2020-09-23 15:34:19 +08:00
|
|
|
//! An implementation of the COO sparse matrix format.
|
|
|
|
|
2020-07-14 00:44:40 +08:00
|
|
|
use crate::SparseFormatError;
|
|
|
|
use nalgebra::{ClosedAdd, DMatrix, Scalar};
|
|
|
|
use num_traits::Zero;
|
|
|
|
|
|
|
|
/// A COO representation of a sparse matrix.
|
|
|
|
///
|
|
|
|
/// A COO matrix stores entries in coordinate-form, that is triplets `(i, j, v)`, where `i` and `j`
|
|
|
|
/// correspond to row and column indices of the entry, and `v` to the value of the entry.
|
|
|
|
/// With the rare exception of matrix-vector multiplication of certain extremely sparse matrices,
|
|
|
|
/// it is of limited use for standard matrix operations. Its main purpose is to facilitate
|
|
|
|
/// easy construction of other, more efficient matrix formats (such as CSR/COO), and the
|
|
|
|
/// conversion between different formats.
|
|
|
|
///
|
|
|
|
/// Representation
|
|
|
|
/// --------------
|
|
|
|
///
|
|
|
|
/// For given dimensions `nrows` and `ncols`, the matrix is represented by three same-length
|
|
|
|
/// arrays `row_indices`, `col_indices` and `values` that constitute the coordinate triplets
|
|
|
|
/// of the matrix. The indices must be in bounds, but *duplicate entries are explicitly allowed*.
|
|
|
|
/// Upon conversion to other formats, the duplicate entries may be summed together. See the
|
|
|
|
/// documentation for the respective conversion functions.
|
|
|
|
///
|
|
|
|
/// Example
|
|
|
|
/// -------
|
|
|
|
///
|
|
|
|
/// ```rust
|
2020-09-23 15:34:19 +08:00
|
|
|
/// # use nalgebra_sparse::coo::CooMatrix;
|
2020-07-14 00:44:40 +08:00
|
|
|
/// // Create a zero matrix
|
|
|
|
/// let mut coo = CooMatrix::new(4, 4);
|
|
|
|
/// // Or initialize it with a set of triplets
|
|
|
|
/// coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap();
|
|
|
|
///
|
|
|
|
/// // Push a single triplet
|
|
|
|
/// coo.push(2, 0, 1.0);
|
|
|
|
///
|
|
|
|
/// // TODO: Convert to CSR
|
|
|
|
/// ```
|
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
pub struct CooMatrix<T> {
|
|
|
|
nrows: usize,
|
|
|
|
ncols: usize,
|
|
|
|
row_indices: Vec<usize>,
|
|
|
|
col_indices: Vec<usize>,
|
|
|
|
values: Vec<T>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> CooMatrix<T>
|
|
|
|
where
|
|
|
|
T: Scalar,
|
|
|
|
{
|
|
|
|
/// Construct a zero COO matrix of the given dimensions.
|
|
|
|
///
|
|
|
|
/// Specifically, the collection of triplets - corresponding to explicitly stored entries -
|
|
|
|
/// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
|
|
|
|
/// zero entries.
|
|
|
|
pub fn new(nrows: usize, ncols: usize) -> Self {
|
|
|
|
Self {
|
|
|
|
nrows,
|
|
|
|
ncols,
|
|
|
|
row_indices: Vec::new(),
|
|
|
|
col_indices: Vec::new(),
|
|
|
|
values: Vec::new(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Try to construct a COO matrix from the given dimensions and a collection of
|
|
|
|
/// (i, j, v) triplets.
|
|
|
|
///
|
|
|
|
/// Returns an error if either row or column indices contain indices out of bounds,
|
|
|
|
/// or if the data arrays do not all have the same length. Note that the COO format
|
|
|
|
/// inherently supports duplicate entries.
|
|
|
|
pub fn try_from_triplets(
|
|
|
|
nrows: usize,
|
|
|
|
ncols: usize,
|
|
|
|
row_indices: Vec<usize>,
|
|
|
|
col_indices: Vec<usize>,
|
|
|
|
values: Vec<T>,
|
|
|
|
) -> Result<Self, SparseFormatError> {
|
2020-09-22 23:50:47 +08:00
|
|
|
use crate::SparseFormatErrorKind::*;
|
2020-07-14 00:44:40 +08:00
|
|
|
if row_indices.len() != col_indices.len() {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(SparseFormatError::from_kind_and_msg(
|
|
|
|
InvalidStructure, "Number of row and col indices must be the same."
|
2020-07-14 00:44:40 +08:00
|
|
|
));
|
|
|
|
} else if col_indices.len() != values.len() {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(SparseFormatError::from_kind_and_msg(
|
|
|
|
InvalidStructure, "Number of col indices and values must be the same."
