Initial COO implementation
This commit is contained in:
parent
646f62a293
commit
1dbccfeb7c
|
@ -80,7 +80,7 @@ proptest = { version = "=0.10.1" }
|
|||
itertools = "0.9"
|
||||
|
||||
[workspace]
|
||||
members = [ "nalgebra-lapack", "nalgebra-glm" ]
|
||||
members = [ "nalgebra-lapack", "nalgebra-glm", "nalgebra-sparse" ]
|
||||
|
||||
[[bench]]
|
||||
name = "nalgebra_bench"
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
[package]
|
||||
name = "nalgebra-sparse"
|
||||
version = "0.1.0"
|
||||
authors = [ "Andreas Longva", "Sébastien Crozet <developer@crozet.re>" ]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
nalgebra = { version="0.21", path = "../" }
|
||||
num-traits = { version = "0.2", default-features = false }
|
|
@ -0,0 +1,202 @@
|
|||
use crate::SparseFormatError;
|
||||
use nalgebra::{ClosedAdd, DMatrix, Scalar};
|
||||
use num_traits::Zero;
|
||||
|
||||
/// A COO representation of a sparse matrix.
|
||||
///
|
||||
/// A COO matrix stores entries in coordinate-form, that is triplets `(i, j, v)`, where `i` and `j`
|
||||
/// correspond to row and column indices of the entry, and `v` to the value of the entry.
|
||||
/// With the rare exception of matrix-vector multiplication of certain extremely sparse matrices,
|
||||
/// it is of limited use for standard matrix operations. Its main purpose is to facilitate
|
||||
/// easy construction of other, more efficient matrix formats (such as CSR/COO), and the
|
||||
/// conversion between different formats.
|
||||
///
|
||||
/// Representation
|
||||
/// --------------
|
||||
///
|
||||
/// For given dimensions `nrows` and `ncols`, the matrix is represented by three same-length
|
||||
/// arrays `row_indices`, `col_indices` and `values` that constitute the coordinate triplets
|
||||
/// of the matrix. The indices must be in bounds, but *duplicate entries are explicitly allowed*.
|
||||
/// Upon conversion to other formats, the duplicate entries may be summed together. See the
|
||||
/// documentation for the respective conversion functions.
|
||||
///
|
||||
/// Example
|
||||
/// -------
|
||||
///
|
||||
/// ```rust
|
||||
/// # use nalgebra_sparse::CooMatrix;
|
||||
/// // Create a zero matrix
|
||||
/// let mut coo = CooMatrix::new(4, 4);
|
||||
/// // Or initialize it with a set of triplets
|
||||
/// coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap();
|
||||
///
|
||||
/// // Push a single triplet
|
||||
/// coo.push(2, 0, 1.0);
|
||||
///
|
||||
/// // TODO: Convert to CSR
|
||||
/// ```
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CooMatrix<T> {
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
row_indices: Vec<usize>,
|
||||
col_indices: Vec<usize>,
|
||||
values: Vec<T>,
|
||||
}
|
||||
|
||||
impl<T> CooMatrix<T>
|
||||
where
|
||||
T: Scalar,
|
||||
{
|
||||
/// Construct a zero COO matrix of the given dimensions.
|
||||
///
|
||||
/// Specifically, the collection of triplets - corresponding to explicitly stored entries -
|
||||
/// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
|
||||
/// zero entries.
|
||||
pub fn new(nrows: usize, ncols: usize) -> Self {
|
||||
Self {
|
||||
nrows,
|
||||
ncols,
|
||||
row_indices: Vec::new(),
|
||||
col_indices: Vec::new(),
|
||||
values: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to construct a COO matrix from the given dimensions and a collection of
|
||||
/// (i, j, v) triplets.
|
||||
///
|
||||
/// Returns an error if either row or column indices contain indices out of bounds,
|
||||
/// or if the data arrays do not all have the same length. Note that the COO format
|
||||
/// inherently supports duplicate entries.
|
||||
pub fn try_from_triplets(
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
row_indices: Vec<usize>,
|
||||
col_indices: Vec<usize>,
|
||||
values: Vec<T>,
|
||||
) -> Result<Self, SparseFormatError> {
|
||||
if row_indices.len() != col_indices.len() {
|
||||
return Err(SparseFormatError::InvalidStructure(
|
||||
Box::from("Number of row and col indices must be the same.")
