nalgebra/nalgebra-sparse/src/coo.rs

332 lines
10 KiB
Rust
Raw Normal View History

//! An implementation of the COO sparse matrix format.
2020-07-14 00:44:40 +08:00
use crate::SparseFormatError;
#[cfg(feature = "serde-serialize")]
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
2021-12-10 01:29:45 +08:00
#[cfg(feature = "serde-serialize")]
use std::borrow::Cow;
2020-07-14 00:44:40 +08:00
/// A COO representation of a sparse matrix.
///
/// A COO matrix stores entries in coordinate-form, that is triplets `(i, j, v)`, where `i` and `j`
/// correspond to row and column indices of the entry, and `v` to the value of the entry.
2021-01-25 21:17:48 +08:00
/// The format is of limited use for standard matrix operations. Its main purpose is to facilitate
2020-07-14 00:44:40 +08:00
/// easy construction of other, more efficient matrix formats (such as CSR/COO), and the
/// conversion between different formats.
///
2021-01-25 21:17:48 +08:00
/// # Format
2020-07-14 00:44:40 +08:00
///
/// For given dimensions `nrows` and `ncols`, the matrix is represented by three same-length
/// arrays `row_indices`, `col_indices` and `values` that constitute the coordinate triplets
/// of the matrix. The indices must be in bounds, but *duplicate entries are explicitly allowed*.
/// Upon conversion to other formats, the duplicate entries may be summed together. See the
/// documentation for the respective conversion functions.
///
2021-01-25 21:17:48 +08:00
/// # Examples
2020-07-14 00:44:40 +08:00
///
2021-07-07 10:05:25 +08:00
/// ```
2021-01-25 21:17:48 +08:00
/// use nalgebra_sparse::{coo::CooMatrix, csr::CsrMatrix, csc::CscMatrix};
///
/// // Initialize a matrix with all zeros (no explicitly stored entries).
2020-07-14 00:44:40 +08:00
/// let mut coo = CooMatrix::new(4, 4);
/// // Or initialize it with a set of triplets
/// coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap();
///
2021-01-25 21:17:48 +08:00
/// // Push a few triplets
2020-07-14 00:44:40 +08:00
/// coo.push(2, 0, 1.0);
2021-01-25 21:17:48 +08:00
/// coo.push(0, 1, 2.0);
2020-07-14 00:44:40 +08:00
///
2021-01-25 21:17:48 +08:00
/// // Convert to other matrix formats
/// let csr = CsrMatrix::from(&coo);
/// let csc = CscMatrix::from(&coo);
2020-07-14 00:44:40 +08:00
/// ```
2020-11-18 20:54:14 +08:00
#[derive(Debug, Clone, PartialEq, Eq)]
2020-07-14 00:44:40 +08:00
pub struct CooMatrix<T> {
nrows: usize,
ncols: usize,
row_indices: Vec<usize>,
col_indices: Vec<usize>,
values: Vec<T>,
}
impl<T: na::Scalar> CooMatrix<T> {
/// Pushes a dense matrix into the sparse one.
///
/// This adds the dense matrix `m` starting at the `r`th row and `c`th column
/// to the matrix.
///
/// Panics
/// ------
///
/// Panics if any part of the dense matrix is out of bounds of the sparse matrix
/// when inserted at `(r, c)`.
#[inline]
pub fn push_matrix<R: na::Dim, C: na::Dim, S: nalgebra::storage::RawStorage<T, R, C>>(
&mut self,
r: usize,
c: usize,
m: &na::Matrix<T, R, C, S>,
) {
let block_nrows = m.nrows();
let block_ncols = m.ncols();
let max_row_with_block = r + block_nrows - 1;
let max_col_with_block = c + block_ncols - 1;
assert!(max_row_with_block < self.nrows);
assert!(max_col_with_block < self.ncols);
self.reserve(block_ncols * block_nrows);
for (col_idx, col) in m.column_iter().enumerate() {
for (row_idx, v) in col.iter().enumerate() {
self.row_indices.push(r + row_idx);
self.col_indices.push(c + col_idx);
self.values.push(v.clone());
}
}
}
}
2021-01-26 00:26:27 +08:00
impl<T> CooMatrix<T> {
2020-07-14 00:44:40 +08:00
/// Construct a zero COO matrix of the given dimensions.