|
2020-07-14 00:44:40 +08:00
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
let row_indices_in_bounds = row_indices.iter().all(|i| *i < nrows);
|
|
|
|
let col_indices_in_bounds = col_indices.iter().all(|j| *j < ncols);
|
|
|
|
|
|
|
|
if !row_indices_in_bounds {
|
2020-09-22 23:50:47 +08:00
|
|
|
Err(SparseFormatError::from_kind_and_msg(IndexOutOfBounds, "Row index out of bounds."))
|
2020-07-14 00:44:40 +08:00
|
|
|
} else if !col_indices_in_bounds {
|
2020-09-22 23:50:47 +08:00
|
|
|
Err(SparseFormatError::from_kind_and_msg(IndexOutOfBounds, "Col index out of bounds."))
|
2020-07-14 00:44:40 +08:00
|
|
|
} else {
|
|
|
|
Ok(Self {
|
|
|
|
nrows,
|
|
|
|
ncols,
|
|
|
|
row_indices,
|
|
|
|
col_indices,
|
|
|
|
values,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An iterator over triplets (i, j, v).
|
|
|
|
// TODO: Consider giving the iterator a concrete type instead of impl trait...?
|
|
|
|
pub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)> {
|
|
|
|
self.row_indices
|
|
|
|
.iter()
|
|
|
|
.zip(&self.col_indices)
|
|
|
|
.zip(&self.values)
|
|
|
|
.map(|((i, j), v)| (*i, *j, v))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Push a single triplet to the matrix.
|
|
|
|
///
|
|
|
|
/// This adds the value `v` to the `i`th row and `j`th column in the matrix.
|
|
|
|
///
|
|
|
|
/// Panics
|
|
|
|
/// ------
|
|
|
|
///
|
|
|
|
/// Panics if `i` or `j` is out of bounds.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-14 00:44:40 +08:00
|
|
|
pub fn push(&mut self, i: usize, j: usize, v: T) {
|
|
|
|
assert!(i < self.nrows);
|
|
|
|
assert!(j < self.ncols);
|
|
|
|
self.row_indices.push(i);
|
|
|
|
self.col_indices.push(j);
|
|
|
|
self.values.push(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The number of rows in the matrix.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-14 00:44:40 +08:00
|
|
|
pub fn nrows(&self) -> usize {
|
|
|
|
self.nrows
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The number of columns in the matrix.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-14 00:44:40 +08:00
|
|
|
pub fn ncols(&self) -> usize {
|
|
|
|
self.ncols
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The row indices of the explicitly stored entries.
|
|
|
|
pub fn row_indices(&self) -> &[usize] {
|
|
|
|
&self.row_indices
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The column indices of the explicitly stored entries.
|
|
|
|
pub fn col_indices(&self) -> &[usize] {
|
|
|
|
&self.col_indices
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The values of the explicitly stored entries.
|
|
|
|
pub fn values(&self) -> &[T] {
|
|
|
|
&self.values
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Disassembles the matrix into individual triplet arrays.
|
|
|
|
///
|
|
|
|
/// Examples
|
|
|
|
/// --------
|
|
|
|
///
|
|
|
|
/// ```
|
2020-09-23 15:34:19 +08:00
|
|
|
/// # use nalgebra_sparse::coo::CooMatrix;
|
2020-07-14 00:44:40 +08:00
|
|
|
/// let row_indices = vec![0, 1];
|
|
|
|
/// let col_indices = vec![1, 2];
|
|
|
|
/// let values = vec![1.0, 2.0];
|
|
|
|
/// let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values)
|
|
|
|
/// .unwrap();
|
|
|
|
///
|
|
|
|
/// let (row_idx, col_idx, val) = coo.disassemble();
|
|
|
|
/// assert_eq!(row_idx, vec![0, 1]);
|
|
|
|
/// assert_eq!(col_idx, vec![1, 2]);
|
|
|
|
/// assert_eq!(val, vec![1.0, 2.0]);
|
|
|
|
/// ```
|
|
|
|
pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>) {
|
|
|
|
(self.row_indices, self.col_indices, self.values)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Construct the dense representation of the COO matrix.
|
|
|
|
///
|
|
|
|
/// Duplicate entries are summed together.
|
|
|
|
pub fn to_dense(&self) -> DMatrix<T>
|
|
|
|
where
|
|
|
|
T: ClosedAdd + Zero,
|
|
|
|
{
|
|
|
|
let mut result = DMatrix::zeros(self.nrows, self.ncols);
|
|
|
|
|
|
|
|
for (i, j, v) in self.triplet_iter() {
|
|
|
|
result[(i, j)] += v.clone();
|
|
|
|
}
|
|
|
|
|
|
|
|
result
|
|
|
|
}
|
|
|
|
}
|