|
||||
));
|
||||
} else if col_indices.len() != values.len() {
|
||||
return Err(SparseFormatError::InvalidStructure(
|
||||
Box::from("Number of col indices and values must be the same.")
|
||||
));
|
||||
}
|
||||
|
||||
let row_indices_in_bounds = row_indices.iter().all(|i| *i < nrows);
|
||||
let col_indices_in_bounds = col_indices.iter().all(|j| *j < ncols);
|
||||
|
||||
if !row_indices_in_bounds {
|
||||
Err(SparseFormatError::IndexOutOfBounds(Box::from(
|
||||
"Row index out of bounds.",
|
||||
)))
|
||||
} else if !col_indices_in_bounds {
|
||||
Err(SparseFormatError::IndexOutOfBounds(Box::from(
|
||||
"Col index out of bounds.",
|
||||
)))
|
||||
} else {
|
||||
Ok(Self {
|
||||
nrows,
|
||||
ncols,
|
||||
row_indices,
|
||||
col_indices,
|
||||
values,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterator over triplets (i, j, v).
|
||||
// TODO: Consider giving the iterator a concrete type instead of impl trait...?
|
||||
pub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)> {
|
||||
self.row_indices
|
||||
.iter()
|
||||
.zip(&self.col_indices)
|
||||
.zip(&self.values)
|
||||
.map(|((i, j), v)| (*i, *j, v))
|
||||
}
|
||||
|
||||
/// Push a single triplet to the matrix.
|
||||
///
|
||||
/// This adds the value `v` to the `i`th row and `j`th column in the matrix.
|
||||
///
|
||||
/// Panics
|
||||
/// ------
|
||||
///
|
||||
/// Panics if `i` or `j` is out of bounds.
|
||||
#[inline(always)]
|
||||
pub fn push(&mut self, i: usize, j: usize, v: T) {
|
||||
assert!(i < self.nrows);
|
||||
assert!(j < self.ncols);
|
||||
self.row_indices.push(i);
|
||||
self.col_indices.push(j);
|
||||
self.values.push(v);
|
||||
}
|
||||
|
||||
/// The number of rows in the matrix.
|
||||
#[inline(always)]
|
||||
pub fn nrows(&self) -> usize {
|
||||
self.nrows
|
||||
}
|
||||
|
||||
/// The number of columns in the matrix.
|
||||
#[inline(always)]
|
||||
pub fn ncols(&self) -> usize {
|
||||
self.ncols
|
||||
}
|
||||
|
||||
/// The row indices of the explicitly stored entries.
|
||||
pub fn row_indices(&self) -> &[usize] {
|
||||
&self.row_indices
|
||||
}
|
||||
|
||||
/// The column indices of the explicitly stored entries.
|
||||
pub fn col_indices(&self) -> &[usize] {
|
||||
&self.col_indices
|
||||
}
|
||||
|
||||
/// The values of the explicitly stored entries.
|
||||
pub fn values(&self) -> &[T] {
|
||||
&self.values
|
||||
}
|
||||
|
||||
/// Disassembles the matrix into individual triplet arrays.
|
||||
///
|
||||
/// Examples
|
||||
/// --------
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra_sparse::CooMatrix;
|
||||
/// let row_indices = vec![0, 1];
|
||||
/// let col_indices = vec![1, 2];
|
||||
/// let values = vec![1.0, 2.0];
|
||||
/// let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values)
|
||||
/// .unwrap();
|
||||
///
|
||||
/// let (row_idx, col_idx, val) = coo.disassemble();
|
||||
/// assert_eq!(row_idx, vec![0, 1]);
|
||||
/// assert_eq!(col_idx, vec![1, 2]);
|
||||
/// assert_eq!(val, vec![1.0, 2.0]);
|
||||
/// ```
|
||||
pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>) {
|
||||
(self.row_indices, self.col_indices, self.values)
|
||||
}
|
||||
|
||||
/// Construct the dense representation of the COO matrix.
|
||||
///
|
||||
/// Duplicate entries are summed together.
