2016-12-05 05:44:42 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
2018-05-23 05:58:14 +08:00
|
|
|
|
use base::dimension::U4;
|
2017-08-03 01:37:44 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
2018-05-19 23:15:15 +08:00
|
|
|
|
use base::storage::Owned;
|
2017-08-03 01:37:44 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
2018-05-23 05:58:14 +08:00
|
|
|
|
use quickcheck::{Arbitrary, Gen};
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
|
use num::{One, Zero};
|
2018-07-20 05:56:07 +08:00
|
|
|
|
use rand::distributions::{Distribution, OpenClosed01, Standard};
|
2018-05-23 05:58:14 +08:00
|
|
|
|
use rand::Rng;
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
|
|
|
|
use alga::general::Real;
|
|
|
|
|
|
2018-05-19 23:15:15 +08:00
|
|
|
|
use base::dimension::U3;
|
2018-05-23 05:58:14 +08:00
|
|
|
|
use base::storage::Storage;
|
2018-07-20 05:56:07 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
|
|
|
use base::Vector3;
|
|
|
|
|
use base::{Unit, Vector, Vector4};
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
|
use geometry::{Quaternion, Rotation, UnitQuaternion};
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real> Quaternion<N> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
|
|
|
|
|
/// vector component.
|
|
|
|
|
#[inline]
|
2018-10-28 14:33:39 +08:00
|
|
|
|
#[deprecated(note = "Use `::from` instead.")]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_vector(vector: Vector4<N>) -> Self {
|
2018-02-02 19:26:35 +08:00
|
|
|
|
Quaternion { coords: vector }
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new quaternion from its individual components. Note that the arguments order does
|
|
|
|
|
/// **not** follow the storage order.
|
|
|
|
|
///
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the
|
|
|
|
|
/// order `(w, i, j, k)`.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # use nalgebra::{Quaternion, Vector4};
|
|
|
|
|
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
|
|
|
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
|
|
|
|
|
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2018-11-01 16:56:57 +08:00
|
|
|
|
pub fn new(w: N, i: N, j: N, k: N) -> Self {
|
|
|
|
|
let v = Vector4::<N>::new(i, j, k, w);
|
2018-10-28 14:33:39 +08:00
|
|
|
|
Self::from(v)
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
|
|
|
|
|
/// **not** follow the storage order.
|
|
|
|
|
///
|
|
|
|
|
/// The storage order is [ vector, scalar ].
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # use nalgebra::{Quaternion, Vector3, Vector4};
|
|
|
|
|
/// let w = 1.0;
|
|
|
|
|
/// let ijk = Vector3::new(2.0, 3.0, 4.0);
|
|
|
|
|
/// let q = Quaternion::from_parts(w, ijk);
|
|
|
|
|
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
|
|
|
|
|
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
// FIXME: take a reference to `vector`?
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_parts<SB>(scalar: N, vector: Vector<N, U3, SB>) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
Self::new(scalar, vector[0], vector[1], vector[2])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new quaternion from its polar decomposition.
|
|
|
|
|
///
|
|
|
|
|
/// Note that `axis` is assumed to be a unit vector.
|
|
|
|
|
// FIXME: take a reference to `axis`?
