.
|
|
#[deprecated(note="use `.into_inner()` instead")]
|
|
#[inline]
|
|
pub fn unwrap(self) -> MatrixN<N, D> {
|
|
self.matrix
|
|
}
|
|
|
|
/// Converts this rotation into its equivalent homogeneous transformation matrix.
|
|
///
|
|
/// This is the same as `self.into()`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
|
|
/// # use std::f32;
|
|
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
|
|
/// 0.5, 0.8660254, 0.0, 0.0,
|
|
/// 0.0, 0.0, 1.0, 0.0,
|
|
/// 0.0, 0.0, 0.0, 1.0);
|
|
/// assert_eq!(rot.to_homogeneous(), expected);
|
|
///
|
|
///
|
|
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
|
|
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// assert_eq!(rot.to_homogeneous(), expected);
|
|
/// ```
|
|
#[inline]
|
|
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
|
|
where
|
|
N: Zero + One,
|
|
D: DimNameAdd<U1>,
|
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
|
{
|
|
// We could use `MatrixN::to_homogeneous()` here, but that would imply
|
|
// adding the additional traits `DimAdd` and `IsNotStaticOne`. Maybe
|
|
// these things will get nicer once specialization lands in Rust.
|
|
let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
|
|
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
|
|
|
|
res
|
|
}
|
|
|
|
/// Creates a new rotation from the given square matrix.
|
|
///
|
|
/// The matrix squareness is checked but not its orthonormality.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
|
|
/// # use std::f32;
|
|
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
|
|
/// 0.5, 0.8660254, 0.0,
|
|
/// 0.0, 0.0, 1.0);
|
|
/// let rot = Rotation3::from_matrix_unchecked(mat);
|
|
///
|
|
/// assert_eq!(*rot.matrix(), mat);
|
|
///
|
|
///
|
|
/// let mat = Matrix2::new(0.8660254, -0.5,
|
|
/// 0.5, 0.8660254);
|
|
/// let rot = Rotation2::from_matrix_unchecked(mat);
|
|
///
|
|
/// assert_eq!(*rot.matrix(), mat);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
|
|
assert!(
|
|
matrix.is_square(),
|
|
"Unable to create a rotation from a non-square matrix."
|
|
);
|
|
|
|
Rotation { matrix: matrix }
|
|
}
|
|
|
|
/// Transposes `self`.
|
|
///
|
|
/// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let tr_rot = rot.transpose();
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let tr_rot = rot.transpose();
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn transpose(&self) -> Rotation<N, D> {
|
|
Rotation::from_matrix_unchecked(self.matrix.transpose())
|
|
}
|
|
|
|
/// Inverts `self`.
|
|
///
|
|
/// Same as `.transpose()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let inv = rot.inverse();
|
|
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let inv = rot.inverse();
|
|
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn inverse(&self) -> Rotation<N, D> {
|
|
self.transpose()
|
|
}
|
|
|
|
/// Transposes `self` in-place.
|
|
///
|
|
/// Same as `.inverse_mut()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// tr_rot.transpose_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let mut tr_rot = Rotation2::new(1.2);
|
|
/// tr_rot.transpose_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn transpose_mut(&mut self) {
|
|
self.matrix.transpose_mut()
|
|
}
|
|
|
|
/// Inverts `self` in-place.
|
|
///
|
|
/// Same as `.transpose_mut()` because the inverse of a rotation matrix is its transform.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
|
|
/// inv.inverse_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
|
|
///
|
|
/// let rot = Rotation2::new(1.2);
|
|
/// let mut inv = Rotation2::new(1.2);
|
|
/// inv.inverse_mut();
|
|
///
|
|
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn inverse_mut(&mut self) {
|
|
self.transpose_mut()
|
|
}
|
|
}
|
|
|
|
impl<N: Real, D: DimName> Rotation<N, D>
|
|
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
|
|
{
|
|
/// Rotate the given point.
|
|
///
|
|
/// This is the same as the multiplication `self * pt`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
|
|
self * pt
|
|
}
|
|
|
|
/// Rotate the given vector.
|
|
///
|
|
/// This is the same as the multiplication `self * v`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
|
|
self * v
|
|
}
|
|
|
|
/// Rotate the given point by the inverse of this rotation. This may be
|
|
/// cheaper than inverting the rotation and then transforming the given
|
|
/// point.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
|
|
Point::from(self.inverse_transform_vector(&pt.coords))
|
|
}
|
|
|
|
/// Rotate the given vector by the inverse of this rotation. This may be
|
|
/// cheaper than inverting the rotation and then transforming the given
|
|
/// vector.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
|
|
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
|
|
/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
|
///
|
|
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
|
|
self.matrix().tr_mul(v)
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}
|
|
|
|
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
|
|
where DefaultAllocator: Allocator<N, D, D>
|
|
{
|
|
#[inline]
|
|
fn eq(&self, right: &Rotation<N, D>) -> bool {
|
|
self.matrix == right.matrix
|
|
}
|
|
}
|
|
|
|
impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
|
|
where
|
|
N: Scalar + AbsDiffEq,
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
type Epsilon = N::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
N::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.matrix.abs_diff_eq(&other.matrix, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<N, D: DimName> RelativeEq for Rotation<N, D>
|
|
where
|
|
N: Scalar + RelativeEq,
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
#[inline]
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
N::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool
|
|
{
|
|
self.matrix
|
|
.relative_eq(&other.matrix, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
impl<N, D: DimName> UlpsEq for Rotation<N, D>
|
|
where
|
|
N: Scalar + UlpsEq,
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
N::Epsilon: Copy,
|
|
{
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
N::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Display
|
|
*
|
|
*/
|
|
impl<N, D: DimName> fmt::Display for Rotation<N, D>
|
|
where
|
|
N: Real + fmt::Display,
|
|
DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let precision = f.precision().unwrap_or(3);
|
|
|
|
try!(writeln!(f, "Rotation matrix {{"));
|
|
try!(write!(f, "{:.*}", precision, self.matrix));
|
|
writeln!(f, "}}")
|
|
}
|
|
}
|
|
|
|
// // /*
|
|
// // *
|
|
// // * Absolute
|
|
// // *
|
|
// // */
|
|
// // impl<N: Absolute> Absolute for $t<N> {
|
|
// // type AbsoluteValue = $submatrix<N::AbsoluteValue>;
|
|
// //
|
|
// // #[inline]
|
|
// // fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
|
|
// // Absolute::abs(&m.submatrix)
|
|
// // }
|
|
// // }
|