|
||||
pub fn to_dense(&self) -> DMatrix<T>
|
||||
where
|
||||
T: ClosedAdd + Zero,
|
||||
{
|
||||
let mut result = DMatrix::zeros(self.nrows, self.ncols);
|
||||
|
||||
for (i, j, v) in self.triplet_iter() {
|
||||
result[(i, j)] += v.clone();
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
mod coo;
|
||||
mod csr;
|
||||
mod pattern;
|
||||
|
||||
pub mod ops;
|
||||
|
||||
pub use coo::CooMatrix;
|
||||
pub use csr::CsrMatrix;
|
||||
pub use pattern::{SparsityPattern};
|
||||
|
||||
/// Iterator types for matrices.
|
||||
///
|
||||
/// Most users will not need to interface with these types directly. Instead, refer to the
|
||||
/// iterator methods for the respective matrix formats.
|
||||
pub mod iter {
|
||||
// Iterators are best implemented in the same modules as the matrices they iterate over,
|
||||
// since they are so closely tied to their respective implementations. However,
|
||||
// in the crate's public API we move them into a separate `iter` module in order to avoid
|
||||
// cluttering the docs with iterator types that most users will never need to explicitly
|
||||
// know about.
|
||||
pub use crate::pattern::SparsityPatternIter;
|
||||
pub use crate::csr::{CsrTripletIter, CsrTripletIterMut};
|
||||
}
|
||||
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
|
||||
#[derive(Debug)]
|
||||
#[non_exhaustive]
|
||||
pub enum SparseFormatError {
|
||||
/// Indicates that the index data associated with the format contains at least one index
|
||||
/// out of bounds.
|
||||
IndexOutOfBounds(Box<dyn Error>),
|
||||
|
||||
/// Indicates that the provided data contains at least one duplicate entry, and the
|
||||
/// current format does not support duplicate entries.
|
||||
DuplicateEntry(Box<dyn Error>),
|
||||
|
||||
/// Indicates that the provided data for the format does not conform to the high-level
|
||||
/// structure of the format.
|
||||
///
|
||||
/// For example, the arrays defining the format data might have incompatible sizes.
|
||||
InvalidStructure(Box<dyn Error>),
|
||||
}
|
||||
|
||||
impl fmt::Display for SparseFormatError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
match self {
|
||||
Self::IndexOutOfBounds(err) => err.fmt(f),
|
||||
Self::DuplicateEntry(err) => err.fmt(f),
|
||||
Self::InvalidStructure(err) => err.fmt(f)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Error for SparseFormatError {}
|
|
@ -0,0 +1,70 @@
|
|||
//! Matrix operations involving sparse matrices.
|
||||
|
||||
use crate::CooMatrix;
|
||||
use nalgebra::base::storage::{Storage, StorageMut};
|
||||
use nalgebra::{ClosedAdd, ClosedMul, Dim, Scalar, Vector};
|
||||
use num_traits::{One, Zero};
|
||||
|
||||
/// Sparse matrix-vector multiplication `y = beta * y + alpha * A * x`.
|
||||
///
|
||||
/// Computes a matrix-vector product with the COO matrix "A" and the vector `x`, storing the
|
||||
/// result in `y`.
|
||||
///
|
||||
/// If `beta == 0`, the elements in `y` are never read.
|
||||
///
|
||||
/// Panics
|
||||
/// ------
|
||||
///
|
||||
/// Panics if `y`, `a` and `x` do not have compatible dimensions.
|
||||
pub fn spmv_coo<T, Y, X, YDim, XDim>(
|
||||
beta: T,
|
||||
y: &mut Vector<T, YDim, Y>,
|
||||
alpha: T,
|
||||
a: &CooMatrix<T>,
|
||||
x: &Vector<T, XDim, X>,
|
||||
) where
|
||||
T: Scalar + ClosedAdd + ClosedMul + Zero + One,
|
||||
YDim: Dim,
|
||||
XDim: Dim,
|
||||
Y: StorageMut<T, YDim>,
|
||||
X: Storage<T, XDim>,
|
||||
{
|
||||
assert_eq!(
|
||||
y.len(),
|
||||
a.nrows(),
|
||||
"y and a must be dimensionally compatible"
|
||||
);
|
||||
assert_eq!(
|
||||
a.ncols(),
|
||||
x.len(),
|
||||
"a and x must be dimensionally compatible"
|
||||
);
|
||||
|
||||
if beta == T::zero() {
|
||||
// If `y` is constructed through `new_uninitialized()`, we must make sure to not read
|
||||
// any of the elements in order to avoid UB, so we special case beta == 0
|
||||
// in order to ensure that we only write, not read, the elements in y.