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<Vector<N, U3, SB>>) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2017-08-03 01:37:44 +08:00
|
|
|
|
let rot = UnitQuaternion::<N>::from_axis_angle(&axis, theta * ::convert(2.0f64));
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2018-12-10 04:08:14 +08:00
|
|
|
|
rot.into_inner() * scale
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// The quaternion multiplicative identity.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # use nalgebra::Quaternion;
|
|
|
|
|
/// let q = Quaternion::identity();
|
|
|
|
|
/// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
|
|
|
///
|
|
|
|
|
/// assert_eq!(q * q2, q2);
|
|
|
|
|
/// assert_eq!(q2 * q, q2);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn identity() -> Self {
|
|
|
|
|
Self::new(N::one(), N::zero(), N::zero(), N::zero())
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real> One for Quaternion<N> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
fn one() -> Self {
|
|
|
|
|
Self::identity()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real> Zero for Quaternion<N> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
fn zero() -> Self {
|
|
|
|
|
Self::new(N::zero(), N::zero(), N::zero(), N::zero())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn is_zero(&self) -> bool {
|
|
|
|
|
self.coords.is_zero()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-05-23 05:58:14 +08:00
|
|
|
|
impl<N: Real> Distribution<Quaternion<N>> for Standard
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where Standard: Distribution<N>
|
2018-05-23 05:58:14 +08:00
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2018-05-23 05:58:14 +08:00
|
|
|
|
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<N> {
|
2017-08-03 01:37:44 +08:00
|
|
|
|
Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real + Arbitrary> Arbitrary for Quaternion<N>
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where Owned<N, U4>: Send
|
2018-02-02 19:26:35 +08:00
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
2018-02-02 19:26:35 +08:00
|
|
|
|
Quaternion::new(
|
|
|
|
|
N::arbitrary(g),
|
|
|
|
|
N::arbitrary(g),
|
|
|
|
|
N::arbitrary(g),
|
|
|
|
|
N::arbitrary(g),
|
|
|
|
|
)
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real> UnitQuaternion<N> {
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// The rotation identity.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Vector3, Point3};
|
|
|
|
|
/// let q = UnitQuaternion::identity();
|
|
|
|
|
/// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
|
|
|
|
|
/// let v = Vector3::new_random();
|
|
|
|
|
/// let p = Point3::from(v);
|
|
|
|
|
///
|
|
|
|
|
/// assert_eq!(q * q2, q2);
|
|
|
|
|
/// assert_eq!(q2 * q, q2);
|
|
|
|
|
/// assert_eq!(q * v, v);
|
|
|
|
|
/// assert_eq!(q * p, p);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn identity() -> Self {
|
2017-08-03 01:37:44 +08:00
|
|
|
|
Self::new_unchecked(Quaternion::identity())
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new quaternion from a unit vector (the rotation axis) and an angle
|
|
|
|
|
/// (the rotation angle).
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
|
|
|
|
|
/// let axis = Vector3::y_axis();
|
|
|
|
|
/// let angle = f32::consts::FRAC_PI_2;
|
|
|
|
|
/// // Point and vector being transformed in the tests.
|
|
|
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let q = UnitQuaternion::from_axis_angle(&axis, angle);
|
|
|
|
|
///
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// assert_eq!(q.axis().unwrap(), axis);
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_eq!(q.angle(), angle);
|
|
|
|
|
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// // A zero vector yields an identity.
|
|
|
|
|
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
let (sang, cang) = (angle / ::convert(2.0f64)).sin_cos();
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
let q = Quaternion::from_parts(cang, axis.as_ref() * sang);
|
2016-12-05 05:44:42 +08:00
|
|
|
|
Self::new_unchecked(q)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion from a quaternion.
|
|
|
|
|
///
|
|
|
|
|
/// The input quaternion will be normalized.
|
2018-11-04 15:47:17 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn from_quaternion(q: Quaternion<N>) -> Self {
|
|
|
|
|
Self::new_normalize(q)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion from Euler angles.
|
|
|
|
|
///
|
|
|
|
|
/// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::UnitQuaternion;
|
|
|
|
|
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
|
|
|
|
|
/// let euler = rot.euler_angles();
|
|
|
|
|
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
|
2018-02-02 19:26:35 +08:00
|
|
|
|
let (sr, cr) = (roll * ::convert(0.5f64)).sin_cos();
|
2016-12-05 05:44:42 +08:00
|
|
|
|
let (sp, cp) = (pitch * ::convert(0.5f64)).sin_cos();
|
2018-02-02 19:26:35 +08:00
|
|
|
|
let (sy, cy) = (yaw * ::convert(0.5f64)).sin_cos();
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
let q = Quaternion::new(
|
2018-02-02 19:26:35 +08:00
|
|
|
|
cr * cp * cy + sr * sp * sy,
|
|
|
|
|
sr * cp * cy - cr * sp * sy,
|
|
|
|
|
cr * sp * cy + sr * cp * sy,
|
|
|
|
|
cr * cp * sy - sr * sp * cy,
|
|
|
|
|
);
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
|
|
|
|
Self::new_unchecked(q)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Builds an unit quaternion from a rotation matrix.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::{Rotation3, UnitQuaternion, Vector3};
|
|
|
|
|
/// let axis = Vector3::y_axis();
|
|
|
|
|
/// let angle = 0.1;
|
|
|
|
|
/// let rot = Rotation3::from_axis_angle(&axis, angle);
|
|
|
|
|
/// let q = UnitQuaternion::from_rotation_matrix(&rot);
|
|
|
|
|
/// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_rotation_matrix(rotmat: &Rotation<N, U3>) -> Self {
|
2017-02-13 01:17:09 +08:00
|
|
|
|
// Robust matrix to quaternion transformation.