///
/// Specifically, the collection of triplets - corresponding to explicitly stored entries -
/// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
/// zero entries.
pub fn new(nrows: usize, ncols: usize) -> Self {
Self {
nrows,
ncols,
row_indices: Vec::new(),
col_indices: Vec::new(),
values: Vec::new(),
}
}
/// Construct a zero COO matrix of the given dimensions.
///
/// Specifically, the collection of triplets - corresponding to explicitly stored entries -
/// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
/// zero entries.
pub fn zeros(nrows: usize, ncols: usize) -> Self {
Self::new(nrows, ncols)
}
2020-07-14 00:44:40 +08:00
/// Try to construct a COO matrix from the given dimensions and a collection of
/// (i, j, v) triplets.
///
/// Returns an error if either row or column indices contain indices out of bounds,
/// or if the data arrays do not all have the same length. Note that the COO format
/// inherently supports duplicate entries.
pub fn try_from_triplets(
nrows: usize,
ncols: usize,
row_indices: Vec<usize>,
col_indices: Vec<usize>,
values: Vec<T>,
) -> Result<Self, SparseFormatError> {
use crate::SparseFormatErrorKind::*;
2020-07-14 00:44:40 +08:00
if row_indices.len() != col_indices.len() {
return Err(SparseFormatError::from_kind_and_msg(
2021-01-26 00:26:27 +08:00
InvalidStructure,
"number of row and col indices must be the same",
2020-07-14 00:44:40 +08:00
));
} else if col_indices.len() != values.len() {
return Err(SparseFormatError::from_kind_and_msg(
2021-01-26 00:26:27 +08:00
InvalidStructure,
"number of col indices and values must be the same",
2020-07-14 00:44:40 +08:00
));
}
let row_indices_in_bounds = row_indices.iter().all(|i| *i < nrows);
let col_indices_in_bounds = col_indices.iter().all(|j| *j < ncols);
if !row_indices_in_bounds {
2021-01-26 00:26:27 +08:00
Err(SparseFormatError::from_kind_and_msg(
IndexOutOfBounds,
"row index out of bounds",
2021-01-26 00:26:27 +08:00
))
2020-07-14 00:44:40 +08:00
} else if !col_indices_in_bounds {
2021-01-26 00:26:27 +08:00
Err(SparseFormatError::from_kind_and_msg(
IndexOutOfBounds,
"col index out of bounds",
2021-01-26 00:26:27 +08:00
))
2020-07-14 00:44:40 +08:00
} else {
Ok(Self {
nrows,
ncols,
row_indices,
col_indices,
values,
})
}
}
/// An iterator over triplets (i, j, v).
// TODO: Consider giving the iterator a concrete type instead of impl trait...?
pub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)> {
self.row_indices
.iter()
.zip(&self.col_indices)
.zip(&self.values)
.map(|((i, j), v)| (*i, *j, v))
}
2021-05-02 19:43:16 +08:00
/// Reserves capacity for COO matrix by at least `additional` elements.
///
/// This increase the capacities of triplet holding arrays by reserving more space to avoid
/// frequent reallocations in `push` operations.
2021-05-02 19:43:16 +08:00
///
/// ## Panics
///
/// Panics if any of the individual allocation of triplet arrays fails.
2021-05-02 19:43:16 +08:00
///
/// ## Example
///
/// ```
/// # use nalgebra_sparse::coo::CooMatrix;
/// let mut coo = CooMatrix::new(4, 4);
/// // Reserve capacity in advance
2021-05-02 19:43:16 +08:00
/// coo.reserve(10);
/// coo.push(1, 0, 3.0);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.row_indices.reserve(additional);
self.col_indices.reserve(additional);
self.values.reserve(additional);
}
2020-07-14 00:44:40 +08:00
/// Push a single triplet to the matrix.