|
||||
for y_i in y.iter_mut() {
|
||||
*y_i = T::zero();
|
||||
}
|
||||
} else if beta != T::one() {
|
||||
// Since the COO triplets have no particular structure, we cannot combine initialization
|
||||
// of y with the triplet loop below, and instead have to do it in a pre-pass.
|
||||
for y_i in y.iter_mut() {
|
||||
*y_i *= beta.inlined_clone();
|
||||
}
|
||||
}
|
||||
|
||||
for (i, j, v) in a.triplet_iter() {
|
||||
// TODO: We could skip bounds checks with unsafe here, since COO ensures that all indices
|
||||
// are in bounds and we assert on dimensions up-front.
|
||||
// The compiler will not be able to elide the checks, since we're doing
|
||||
// random/unpredictable access to elements in `x` and `y`.
|
||||
let (alpha, v, x_j) = (
|
||||
alpha.inlined_clone(),
|
||||
v.inlined_clone(),
|
||||
x[j].inlined_clone(),
|
||||
);
|
||||
y[i] += alpha * v * x_j;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
#[macro_export]
|
||||
macro_rules! assert_panics {
|
||||
($e:expr) => {{
|
||||
use std::panic::{catch_unwind};
|
||||
use std::stringify;
|
||||
let expr_string = stringify!($e);
|
||||
|
||||
// Note: We cannot manipulate the panic hook here, because it is global and the test
|
||||
// suite is run in parallel, which leads to race conditions in the sense
|
||||
// that some regular tests that panic might not output anything anymore.
|
||||
// Unfortunately this means that output is still printed to stdout if
|
||||
// we run cargo test -- --nocapture. But Cargo does not forward this if the test
|
||||
// binary is not run with nocapture, so it is somewhat acceptable nonetheless.
|
||||
|
||||
let result = catch_unwind(|| $e);
|
||||
if result.is_ok() {
|
||||
panic!("assert_panics!({}) failed: the expression did not panic.", expr_string);
|
||||
}
|
||||
}};
|
||||
}
|
|
@ -0,0 +1,5 @@
|
|||
//! Unit tests
|
||||
mod unit_tests;
|
||||
|
||||
#[macro_use]
|
||||
pub mod common;
|
|
@ -0,0 +1,190 @@
|
|||
use nalgebra_sparse::{CooMatrix, SparsePatternError};
|
||||
use nalgebra::DMatrix;
|
||||
use crate::assert_panics;
|
||||
|
||||
#[test]
|
||||
fn coo_construction_for_valid_data() {
|
||||
// Test that construction with try_from_triplets succeeds, that the state of the
|
||||
// matrix afterwards is as expected, and that the dense representation matches expectations.