|
|
|
|
|
// See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
|
|
|
|
|
let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
|
|
|
|
|
let res;
|
|
|
|
|
|
|
|
|
|
let _0_25: N = ::convert(0.25);
|
|
|
|
|
|
|
|
|
|
if tr > N::zero() {
|
2018-02-02 19:26:35 +08:00
|
|
|
|
let denom = (tr + N::one()).sqrt() * ::convert(2.0);
|
|
|
|
|
res = Quaternion::new(
|
|
|
|
|
_0_25 * denom,
|
|
|
|
|
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
|
|
|
|
|
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
|
|
|
|
|
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
|
|
|
|
|
);
|
|
|
|
|
} else if rotmat[(0, 0)] > rotmat[(1, 1)] && rotmat[(0, 0)] > rotmat[(2, 2)] {
|
|
|
|
|
let denom = (N::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)]).sqrt()
|
|
|
|
|
* ::convert(2.0);
|
|
|
|
|
res = Quaternion::new(
|
|
|
|
|
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
|
|
|
|
|
_0_25 * denom,
|
|
|
|
|
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
|
|
|
|
|
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
|
|
|
|
|
);
|
|
|
|
|
} else if rotmat[(1, 1)] > rotmat[(2, 2)] {
|
|
|
|
|
let denom = (N::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)]).sqrt()
|
|
|
|
|
* ::convert(2.0);
|
|
|
|
|
res = Quaternion::new(
|
|
|
|
|
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
|
|
|
|
|
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
|
|
|
|
|
_0_25 * denom,
|
|
|
|
|
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
|
|
|
|
|
);
|
|
|
|
|
} else {
|
|
|
|
|
let denom = (N::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)]).sqrt()
|
|
|
|
|
* ::convert(2.0);
|
|
|
|
|
res = Quaternion::new(
|
|
|
|
|
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
|
|
|
|
|
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
|
|
|
|
|
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
|
|
|
|
|
_0_25 * denom,
|
|
|
|
|
);
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
2017-02-13 01:17:09 +08:00
|
|
|
|
|
|
|
|
|
Self::new_unchecked(res)
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
|
|
|
|
|
/// direction.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::{Vector3, UnitQuaternion};
|
|
|
|
|
/// let a = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
|
/// let b = Vector3::new(3.0, 1.0, 2.0);
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q * a, b);
|
|
|
|
|
/// assert_relative_eq!(q.inverse() * b, a);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self>
|
2018-02-02 19:26:35 +08:00
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
|
Self::scaled_rotation_between(a, b, N::one())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
|
|
|
|
/// direction, raised to the power `s`.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::{Vector3, UnitQuaternion};
|
|
|
|
|
/// let a = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
|
/// let b = Vector3::new(3.0, 1.0, 2.0);
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
|
|
|
|
|
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2018-02-02 19:26:35 +08:00
|
|
|
|
pub fn scaled_rotation_between<SB, SC>(
|
|
|
|
|
a: &Vector<N, U3, SB>,
|
|
|
|
|
b: &Vector<N, U3, SC>,
|
|
|
|
|
s: N,
|
|
|
|
|
) -> Option<Self>
|
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2017-08-03 01:37:44 +08:00
|
|
|
|
// FIXME: code duplication with Rotation.
|
2018-02-02 19:26:35 +08:00
|
|
|
|
if let (Some(na), Some(nb)) = (
|
|
|
|
|
Unit::try_new(a.clone_owned(), N::zero()),
|
|
|
|
|
Unit::try_new(b.clone_owned(), N::zero()),
|
|
|
|
|
) {
|
2018-02-02 19:26:25 +08:00
|
|
|
|
Self::scaled_rotation_between_axis(&na, &nb, s)
|
2018-02-02 19:26:35 +08:00
|
|
|
|
} else {
|
2018-02-02 19:26:25 +08:00
|
|
|
|
Some(Self::identity())
|
|
|
|
|
}
|
|
|
|
|
}
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2018-02-02 19:26:25 +08:00
|
|
|
|
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
|
|
|
|
|
/// direction.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
|
|
|
|
|
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
|
|
|
|
|
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q * a, b);
|
|
|
|
|
/// assert_relative_eq!(q.inverse() * b, a);
|
|
|
|
|
/// ```
|
2018-02-02 19:26:25 +08:00
|
|
|
|
#[inline]
|
2018-02-02 19:26:35 +08:00
|
|
|
|
pub fn rotation_between_axis<SB, SC>(
|
|
|
|
|
a: &Unit<Vector<N, U3, SB>>,
|
|
|
|
|
b: &Unit<Vector<N, U3, SC>>,
|
|
|
|
|
) -> Option<Self>
|
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2018-02-02 19:26:25 +08:00
|
|
|
|
Self::scaled_rotation_between_axis(a, b, N::one())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
|
|
|
|
/// direction, raised to the power `s`.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
|
|
|
|
|
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
|
|
|
|
|
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
|
2018-12-10 23:52:19 +08:00
|
|
|
|
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
|
|
|
|
|
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
|
|
|
|
|
/// ```
|
2018-02-02 19:26:25 +08:00
|
|
|
|
#[inline]
|
2018-02-02 19:26:35 +08:00
|
|
|
|
pub fn scaled_rotation_between_axis<SB, SC>(
|
|
|
|
|
na: &Unit<Vector<N, U3, SB>>,
|
|
|
|
|
nb: &Unit<Vector<N, U3, SC>>,
|
|
|
|
|
s: N,
|
|
|
|
|
) -> Option<Self>
|
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2018-02-02 19:26:25 +08:00
|
|
|
|
// FIXME: code duplication with Rotation.
|
|
|
|
|
let c = na.cross(&nb);
|
|
|
|
|
|
|
|
|
|
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
|
|
|
|
|
let cos = na.dot(&nb);
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
2018-09-24 12:48:42 +08:00
|
|
|
|
// The cosinus may be out of [-1, 1] because of inaccuracies.
|
2018-02-02 19:26:25 +08:00
|
|
|
|
if cos <= -N::one() {
|
2018-02-02 19:26:35 +08:00
|
|
|
|
return None;
|
|
|
|
|
} else if cos >= N::one() {
|
|
|
|
|
return Some(Self::identity());
|
|
|
|
|
} else {
|
|
|
|
|
return Some(Self::from_axis_angle(&axis, cos.acos() * s));
|
2018-02-02 19:26:25 +08:00
|
|
|
|
}
|
2018-02-02 19:26:35 +08:00
|
|
|
|
} else if na.dot(&nb) < N::zero() {
|
2018-02-02 19:26:25 +08:00
|
|
|
|
// PI
|
|
|
|
|
//
|
|
|
|
|
// The rotation axis is undefined but the angle not zero. This is not a
|
|
|
|
|
// simple rotation.
|
|
|
|
|
return None;
|
2018-02-02 19:26:35 +08:00
|
|
|
|
} else {
|
2018-02-02 19:26:25 +08:00
|
|
|
|
// Zero
|
|
|
|
|
Some(Self::identity())
|
|
|
|
|
}
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
|
|
|
|
|
/// origin and looking toward `dir`.
|
|
|
|
|
///
|
2018-11-04 15:47:17 +08:00
|
|
|
|
/// It maps the `z` axis to the direction `dir`.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Arguments
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// * dir - The look direction. It does not need to be normalized.
|
|
|
|
|
/// * up - The vertical direction. It does not need to be normalized.
|
|
|
|
|
/// The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity
|
|
|
|
|
/// is not checked.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Vector3};
|
|
|
|
|
/// let dir = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
|
/// let up = Vector3::y();
|
|
|
|
|
///
|
2019-01-17 05:41:25 +08:00
|
|
|
|
/// let q = UnitQuaternion::face_towards(&dir, &up);
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// assert_relative_eq!(q * Vector3::z(), dir.normalize());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2019-01-17 05:41:25 +08:00
|
|
|
|
pub fn face_towards<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
|
2018-02-02 19:26:35 +08:00
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2019-01-17 05:41:25 +08:00
|
|
|
|
Self::from_rotation_matrix(&Rotation::<N, U3>::face_towards(dir, up))
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Builds a right-handed look-at view matrix without translation.
|
|
|
|
|
///
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// It maps the view direction `dir` to the **negative** `z` axis.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
/// This conforms to the common notion of right handed look-at matrix from the computer
|
|
|
|
|
/// graphics community.
|
|
|
|
|
///
|
|
|
|
|
/// # Arguments
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// * dir − The view direction. It does not need to be normalized.
|
|
|
|
|
/// * up - A vector approximately aligned with required the vertical axis. It does not need
|
|
|
|
|
/// to be normalized. The only requirement of this parameter is to not be collinear to `dir`.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Vector3};
|
|
|
|
|
/// let dir = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
|
/// let up = Vector3::y();
|
|
|
|
|
///
|
|
|
|
|
/// let q = UnitQuaternion::look_at_rh(&dir, &up);
|
|
|
|
|
/// assert_relative_eq!(q * dir.normalize(), -Vector3::z());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
|
2018-02-02 19:26:35 +08:00
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2019-01-17 05:41:25 +08:00
|
|
|
|
Self::face_towards(&-dir, up).inverse()
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Builds a left-handed look-at view matrix without translation.
|
|
|
|
|
///
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// It maps the view direction `dir` to the **positive** `z` axis.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
/// This conforms to the common notion of left handed look-at matrix from the computer
|
|
|
|
|
/// graphics community.
|
|
|
|
|
///
|
|
|
|
|
/// # Arguments
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// * dir − The view direction. It does not need to be normalized.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
/// * up - A vector approximately aligned with required the vertical axis. The only
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// requirement of this parameter is to not be collinear to `dir`.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Vector3};
|
|
|
|
|
/// let dir = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
|
/// let up = Vector3::y();
|
|
|
|
|
///
|
|
|
|
|
/// let q = UnitQuaternion::look_at_lh(&dir, &up);
|
|
|
|
|
/// assert_relative_eq!(q * dir.normalize(), Vector3::z());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
|
2018-02-02 19:26:35 +08:00
|
|
|
|
where
|
|
|
|
|
SB: Storage<N, U3>,
|
|
|
|
|
SC: Storage<N, U3>,
|
|
|
|
|
{
|
2019-01-17 05:41:25 +08:00
|
|
|
|
Self::face_towards(dir, up).inverse()
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
|
|
|
|
|
///
|
2018-05-04 17:22:24 +08:00
|
|
|
|
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
|
|
|
|
|
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
|
|
|
|
/// // Point and vector being transformed in the tests.
|
|
|
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let q = UnitQuaternion::new(axisangle);
|
|
|
|
|
///
|
|
|
|
|
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// // A zero vector yields an identity.
|
|
|
|
|
/// assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn new<SB>(axisangle: Vector<N, U3, SB>) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
let two: N = ::convert(2.0f64);
|
2017-08-03 01:37:44 +08:00
|
|
|
|
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp();
|
2016-12-05 05:44:42 +08:00
|
|
|
|
Self::new_unchecked(q)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
|
|
|
|
|
///
|
2018-05-04 17:22:24 +08:00
|
|
|
|
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
|
|
|
|
|
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
|
|
|
|
/// // Point and vector being transformed in the tests.
|
|
|
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// // An almost zero vector yields an identity.
|
|
|
|
|
/// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
|
|
|
|
|
/// ```
|
2018-05-03 18:06:11 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn new_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2018-05-03 18:06:11 +08:00
|
|
|
|
let two: N = ::convert(2.0f64);
|
|
|
|
|
let q = Quaternion::<N>::from_parts(N::zero(), axisangle / two).exp_eps(eps);
|
|
|
|
|
Self::new_unchecked(q)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
|
|
|
|
|
///
|
2018-05-04 17:22:24 +08:00
|
|
|
|
/// If `axisangle` has a magnitude smaller than `N::default_epsilon()`, this returns the identity rotation.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
/// Same as `Self::new(axisangle)`.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
|
|
|
|
|
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
|
|
|
|
/// // Point and vector being transformed in the tests.
|
|
|
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let q = UnitQuaternion::from_scaled_axis(axisangle);
|
|
|
|
|
///
|
|
|
|
|
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// // A zero vector yields an identity.
|
|
|
|
|
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
|
|
|
|
|
/// ```
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
pub fn from_scaled_axis<SB>(axisangle: Vector<N, U3, SB>) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
Self::new(axisangle)
|
|
|
|
|
}
|
2018-05-03 18:06:11 +08:00
|
|
|
|
|
|
|
|
|
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
|
|
|
|
|
///
|
2018-05-04 17:22:24 +08:00
|
|
|
|
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
|
2018-11-01 16:56:57 +08:00
|
|
|
|
/// Same as `Self::new_eps(axisangle, eps)`.
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
/// ```
|
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
|
/// # extern crate nalgebra;
|
|
|
|
|
/// # use std::f32;
|
|
|
|
|
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
|
|
|
|
|
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
|
|
|
|
/// // Point and vector being transformed in the tests.
|
|
|
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
|
|
|
/// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
|
|
|
|
|
///
|
|
|
|
|
/// // An almost zero vector yields an identity.
|
|
|
|
|
/// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
|
|
|
|
|
/// ```
|
2018-05-03 18:06:11 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
pub fn from_scaled_axis_eps<SB>(axisangle: Vector<N, U3, SB>, eps: N) -> Self
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where SB: Storage<N, U3> {
|
2018-05-03 18:06:11 +08:00
|
|
|
|
Self::new_eps(axisangle, eps)
|
|
|
|
|
}
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real> One for UnitQuaternion<N> {
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
fn one() -> Self {
|
|
|
|
|
Self::identity()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-05-23 05:58:14 +08:00
|
|
|
|
impl<N: Real> Distribution<UnitQuaternion<N>> for Standard
|
2018-10-22 13:00:10 +08:00
|
|
|
|
where OpenClosed01: Distribution<N>
|
2018-05-23 05:58:14 +08:00
|
|
|
|
{
|
2018-07-08 07:03:08 +08:00
|
|
|
|
/// Generate a uniformly distributed random rotation quaternion.
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
2018-05-23 05:58:14 +08:00
|
|
|
|
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<N> {
|
2018-07-04 10:06:03 +08:00
|
|
|
|
// Ken Shoemake's Subgroup Algorithm
|
|
|
|
|
// Uniform random rotations.
|
|
|
|
|
// In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992.
|
|
|
|
|
let x0 = rng.sample(OpenClosed01);
|
|
|
|
|
let x1 = rng.sample(OpenClosed01);
|
|
|
|
|
let x2 = rng.sample(OpenClosed01);
|
|
|
|
|
let theta1 = N::two_pi() * x1;
|
|
|
|
|
let theta2 = N::two_pi() * x2;
|
|
|
|
|
let s1 = theta1.sin();
|
|
|
|
|
let c1 = theta1.cos();
|
|
|
|
|
let s2 = theta2.sin();
|
|
|
|
|
let c2 = theta2.cos();
|
|
|
|
|
let r1 = (N::one() - x0).sqrt();
|
|
|
|
|
let r2 = x0.sqrt();
|
|
|
|
|
Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
|
#[cfg(feature = "arbitrary")]
|
2017-08-03 01:37:44 +08:00
|
|
|
|
impl<N: Real + Arbitrary> Arbitrary for UnitQuaternion<N>
|
2018-02-02 19:26:35 +08:00
|
|
|
|
where
|
|
|
|
|
Owned<N, U4>: Send,
|
|
|
|
|
Owned<N, U3>: Send,
|
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
|
#[inline]
|
|
|
|
|
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
|
|
|
|
let axisangle = Vector3::arbitrary(g);
|
2017-08-03 01:37:44 +08:00
|
|
|
|
UnitQuaternion::from_scaled_axis(axisangle)
|
2016-12-05 05:44:42 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
2018-07-04 10:06:03 +08:00
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
mod tests {
|
2018-12-18 22:44:53 +08:00
|
|
|
|
extern crate rand_xorshift;
|
2018-07-04 10:06:03 +08:00
|
|
|
|
use super::*;
|
2018-12-18 22:44:53 +08:00
|
|
|
|
use rand::SeedableRng;
|
2018-07-04 10:06:03 +08:00
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn random_unit_quats_are_unit() {
|
2018-12-18 22:44:53 +08:00
|
|
|
|
let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]);
|
2018-07-04 10:06:03 +08:00
|
|
|
|
for _ in 0..1000 {
|
|
|
|
|
let x = rng.gen::<UnitQuaternion<f32>>();
|
2018-12-10 04:08:14 +08:00
|
|
|
|
assert!(relative_eq!(x.into_inner().norm(), 1.0))
|
2018-07-04 10:06:03 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|