///
/// This adds the value `v` to the `i`th row and `j`th column in the matrix.
///
/// Panics
/// ------
///
/// Panics if `i` or `j` is out of bounds.
2020-07-17 23:59:19 +08:00
#[inline]
2020-07-14 00:44:40 +08:00
pub fn push(&mut self, i: usize, j: usize, v: T) {
assert!(i < self.nrows);
assert!(j < self.ncols);
self.row_indices.push(i);
self.col_indices.push(j);
self.values.push(v);
}
/// The number of rows in the matrix.
2020-07-17 23:59:19 +08:00
#[inline]
#[must_use]
2020-07-14 00:44:40 +08:00
pub fn nrows(&self) -> usize {
self.nrows
}
/// The number of columns in the matrix.
2020-07-17 23:59:19 +08:00
#[inline]
#[must_use]
2020-07-14 00:44:40 +08:00
pub fn ncols(&self) -> usize {
self.ncols
}
/// The number of explicitly stored entries in the matrix.
///
/// This number *includes* duplicate entries. For example, if the `CooMatrix` contains duplicate
/// entries, then it may have a different number of non-zeros as reported by `nnz()` compared
/// to its CSR representation.
#[inline]
#[must_use]
pub fn nnz(&self) -> usize {
self.values.len()
}
2020-07-14 00:44:40 +08:00
/// The row indices of the explicitly stored entries.
#[must_use]
2020-07-14 00:44:40 +08:00
pub fn row_indices(&self) -> &[usize] {
&self.row_indices
}
/// The column indices of the explicitly stored entries.
#[must_use]
2020-07-14 00:44:40 +08:00
pub fn col_indices(&self) -> &[usize] {
&self.col_indices
}
/// The values of the explicitly stored entries.
#[must_use]
2020-07-14 00:44:40 +08:00
pub fn values(&self) -> &[T] {
&self.values
}
/// Disassembles the matrix into individual triplet arrays.
///
/// Examples
/// --------
///
/// ```
/// # use nalgebra_sparse::coo::CooMatrix;
2020-07-14 00:44:40 +08:00
/// let row_indices = vec![0, 1];
/// let col_indices = vec![1, 2];
/// let values = vec![1.0, 2.0];
/// let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values)
/// .unwrap();
///
/// let (row_idx, col_idx, val) = coo.disassemble();
/// assert_eq!(row_idx, vec![0, 1]);
/// assert_eq!(col_idx, vec![1, 2]);
/// assert_eq!(val, vec![1.0, 2.0]);
/// ```
pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>) {
(self.row_indices, self.col_indices, self.values)
}
}
#[cfg(feature = "serde-serialize")]
#[derive(Serialize, Deserialize)]
struct CooMatrixSerializationData<'a, T: Clone> {
nrows: usize,
ncols: usize,
row_indices: Cow<'a, [usize]>,
col_indices: Cow<'a, [usize]>,
values: Cow<'a, [T]>,
}
#[cfg(feature = "serde-serialize")]
impl<T> Serialize for CooMatrix<T>
where
T: Serialize + Clone,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
CooMatrixSerializationData {
nrows: self.nrows(),
ncols: self.ncols(),
row_indices: self.row_indices().into(),
col_indices: self.col_indices().into(),
values: self.values().into(),
}
.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'de, T> Deserialize<'de> for CooMatrix<T>
where
T: Deserialize<'de> + Clone,
{
fn deserialize<D>(deserializer: D) -> Result<CooMatrix<T>, D::Error>
where
D: Deserializer<'de>,
{
let de = CooMatrixSerializationData::deserialize(deserializer)?;
CooMatrix::try_from_triplets(
de.nrows,
de.ncols,
de.row_indices.into(),
de.col_indices.into(),
de.values.into(),
)
.map_err(|e| de::Error::custom(e))
}
}