|
||||
|
||||
{
|
||||
// Zero matrix
|
||||
let coo = CooMatrix::<i32>::try_from_triplets(3, 2, Vec::new(), Vec::new(), Vec::new())
|
||||
.unwrap();
|
||||
assert_eq!(coo.nrows(), 3);
|
||||
assert_eq!(coo.ncols(), 2);
|
||||
assert!(coo.triplet_iter().next().is_none());
|
||||
assert!(coo.row_indices().is_empty());
|
||||
assert!(coo.col_indices().is_empty());
|
||||
assert!(coo.values().is_empty());
|
||||
|
||||
assert_eq!(coo.to_dense(), DMatrix::repeat(3, 2, 0));
|
||||
}
|
||||
|
||||
{
|
||||
// Arbitrary matrix, no duplicates
|
||||
let i = vec![0, 1, 0, 0, 2];
|
||||
let j = vec![0, 2, 1, 3, 3];
|
||||
let v = vec![2, 3, 7, 3, 1];
|
||||
let coo = CooMatrix::<i32>::try_from_triplets(3, 5, i.clone(), j.clone(), v.clone())
|
||||
.unwrap();
|
||||
assert_eq!(coo.nrows(), 3);
|
||||
assert_eq!(coo.ncols(), 5);
|
||||
|
||||
assert_eq!(i.as_slice(), coo.row_indices());
|
||||
assert_eq!(j.as_slice(), coo.col_indices());
|
||||
assert_eq!(v.as_slice(), coo.values());
|
||||
|
||||
let expected_triplets: Vec<_> = i
|
||||
.iter()
|
||||
.zip(&j)
|
||||
.zip(&v)
|
||||
.map(|((i, j), v)| (*i, *j, *v))
|
||||
.collect();
|
||||
let actual_triplets: Vec<_> = coo.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect();
|
||||
assert_eq!(actual_triplets, expected_triplets);
|
||||
|
||||
#[rustfmt::skip]
|
||||
let expected_dense = DMatrix::from_row_slice(3, 5, &[
|
||||
2, 7, 0, 3, 0,
|
||||
0, 0, 3, 0, 0,
|
||||
0, 0, 0, 1, 0
|
||||
]);
|
||||
assert_eq!(coo.to_dense(), expected_dense);
|
||||
}
|
||||
|
||||
{
|
||||
// Arbitrary matrix, with duplicates
|
||||
let i = vec![0, 1, 0, 0, 0, 0, 2, 1];
|
||||
let j = vec![0, 2, 0, 1, 0, 3, 3, 2];
|
||||
let v = vec![2, 3, 4, 7, 1, 3, 1, 5];
|
||||
let coo = CooMatrix::<i32>::try_from_triplets(3, 5, i.clone(), j.clone(), v.clone())
|
||||
.unwrap();
|
||||
assert_eq!(coo.nrows(), 3);
|
||||
assert_eq!(coo.ncols(), 5);
|
||||
|
||||
assert_eq!(i.as_slice(), coo.row_indices());
|
||||
assert_eq!(j.as_slice(), coo.col_indices());
|
||||
assert_eq!(v.as_slice(), coo.values());
|
||||
|
||||
let expected_triplets: Vec<_> = i
|
||||
.iter()
|
||||
.zip(&j)
|
||||
.zip(&v)
|
||||
.map(|((i, j), v)| (*i, *j, *v))
|
||||
.collect();
|
||||
let actual_triplets: Vec<_> = coo.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect();
|
||||
assert_eq!(actual_triplets, expected_triplets);
|
||||
|
||||
#[rustfmt::skip]
|
||||
let expected_dense = DMatrix::from_row_slice(3, 5, &[
|
||||
7, 7, 0, 3, 0,
|
||||
0, 0, 8, 0, 0,
|
||||
0, 0, 0, 1, 0
|
||||
]);
|
||||
assert_eq!(coo.to_dense(), expected_dense);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn coo_try_from_triplets_reports_out_of_bounds_indices() {
|
||||
{
|
||||
// 0x0 matrix
|
||||
let result = CooMatrix::<i32>::try_from_triplets(0, 0, vec![0], vec![0], vec![2]);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
|
||||
{
|
||||
// 1x1 matrix, row out of bounds
|
||||
let result = CooMatrix::<i32>::try_from_triplets(1, 1, vec![1], vec![0], vec![2]);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
|
||||
{
|
||||
// 1x1 matrix, col out of bounds
|
||||
let result = CooMatrix::<i32>::try_from_triplets(1, 1, vec![0], vec![1], vec![2]);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
|
||||
{
|
||||
// 1x1 matrix, row and col out of bounds
|
||||
let result = CooMatrix::<i32>::try_from_triplets(1, 1, vec![1], vec![1], vec![2]);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
|
||||
{
|
||||
// Arbitrary matrix, row out of bounds
|
||||
