nalgebra/src/geometry/quaternion_construction.rs

345 lines
12 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use rand::{Rand, Rng};
use num::{Zero, One};
use alga::general::Real;
use core::{Unit, ColumnVector, Vector3};
use core::storage::{Storage, OwnedStorage};
use core::allocator::{Allocator, OwnedAllocator};
use core::dimension::{U1, U3, U4};
use geometry::{QuaternionBase, UnitQuaternionBase, RotationBase, OwnedRotation};
impl<N, S> QuaternionBase<N, S>
where N: Real,
S: Storage<N, U4, U1> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]
pub fn from_vector(vector: ColumnVector<N, U4, S>) -> Self {
QuaternionBase {
coords: vector
}
}
}
impl<N, S> QuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
/// Creates a new quaternion from its individual components. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is [ x, y, z, w ].
#[inline]
pub fn new(w: N, x: N, y: N, z: N) -> Self {
let v = ColumnVector::<N, U4, S>::new(x, y, z, w);
Self::from_vector(v)
}
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is [ vector, scalar ].
#[inline]
// FIXME: take a reference to `vector`?
pub fn from_parts<SB>(scalar: N, vector: ColumnVector<N, U3, SB>) -> Self
where SB: Storage<N, U3, U1> {
Self::new(scalar, vector[0], vector[1], vector[2])
}
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
// FIXME: take a reference to `axis`?
pub fn from_polar_decomposition<SB>(scale: N, theta: N, axis: Unit<ColumnVector<N, U3, SB>>) -> Self
where SB: Storage<N, U3, U1> {
let rot = UnitQuaternionBase::<N, S>::from_axis_angle(&axis, theta * ::convert(2.0f64));
rot.unwrap() * scale
}
/// The quaternion multiplicative identity.
#[inline]
pub fn identity() -> Self {
Self::new(N::one(), N::zero(), N::zero(), N::zero())
}
}
impl<N, S> One for QuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N, S> Zero for QuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
#[inline]
fn zero() -> Self {
Self::new(N::zero(), N::zero(), N::zero(), N::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.coords.is_zero()
}
}
impl<N, S> Rand for QuaternionBase<N, S>
where N: Real + Rand,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
QuaternionBase::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
}
}
#[cfg(feature="arbitrary")]
impl<N, S> Arbitrary for QuaternionBase<N, S>
where N: Real + Arbitrary,
S: OwnedStorage<N, U4, U1> + Send,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
QuaternionBase::new(N::arbitrary(g), N::arbitrary(g),
N::arbitrary(g), N::arbitrary(g))
}
}
impl<N, S> UnitQuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
/// The quaternion multiplicative identity.
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(QuaternionBase::identity())
}
/// Creates a new quaternion from a unit vector (the rotation axis) and an angle
/// (the rotation angle).
#[inline]
pub fn from_axis_angle<SB>(axis: &Unit<ColumnVector<N, U3, SB>>, angle: N) -> Self
where SB: Storage<N, U3, U1> {
let (sang, cang) = (angle / ::convert(2.0f64)).sin_cos();
let q = QuaternionBase::from_parts(cang, axis.as_ref() * sang);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn from_quaternion(q: QuaternionBase<N, S>) -> Self {
Self::new_normalize(q)
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
#[inline]
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
let (sr, cr) = (roll * ::convert(0.5f64)).sin_cos();
let (sp, cp) = (pitch * ::convert(0.5f64)).sin_cos();
let (sy, cy) = (yaw * ::convert(0.5f64)).sin_cos();
let q = QuaternionBase::new(
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy);
Self::new_unchecked(q)
}
/// Builds an unit quaternion from a rotation matrix.
#[inline]
pub fn from_rotation_matrix<SB>(rotmat: &RotationBase<N, U3, SB>) -> Self
where SB: Storage<N, U3, U3>,
SB::Alloc: Allocator<N, U3, U1> {
let angle = rotmat.angle();
if let Some(axis) = rotmat.axis() {
Self::from_axis_angle(&axis, angle)
}
else if angle > ::convert(1.0f64) {
// The angle is 3.14.
-Self::identity()
}
else {
// The angle is 0.
Self::identity()
}
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
#[inline]
pub fn rotation_between<SB, SC>(a: &ColumnVector<N, U3, SB>, b: &ColumnVector<N, U3, SC>) -> Option<Self>
where SB: Storage<N, U3, U1>,
SC: Storage<N, U3, U1> {
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
pub fn scaled_rotation_between<SB, SC>(a: &ColumnVector<N, U3, SB>, b: &ColumnVector<N, U3, SC>, s: N) -> Option<Self>
where SB: Storage<N, U3, U1>,
SC: Storage<N, U3, U1> {
// FIXME: code duplication with RotationBase.
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * s))
}
// Zero or PI.
if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
}
}
Some(Self::identity())
}
/// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the view direction `dir` to the positive `z` axis.
///
/// # Arguments
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
/// * up - The vertical direction. The only requirement of this parameter is to not be
/// collinear
/// to `dir`. Non-collinearity is not checked.
#[inline]
pub fn new_observer_frame<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
where SB: Storage<N, U3, U1>,
SC: Storage<N, U3, U1>,
S::Alloc: Allocator<N, U3, U3> +
Allocator<N, U3, U1> {
Self::from_rotation_matrix(&OwnedRotation::<N, U3, S::Alloc>::new_observer_frame(dir, up))
}
/// Builds a right-handed look-at view matrix without translation.
///
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_rh<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
where SB: Storage<N, U3, U1>,
SC: Storage<N, U3, U1>,
S::Alloc: Allocator<N, U3, U3> +
Allocator<N, U3, U1> {
Self::new_observer_frame(&-dir, up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_lh<SB, SC>(dir: &ColumnVector<N, U3, SB>, up: &ColumnVector<N, U3, SC>) -> Self
where SB: Storage<N, U3, U1>,
SC: Storage<N, U3, U1>,
S::Alloc: Allocator<N, U3, U3> +
Allocator<N, U3, U1> {
Self::new_observer_frame(dir, up).inverse()
}
}
impl<N, S> UnitQuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> +
Allocator<N, U3, U1> {
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` is zero, this returns the indentity rotation.
#[inline]
pub fn new<SB>(axisangle: ColumnVector<N, U3, SB>) -> Self
where SB: Storage<N, U3, U1> {
let two: N = ::convert(2.0f64);
let q = QuaternionBase::<N, S>::from_parts(N::zero(), axisangle / two).exp();
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` is zero, this returns the indentity rotation.
/// Same as `Self::new(axisangle)`.
#[inline]
pub fn from_scaled_axis<SB>(axisangle: ColumnVector<N, U3, SB>) -> Self
where SB: Storage<N, U3, U1> {
Self::new(axisangle)
}
}
impl<N, S> One for UnitQuaternionBase<N, S>
where N: Real,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> {
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<N, S> Rand for UnitQuaternionBase<N, S>
where N: Real + Rand,
S: OwnedStorage<N, U4, U1>,
S::Alloc: OwnedAllocator<N, U4, U1, S> +
Allocator<N, U3, U1> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
let axisangle = Vector3::rand(rng);
UnitQuaternionBase::from_scaled_axis(axisangle)
}
}
#[cfg(feature="arbitrary")]
impl<N, S> Arbitrary for UnitQuaternionBase<N, S>
where N: Real + Arbitrary,
S: OwnedStorage<N, U4, U1> + Send,
S::Alloc: OwnedAllocator<N, U4, U1, S> +
Allocator<N, U3, U1> {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let axisangle = Vector3::arbitrary(g);
UnitQuaternionBase::from_scaled_axis(axisangle)
}
}