let i = vec![0, 1, 0, 3, 2];
|
||||
let j = vec![0, 2, 1, 3, 3];
|
||||
let v = vec![2, 3, 7, 3, 1];
|
||||
let result = CooMatrix::<i32>::try_from_triplets(3, 5, i, j, v);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
|
||||
{
|
||||
// Arbitrary matrix, col out of bounds
|
||||
let i = vec![0, 1, 0, 0, 2];
|
||||
let j = vec![0, 2, 1, 5, 3];
|
||||
let v = vec![2, 3, 7, 3, 1];
|
||||
let result = CooMatrix::<i32>::try_from_triplets(3, 5, i, j, v);
|
||||
assert!(matches!(result, Err(SparsePatternError::IndexOutOfBounds(_))));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn coo_try_from_triplets_panics_on_mismatched_vectors() {
|
||||
// Check that try_from_triplets panics when the triplet vectors have different lengths
|
||||
macro_rules! assert_errs {
|
||||
($result:expr) => {
|
||||
assert!(matches!($result, Err(SparseFormatError::InvalidStructure(_))))
|
||||
}
|
||||
}
|
||||
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1, 2], vec![0], vec![0]));
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1], vec![0, 0], vec![0]));
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1], vec![0], vec![0, 1]));
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1, 2], vec![0, 1], vec![0]));
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1], vec![0, 1], vec![0, 1]));
|
||||
assert_errs!(CooMatrix::<i32>::try_from_triplets(3, 5, vec![1, 1], vec![0], vec![0, 1]));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn coo_push_valid_entries() {
|
||||
let mut coo = CooMatrix::new(3, 3);
|
||||
|
||||
coo.push(0, 0, 1);
|
||||
assert_eq!(coo.triplet_iter().collect::<Vec<_>>(), vec![(0, 0, &1)]);
|
||||
|
||||
coo.push(0, 0, 2);
|
||||
assert_eq!(coo.triplet_iter().collect::<Vec<_>>(), vec![(0, 0, &1), (0, 0, &2)]);
|
||||
|
||||
coo.push(2, 2, 3);
|
||||
assert_eq!(coo.triplet_iter().collect::<Vec<_>>(), vec![(0, 0, &1), (0, 0, &2), (2, 2, &3)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn coo_push_out_of_bounds_entries() {
|
||||
{
|
||||
// 0x0 matrix
|
||||
let coo = CooMatrix::new(0, 0);
|
||||
assert_panics!(coo.clone().push(0, 0, 1));
|
||||
}
|
||||
|
||||
{
|
||||
// 0x1 matrix
|
||||
assert_panics!(CooMatrix::new(0, 1).push(0, 0, 1));
|
||||
}
|
||||
|
||||
{
|
||||
// 1x0 matrix
|
||||
assert_panics!(CooMatrix::new(1, 0).push(0, 0, 1));
|
||||
}
|
||||
|
||||
{
|
||||
// Arbitrary matrix dimensions
|
||||
let coo = CooMatrix::new(3, 2);
|
||||
assert_panics!(coo.clone().push(3, 0, 1));
|
||||
assert_panics!(coo.clone().push(2, 2, 1));
|
||||
assert_panics!(coo.clone().push(3, 2, 1));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,2 @@
|
|||
mod coo;
|
||||
mod ops;
|
|
@ -0,0 +1,28 @@
|
|||
use nalgebra_sparse::CooMatrix;
|
||||
use nalgebra_sparse::ops::spmv_coo;
|
||||
use nalgebra::DVector;
|
||||
|
||||
#[test]
|
||||
fn spmv_coo_agrees_with_dense_gemv() {
|
||||
let x = DVector::from_column_slice(&[2, 3, 4, 5]);
|
||||
|
||||
let i = vec![0, 0, 1, 1, 2, 2];
|
||||
let j = vec![0, 3, 0, 1, 1, 3];
|
||||
let v = vec![3, 2, 1, 2, 3, 1];
|
||||
let a = CooMatrix::try_from_triplets(3, 4, i, j, v).unwrap();
|
||||
|
||||
let betas = [0, 1, 2];
|
||||
let alphas = [0, 1, 2];
|
||||
|
||||
for &beta in &betas {
|
||||
for &alpha in &alphas {
|
||||
let mut y = DVector::from_column_slice(&[2, 5, 3]);
|
||||
let mut y_dense = y.clone();
|
||||
spmv_coo(beta, &mut y, alpha, &a, &x);
|
||||
|
||||
y_dense.gemv(alpha, &a.to_dense(), &x, beta);
|
||||
|
||||
assert_eq!(y, y_dense);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue