Compare commits

..

41 Commits

Author SHA1 Message Date
75b2e80418
core/ndstrides: implement np_dot() for scalars and 1D 2024-08-26 11:18:24 +08:00
b416ece921
core/ndstrides: implement general matmul 2024-08-26 11:18:24 +08:00
9bf0e2cbf4
core/ndstrides: implement cmpop 2024-08-26 11:18:23 +08:00
5f143d2f2f
core/ndstrides: implement unary op 2024-08-26 11:18:23 +08:00
f5698a9eed
core/ndstrides: implement binop 2024-08-26 11:18:23 +08:00
cb8cea4286
core/ndstrides: add NDArrayOut, broadcast_map and map 2024-08-26 11:18:23 +08:00
ccc8ce5886
core/ndstrides: implement subscript assignment 2024-08-26 11:18:23 +08:00
48ce2d6c8a
core/ndstrides: add more ScalarOrNDArray and NDArrayObject utils 2024-08-26 11:18:23 +08:00
7a7a67b522
core/ndstrides: implement np_transpose() (no axes argument)
The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2024-08-26 11:18:23 +08:00
f37b092947
core/ndstrides: implement broadcasting & np_broadcast_to() 2024-08-26 11:18:23 +08:00
813dad4ed0
core/ndstrides: implement np_reshape() 2024-08-26 11:18:23 +08:00
48d7032b5e
core: categorize np_{transpose,reshape} as 'view functions' 2024-08-26 11:18:23 +08:00
6fb988a1e4
core/ndstrides: implement np_size() 2024-08-26 11:18:23 +08:00
3ea5ffe5ca
core/ndstrides: implement np_shape() and np_strides()
These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is used.
2024-08-26 11:18:23 +08:00
fb11b91d09
core/ndstrides: implement ndarray.fill() and .copy() 2024-08-26 11:18:23 +08:00
9742f795d5
core/ndstrides: implement np_identity() and np_eye() 2024-08-26 11:18:23 +08:00
b158ec80b4
core/ndstrides: implement np_array()
It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.
2024-08-26 11:18:23 +08:00
da23bb1417
core/irrt: add List
Needed for implementing np_array()
2024-08-26 11:18:23 +08:00
9c5273ae09
core/ndstrides: add NDArrayObject::atleast_nd 2024-08-26 11:18:23 +08:00
3d734aef17
core/ndstrides: add NDArrayObject::make_copy 2024-08-26 11:18:23 +08:00
510dbfc70e
core/ndstrides: implement ndarray indexing
The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
#486.
2024-08-26 11:18:23 +08:00
fda7f8d827
core/irrt: rename NDIndex to NDIndexInt
The name `NDIndex` is used in later commits.
2024-08-26 11:18:23 +08:00
5537645395
core/irrt: add Slice and Range
Needed for implementing general ndarray indexing.

Currently the IRRT slice and range have nothing to do with NAC3's slice
and range.
2024-08-26 11:18:23 +08:00
ad5afb52c4
core/ndstrides: implement len(ndarray) & refactor len() 2024-08-26 11:18:23 +08:00
3a241acc9c
core/ndstrides: implement np_{zeros,ones,full,empty} 2024-08-26 11:18:23 +08:00
b41cc79c05
core/model: add util::gen_for_model 2024-08-26 11:18:23 +08:00
2c276fa75e
core/object: add ListObject and TupleObject
Needed for implementing other ndarray utils.
2024-08-26 11:18:23 +08:00
f5827dae24
core/ndstrides: implement ndarray iterator NDIter 2024-08-26 11:18:23 +08:00
a531d0127a
core/ndstrides: introduce NDArray
NDArray with strides.
2024-08-26 11:18:23 +08:00
3d6565d0bf
core/toplevel/helper: add {extract,create}_ndims 2024-08-26 11:18:23 +08:00
56f44086d6
core/object: introduce object
A small abstraction to simplify implementations.
2024-08-26 11:18:23 +08:00
714165e00d
core/model: renaming and add notes on upgrading Ptr to LLVM 15 2024-08-26 11:18:20 +08:00
58a3b100b4
core/model: introduce models 2024-08-26 11:18:15 +08:00
f169d37074
core/irrt/exceptions: add debug utils with exceptions 2024-08-26 09:39:41 +08:00
cf34002179
core/irrt/exceptions: allow irrt to raise exceptions
Achieved through defining all the needed Exception ID constants at link
time.

Secondly, since `Exception` is `size_t` dependent, `__nac3_raise()`
takes an opaque pointer to `Exception`.
2024-08-26 09:38:56 +08:00
115fff9e65
core/irrt: build.rs capture IR defined constants 2024-08-26 09:35:17 +08:00
342206989e
core/irrt: build.rs capture IR defined types 2024-08-26 09:35:17 +08:00
e9629a6688
core/irrt: split irrt.cpp into headers 2024-08-26 09:35:06 +08:00
331ab8a946
core/irrt: reformat 2024-08-26 09:35:00 +08:00
601b47a30c
core: add .clang-format 2024-08-26 09:34:55 +08:00
8f726ecbfa
core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-26 09:34:27 +08:00
65 changed files with 1731 additions and 2125 deletions

View File

@ -1,32 +1,3 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
BasedOnStyle: Microsoft
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never
ReflowComments: false

62
Cargo.lock generated
View File

@ -117,9 +117,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cc"
version = "1.1.15"
version = "1.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57b6a275aa2903740dc87da01c62040406b8812552e97129a63ea8850a17c6e6"
checksum = "72db2f7947ecee9b03b510377e8bb9077afa27176fdbff55c51027e976fdcc48"
dependencies = [
"shlex",
]
@ -161,7 +161,7 @@ dependencies = [
"heck 0.5.0",
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -310,9 +310,9 @@ dependencies = [
[[package]]
name = "fastrand"
version = "2.1.1"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6"
checksum = "9fc0510504f03c51ada170672ac806f1f105a88aa97a5281117e1ddc3368e51a"
[[package]]
name = "fixedbitset"
@ -424,7 +424,7 @@ checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -510,9 +510,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]]
name = "libc"
version = "0.2.158"
version = "0.2.157"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439"
checksum = "374af5f94e54fa97cf75e945cce8a6b201e88a1a07e688b47dfd2a59c66dbd86"
[[package]]
name = "libloading"
@ -752,7 +752,7 @@ dependencies = [
"phf_shared 0.11.2",
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -856,7 +856,7 @@ dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -869,14 +869,14 @@ dependencies = [
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
name = "quote"
version = "1.0.37"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5b9d34b8991d19d98081b46eacdd8eb58c6f2b201139f7c5f643cc155a633af"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
"proc-macro2",
]
@ -942,9 +942,9 @@ dependencies = [
[[package]]
name = "redox_users"
version = "0.4.6"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba009ff324d1fc1b900bd1fdb31564febe58a8ccc8a6fdbb93b543d33b13ca43"
checksum = "bd283d9651eeda4b2a83a43c1c91b266c40fd76ecd39a50a8c630ae69dc72891"
dependencies = [
"getrandom",
"libredox",
@ -989,9 +989,9 @@ dependencies = [
[[package]]
name = "rustix"
version = "0.38.35"
version = "0.38.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a85d50532239da68e9addb745ba38ff4612a242c1c7ceea689c4bc7c2f43c36f"
checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f"
dependencies = [
"bitflags",
"errno",
@ -1035,29 +1035,29 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]]
name = "serde"
version = "1.0.209"
version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "99fce0ffe7310761ca6bf9faf5115afbc19688edd00171d81b1bb1b116c63e09"
checksum = "cff085d2cb684faa248efb494c39b68e522822ac0de72ccf08109abde717cfb2"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.209"
version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a5831b979fd7b5439637af1752d535ff49f4860c0f341d1baeb6faf0f4242170"
checksum = "24008e81ff7613ed8e5ba0cfaf24e2c2f1e5b8a0495711e44fcd4882fca62bcf"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
name = "serde_json"
version = "1.0.127"
version = "1.0.125"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8043c06d9f82bd7271361ed64f415fe5e12a77fdb52e573e7f06a516dea329ad"
checksum = "83c8e735a073ccf5be70aa8066aa984eaf2fa000db6c8d0100ae605b366d31ed"
dependencies = [
"itoa",
"memchr",
@ -1147,7 +1147,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -1163,9 +1163,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.76"
version = "2.0.75"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "578e081a14e0cefc3279b0472138c513f37b41a08d5a3cca9b6e4e8ceb6cd525"
checksum = "f6af063034fc1935ede7be0122941bafa9bacb949334d090b77ca98b5817c7d9"
dependencies = [
"proc-macro2",
"quote",
@ -1232,7 +1232,7 @@ checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]
[[package]]
@ -1310,9 +1310,9 @@ checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d"
[[package]]
name = "unicode-xid"
version = "0.2.5"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "229730647fbc343e3a80e463c1db7f78f3855d3f3739bee0dda773c9a037c90a"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"
[[package]]
name = "unicode_names2"
@ -1510,5 +1510,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.76",
"syn 2.0.75",
]

View File

@ -2,7 +2,7 @@ use nac3core::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
NDArrayValue, RangeValue, UntypedArrayLikeAccessor,
},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
@ -22,7 +22,7 @@ use inkwell::{
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
AddressSpace, IntPredicate,
};
use pyo3::{
@ -32,7 +32,6 @@ use pyo3::{
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use inkwell::values::IntValue;
use itertools::Itertools;
use std::{
collections::{hash_map::DefaultHasher, HashMap},
@ -487,10 +486,13 @@ fn format_rpc_arg<'ctx>(
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
let ppdata = generator.gen_var_alloc(ctx, llvm_arg_ty.element_type(), None).unwrap();
ctx.builder.build_store(ppdata, llvm_arg.data().base_ptr(ctx, generator)).unwrap();
call_memcpy_generic(
ctx,
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
ppdata,
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
@ -526,298 +528,6 @@ fn format_rpc_arg<'ctx>(
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
// Setup ndims
let ndims =
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_ret_ty.element_type().size_of().unwrap(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
let buffer = ctx
.builder
.build_array_alloca(
llvm_i8_8,
ctx.builder
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
.unwrap(),
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bitcast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
ndarray.dim_sizes().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
let num_elements =
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data =
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::UGE,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
let alloc_ptr = ctx
.builder
.build_array_alloca(
llvm_elem_ty,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bitcast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
@ -953,14 +663,63 @@ fn rpc_codegen_callback_fn<'ctx>(
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
let result = format_rpc_ret(generator, ctx, fun.0.ret);
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr);
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
Ok(result)
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
}
pub fn attributes_writeback(

View File

@ -33,6 +33,7 @@ use inkwell::{
OptimizationLevel,
};
use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
@ -448,6 +449,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -539,6 +541,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -557,7 +560,8 @@ impl Nac3 {
// Process IRRT
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };

View File

@ -23,7 +23,7 @@ use nac3core::{
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::RwLock;
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
@ -79,6 +79,7 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,

View File

@ -22,7 +22,6 @@ fn main() {
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",

View File

@ -1,16 +1,16 @@
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/math_util.hpp>
#include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/iter.hpp>
#include <irrt/ndarray/matmul.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/ndarray/transpose.hpp>
#include <irrt/original.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>

View File

@ -1,9 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/int_types.hpp>
template<typename SizeT>
struct CSlice {
uint8_t* base;
template <typename SizeT> struct CSlice
{
uint8_t *base;
SizeT len;
};

View File

@ -0,0 +1,20 @@
#pragma once
#include <irrt/int_types.hpp>
namespace cstr
{
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char *str)
{
uint32_t length = 0;
while (*str != '\0')
{
length++;
str++;
}
return length;
}
} // namespace cstr

View File

@ -8,18 +8,16 @@
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3);
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) \
{ \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) \
{ \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,7 +1,8 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
#include <irrt/cslice.hpp>
#include <irrt/cstr_util.hpp>
#include <irrt/int_types.hpp>
/**
* @brief The int type of ARTIQ exception IDs.
@ -12,11 +13,12 @@ typedef int32_t ExceptionId;
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
extern "C"
{
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
@ -25,14 +27,15 @@ ExceptionId EXN_TYPE_ERROR;
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
extern "C" void __nac3_raise(void *err);
namespace {
namespace
{
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
template <typename SizeT> struct Exception
{
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
@ -42,32 +45,24 @@ struct Exception {
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
const int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
template <typename SizeT>
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
int64_t param0, int64_t param1, int64_t param2)
{
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(filename)),
.len = static_cast<int32_t>(__builtin_strlen(filename))},
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(function)),
.len = static_cast<int32_t>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(msg)),
.len = static_cast<int32_t>(__builtin_strlen(msg))},
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__nac3_raise((void *)&e);
__builtin_unreachable();
}

View File

@ -6,8 +6,3 @@ using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,90 +1,19 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
#include <irrt/int_types.hpp>
#include <irrt/slice.hpp>
namespace {
namespace
{
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
template <typename SizeT> struct List
{
uint8_t *items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,93 +0,0 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -1,13 +1,14 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
namespace
{
template <typename T> const T &max(const T &a, const T &b)
{
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
template <typename T> const T &min(const T &a, const T &b)
{
return a > b ? b : a;
}
} // namespace

View File

@ -1,151 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
// TODO: To be deleted since NDArray with strides is done.
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndexInt* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims,
SizeT num_dims,
const NDIndexInt* indices,
SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndexInt* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndexInt* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims,
uint64_t num_dims,
const NDIndexInt* indices,
uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndexInt* in_idx,
NDIndexInt* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
}

View File

@ -1,32 +1,38 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace array {
namespace
{
namespace ndarray
{
namespace array
{
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0], [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the responsibility to
* allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
template <typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
{
if (shape[axis] == -1)
{
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
}
else
{
// Dimension is specified. Check.
if (shape[axis] != list->len) {
if (shape[axis] != list->len)
{
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
@ -36,13 +42,17 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndi
}
}
if (axis + 1 == ndims) {
if (axis + 1 == ndims)
{
// `list` has type `list[ItemType]`
// Do nothing
} else {
}
else
{
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
@ -51,9 +61,10 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndi
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
@ -75,27 +86,34 @@ void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
template <typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
{
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
if (IRRT_DEBUG_ASSERT_BOOL)
{
if (!ndarray::basic::is_c_contiguous(ndarray))
{
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
if (axis + 1 == ndarray->ndims)
{
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
}
else
{
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++) {
for (SizeT i = 0; i < list->len; i++)
{
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
@ -104,8 +122,8 @@ void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDA
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
{
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
@ -113,22 +131,27 @@ void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::array;
extern "C"
{
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
}
}

View File

@ -1,23 +1,28 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace basic {
namespace
{
namespace ndarray
{
namespace basic
{
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
if (shape[axis] < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
@ -29,19 +34,21 @@ void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
template <typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
const SizeT *output_shape)
{
if (ndarray_ndims != output_ndims)
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
{
if (ndarray_shape[axis] != output_shape[axis])
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
@ -57,8 +64,8 @@ void assert_output_shape_same(SizeT ndarray_ndims,
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
{
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
@ -73,9 +80,10 @@ SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
@ -89,8 +97,8 @@ void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT n
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
{
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
@ -99,8 +107,8 @@ SizeT size(const NDArray<SizeT>* ndarray) {
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
{
return size(ndarray) * ndarray->itemsize;
}
@ -111,12 +119,15 @@ SizeT nbytes(const NDArray<SizeT>* ndarray) {
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
{
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0) {
if (ndarray->ndims == 0)
{
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
} else {
}
else
{
return ndarray->shape[0];
}
}
@ -124,21 +135,16 @@ SizeT len(const NDArray<SizeT>* ndarray) {
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
* You may want to see ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
{
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
@ -154,17 +160,21 @@ bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
if (ndarray->ndims == 0)
{
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
{
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
for (SizeT i = 1; i < ndarray->ndims; i++)
{
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
{
return false;
}
}
@ -177,9 +187,9 @@ bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t* element = ndarray->data;
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
uint8_t *element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
@ -190,10 +200,11 @@ uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* ind
*
* This function does no bound check.
*/
template<typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
{
uint8_t *element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
@ -207,10 +218,11 @@ uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
{
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
@ -223,8 +235,8 @@ void set_strides_by_shape(NDArray<SizeT>* ndarray) {
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
{
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
@ -233,14 +245,15 @@ void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
for (SizeT i = 0; i < size(src_ndarray); i++)
{
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
@ -250,92 +263,109 @@ void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::basic;
extern "C"
{
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
int32_t output_ndims, const int32_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
int64_t output_ndims, const int64_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
{
return size(ndarray);
}
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
{
return size(ndarray);
}
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
{
return nbytes(ndarray);
}
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{
return nbytes(ndarray);
}
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
{
return len(ndarray);
}
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
{
return len(ndarray);
}
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
}
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
{
return get_nth_pelement(ndarray, nth);
}
}
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
{
return get_nth_pelement(ndarray, nth);
}
}
uint8_t* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
}
uint8_t* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
}
}

View File

@ -1,35 +1,43 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace {
template<typename SizeT>
struct ShapeEntry {
namespace
{
template <typename SizeT> struct ShapeEntry
{
SizeT ndims;
SizeT* shape;
SizeT *shape;
};
} // namespace
namespace {
namespace ndarray {
namespace broadcast {
namespace
{
namespace ndarray
{
namespace broadcast
{
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
template <typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
{
if (src_ndims > target_ndims)
{
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
for (SizeT i = 0; i < src_ndims; i++)
{
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
if (!(src_dim == 1 || target_dim == src_dim))
{
return false;
}
}
@ -47,9 +55,11 @@ bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
template <typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
{
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
{
dst_shape[dst_axis] = 1;
}
@ -57,7 +67,8 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT d
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
for (SizeT i = 0; i < num_shapes; i++)
{
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
@ -67,18 +78,24 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT d
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
for (SizeT j = 0; j < entry.ndims; j++)
{
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
if (dst_dim == 1)
{
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
}
else if (entry_dim == 1 || entry_dim == dst_dim)
{
// Do nothing
} else {
}
else
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
@ -112,10 +129,11 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT d
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
src_ndarray->shape))
{
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
@ -123,13 +141,17 @@ void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
{
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
{
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
}
else
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
@ -138,28 +160,29 @@ void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::broadcast;
extern "C"
{
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
int32_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
int64_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}
}

View File

@ -1,20 +1,20 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/int_types.hpp>
namespace {
namespace
{
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
* Official numpy implementation: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template<typename SizeT>
struct NDArray {
template <typename SizeT> struct NDArray
{
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
uint8_t* data;
uint8_t *data;
/**
* @brief The number of bytes of a single element in `data`.
@ -31,7 +31,7 @@ struct NDArray {
*
* Note that it may contain 0.
*/
SizeT* shape;
SizeT *shape;
/**
* @brief Array strides, with length equal to `ndims`
@ -40,6 +40,6 @@ struct NDArray {
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
SizeT *strides;
};
} // namespace

View File

@ -1,13 +1,14 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>
namespace {
namespace
{
typedef uint8_t NDIndexType;
/**
@ -47,7 +48,8 @@ const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
struct NDIndex
{
/**
* @brief Enum tag to specify the type of index.
*
@ -60,13 +62,16 @@ struct NDIndex {
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
uint8_t *data;
};
} // namespace
namespace {
namespace ndarray {
namespace indexing {
namespace
{
namespace ndarray
{
namespace indexing
{
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
@ -94,8 +99,9 @@ namespace indexing {
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
template <typename SizeT>
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
@ -105,28 +111,40 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
for (SizeT i = 0; i < num_indices; i++)
{
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
}
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
{
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
}
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
{
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
}
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
{
num_ellipsis++;
if (num_ellipsis > 1) {
if (num_ellipsis > 1)
{
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
}
else
{
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
if (src_ndarray->ndims - num_indexed < 0)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
@ -136,18 +154,20 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
for (int32_t i = 0; i < num_indices; i++)
{
const NDIndex *index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
SizeT input = (SizeT) * ((int32_t *)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
if (k == -1)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
@ -157,8 +177,10 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
}
else if (index->type == ND_INDEX_TYPE_SLICE)
{
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
@ -168,28 +190,36 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
}
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
{
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
}
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
{
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
for (SizeT j = 0; j < ellipsis_size; j++)
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
}
else
{
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
{
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
@ -201,20 +231,19 @@ void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::indexing;
extern "C"
{
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
NDArray<int32_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
NDArray<int64_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}
}

View File

@ -1,55 +1,35 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace
{
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
* - If ndims == 0, there is one iteration.
* - If shape contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
template <typename SizeT> struct NDIter
{
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
SizeT *shape;
SizeT *strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
SizeT *indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
* Initially this is all 0s.
*/
SizeT nth;
@ -58,7 +38,7 @@ struct NDIter {
*
* Initially this points to first element of the ndarray.
*/
uint8_t* element;
uint8_t *element;
/**
* @brief Cache for the product of shape.
@ -67,7 +47,11 @@ struct NDIter {
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element, SizeT* indices) {
// TODO:: Not implemented: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
{
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
@ -77,39 +61,41 @@ struct NDIter {
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
for (SizeT i = 0; i < ndims; i++)
{
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
{
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
bool has_next()
{
return nth < size;
}
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
void next()
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
if (indices[axis] >= shape[axis])
{
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
// TODO: Can be optimized with backstrides.
element -= strides[axis] * (shape[axis] - 1);
} else {
}
else
{
element += strides[axis];
break;
}
@ -119,28 +105,35 @@ struct NDIter {
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
extern "C"
{
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
{
return iter->has_next();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
{
return iter->has_next();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
void __nac3_nditer_next(NDIter<int32_t> *iter)
{
iter->next();
}
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
void __nac3_nditer_next64(NDIter<int64_t> *iter)
{
iter->next();
}
}
}

View File

@ -1,17 +1,20 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/iter.hpp>
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray {
namespace matmul {
namespace
{
namespace ndarray
{
namespace matmul
{
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
@ -33,21 +36,17 @@ namespace matmul {
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
template <typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
{
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
{
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
@ -73,28 +72,21 @@ void calculate_shapes(SizeT a_ndims,
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::matmul;
extern "C"
{
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
int32_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
int64_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}
}

View File

@ -1,12 +1,14 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace {
namespace ndarray {
namespace reshape {
namespace
{
namespace ndarray
{
namespace reshape
{
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
@ -20,8 +22,8 @@ namespace reshape {
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
{
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
@ -29,19 +31,27 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
{
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
if (dim < 0)
{
if (dim == -1)
{
if (neg1_exists)
{
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
}
else
{
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
}
else
{
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
@ -53,33 +63,46 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
}
else
{
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
if (neg1_exists)
{
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
if (new_size == 0 && size == 0)
{
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
}
else if (new_size == 0 && size != 0)
{
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
}
else if (size % new_size != 0)
{
// `x` has no integer solutions
can_reshape = false;
} else {
}
else
{
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
}
else
{
can_reshape = (new_size == size);
}
if (!can_reshape) {
if (!can_reshape)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
@ -88,12 +111,15 @@ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape)
} // namespace ndarray
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
extern "C"
{
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}
}

View File

@ -1,10 +1,8 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
/*
* Notes on `np.transpose(<array>, <axes>)`
@ -15,9 +13,12 @@
* Supporting it for now.
*/
namespace {
namespace ndarray {
namespace transpose {
namespace
{
namespace ndarray
{
namespace transpose
{
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
@ -29,26 +30,30 @@ namespace transpose {
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
{
if (ndims != num_axes)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
if (axis == -1)
{
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
if (axe_specified[axis])
{
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
@ -83,8 +88,9 @@ void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
template <typename SizeT>
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
{
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
@ -95,7 +101,8 @@ void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, S
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
if (axes == nullptr)
{
// `np.transpose(<array>, axes=None)`
/*
@ -106,15 +113,19 @@ void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, S
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
for (SizeT axis = 0; axis < ndims; axis++)
{
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
}
else
{
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
for (SizeT axis = 0; axis < ndims; axis++)
{
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
@ -127,19 +138,18 @@ void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, S
} // namespace ndarray
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
extern "C"
{
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
const int32_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
int64_t num_axes, const int64_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}
}

View File

@ -0,0 +1,372 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace
{
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T> T __nac3_int_exp_impl(T base, T exp)
{
T res = 1;
/* repeated squaring method */
do
{
if (exp & 1)
{
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT *list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx)
{
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i)
{
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT *dims, SizeT num_dims, NDIndexInt *idxs)
{
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++)
{
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT *dims, SizeT num_dims, const NDIndexInt *indices, SizeT num_indices)
{
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i)
{
SizeT ri = num_dims - i - 1;
if (ri < num_indices)
{
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT *lhs_dims, SizeT lhs_ndims, const SizeT *rhs_dims, SizeT rhs_ndims,
SizeT *out_dims)
{
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i)
{
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr)
{
*out_dim = *rhs_dim_sz;
}
else if (rhs_dim_sz == nullptr)
{
*out_dim = *lhs_dim_sz;
}
else if (*lhs_dim_sz == 1)
{
*out_dim = *rhs_dim_sz;
}
else if (*rhs_dim_sz == 1)
{
*out_dim = *lhs_dim_sz;
}
else if (*lhs_dim_sz == *rhs_dim_sz)
{
*out_dim = *lhs_dim_sz;
}
else
{
__builtin_unreachable();
}
}
}
template <typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT *src_dims, SizeT src_ndims, const NDIndexInt *in_idx,
NDIndexInt *out_idx)
{
for (SizeT i = 0; i < src_ndims; ++i)
{
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C"
{
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) \
{ \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
{
if (i < 0)
{
i = len + i;
}
if (i < 0)
{
return 0;
}
else if (i > len)
{
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
{
SliceIndex diff = end - start;
if (diff > 0 && step > 0)
{
return ((diff - 1) / step) + 1;
}
else if (diff < 0 && step < 0)
{
return ((diff + 1) / step) + 1;
}
else
{
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
SliceIndex src_arr_len, const SliceIndex size)
{
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1)
{
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0)
{
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0)
{
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca)
{
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
{
/* for constant optimization */
if (size == 1)
{
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
}
else if (size == 4)
{
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
}
else if (size == 8)
{
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
}
else
{
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start)
{
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x)
{
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x)
{
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z)
{
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z))
{
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x))
{
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x))
{
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(const uint32_t *list_data, uint32_t list_len, uint32_t begin_idx,
uint32_t end_idx)
{
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t __nac3_ndarray_calc_size64(const uint64_t *list_data, uint64_t list_len, uint64_t begin_idx,
uint64_t end_idx)
{
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t *dims, uint32_t num_dims, NDIndexInt *idxs)
{
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t *dims, uint64_t num_dims, NDIndexInt *idxs)
{
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(const uint32_t *dims, uint32_t num_dims, const NDIndexInt *indices,
uint32_t num_indices)
{
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(const uint64_t *dims, uint64_t num_dims, const NDIndexInt *indices,
uint64_t num_indices)
{
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t *lhs_dims, uint32_t lhs_ndims, const uint32_t *rhs_dims,
uint32_t rhs_ndims, uint32_t *out_dims)
{
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t *lhs_dims, uint64_t lhs_ndims, const uint64_t *rhs_dims,
uint64_t rhs_ndims, uint64_t *out_dims)
{
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t *src_dims, uint32_t src_ndims, const NDIndexInt *in_idx,
NDIndexInt *out_idx)
{
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t *src_dims, uint64_t src_ndims, const NDIndexInt *in_idx,
NDIndexInt *out_idx)
{
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // extern "C"

View File

@ -1,12 +1,14 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
#include <irrt/debug.hpp>
#include <irrt/int_types.hpp>
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
namespace
{
namespace range
{
template <typename T> T len(T start, T stop, T step)
{
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
@ -21,8 +23,8 @@ T len(T start, T stop, T step) {
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
template <typename T> struct Range
{
T start;
T stop;
T step;
@ -30,18 +32,10 @@ struct Range {
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
template <typename SizeT> T len()
{
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,24 +1,29 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
#include <irrt/range.hpp>
namespace {
namespace slice {
namespace
{
namespace slice
{
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
template <typename T> T resolve_index_in_length(T length, T index)
{
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
if (0 <= resolved && resolved < length)
{
return resolved;
} else {
}
else
{
return -1;
}
}
@ -28,39 +33,41 @@ T resolve_index_in_length(T length, T index) {
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
template <typename T>
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
T *range_start, T *range_stop, T *range_step)
{
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
if (step_is_negative)
{
lower = -1;
upper = length - 1;
} else {
}
else
{
lower = 0;
upper = length;
}
if (start_defined) {
if (start_defined)
{
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
}
else
{
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
if (stop_defined)
{
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
}
else
{
*range_stop = step_is_negative ? lower : upper;
}
}
@ -69,8 +76,8 @@ void indices(bool start_defined,
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
template <typename T> struct Slice
{
bool start_defined;
T start;
@ -80,25 +87,32 @@ struct Slice {
bool step_defined;
T step;
Slice() { this->reset(); }
Slice()
{
this->reset();
}
void reset() {
void reset()
{
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
void set_start(T start)
{
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
void set_stop(T stop)
{
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
void set_step(T step)
{
this->step_defined = true;
this->step = step;
}
@ -108,8 +122,8 @@ struct Slice {
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
template <typename SizeT> Range<T> indices(T length)
{
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
@ -123,16 +137,18 @@ struct Slice {
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
template <typename SizeT> Range<T> indices_checked(T length)
{
// TODO: Switch to `SizeT length`
if (length < 0) {
if (length < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
if (this->step_defined && this->step == 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
@ -140,17 +156,3 @@ struct Slice {
}
};
} // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -8,7 +8,6 @@ use crate::codegen::classes::{
};
use crate::codegen::expr::destructure_range;
use crate::codegen::irrt::calculate_len_for_slice_range;
use crate::codegen::macros::codegen_unreachable;
use crate::codegen::numpy::ndarray_elementwise_unaryop_impl;
use crate::codegen::stmt::gen_for_callback_incrementing;
use crate::codegen::{extern_fns, irrt, llvm_intrinsics, numpy, CodeGenContext, CodeGenerator};
@ -26,8 +25,7 @@ use super::object::tuple::TupleObject;
///
/// The generated message will contain the function name and the name of the unsupported type.
fn unsupported_type(ctx: &CodeGenContext<'_, '_>, fn_name: &str, tys: &[Type]) -> ! {
codegen_unreachable!(
ctx,
unreachable!(
"{fn_name}() not supported for '{}'",
tys.iter().map(|ty| format!("'{}'", ctx.unifier.stringify(*ty))).join(", "),
)
@ -766,7 +764,7 @@ pub fn call_numpy_minimum<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -870,7 +868,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
match fn_name {
"np_argmin" | "np_argmax" => llvm_int64.const_zero().into(),
"np_max" | "np_min" => a,
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}
}
BasicValueEnum::PointerValue(n)
@ -925,7 +923,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
"np_argmax" | "np_max" => {
call_max(ctx, (elem_ty, accumulator), (elem_ty, elem))
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
let updated_idx = match (accumulator, result) {
@ -962,7 +960,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
match fn_name {
"np_argmin" | "np_argmax" => ctx.builder.build_load(res_idx, "").unwrap(),
"np_max" | "np_min" => ctx.builder.build_load(accumulator_addr, "").unwrap(),
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}
}
@ -1028,7 +1026,7 @@ pub fn call_numpy_maximum<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1468,7 +1466,7 @@ pub fn call_numpy_arctan2<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1535,7 +1533,7 @@ pub fn call_numpy_copysign<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1602,7 +1600,7 @@ pub fn call_numpy_fmax<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1669,7 +1667,7 @@ pub fn call_numpy_fmin<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1792,7 +1790,7 @@ pub fn call_numpy_hypot<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };
@ -1859,7 +1857,7 @@ pub fn call_numpy_nextafter<'ctx, G: CodeGenerator + ?Sized>(
} else if is_ndarray2 {
unpack_ndarray_var_tys(&mut ctx.unifier, x2_ty).0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let x1_scalar_ty = if is_ndarray1 { dtype } else { x1_ty };

View File

@ -1404,7 +1404,7 @@ impl<'ctx> NDArrayValue<'ctx> {
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field.
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();

View File

@ -11,7 +11,6 @@ use crate::{
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
call_int_umin, call_memcpy_generic,
},
macros::codegen_unreachable,
need_sret,
object::ndarray::{NDArrayOut, ScalarOrNDArray},
stmt::{
@ -45,9 +44,12 @@ use std::cmp::min;
use std::iter::{repeat, repeat_with};
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
use super::object::{
use super::{
model::*,
object::{
any::AnyObject,
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
},
};
pub fn get_subst_key(
@ -118,7 +120,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => codegen_unreachable!(self),
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let (index, value) = if let TopLevelDef::Class { fields, attributes, .. } = &*def.read() {
@ -129,7 +131,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
(attribute_index.0, Some(attribute_index.1 .2.clone()))
}
} else {
codegen_unreachable!(self)
unreachable!()
};
(index, value)
}
@ -139,7 +141,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
TypeEnum::TObj { fields, .. } => {
fields.iter().find_position(|x| *x.0 == attr).unwrap().0
}
_ => codegen_unreachable!(self),
_ => unreachable!(),
}
}
@ -194,7 +196,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
*params.iter().next().unwrap().1
}
_ => codegen_unreachable!(self, "must be option type"),
_ => unreachable!("must be option type"),
};
let val = self.gen_symbol_val(generator, v, ty);
let ptr = generator
@ -210,7 +212,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
*params.iter().next().unwrap().1
}
_ => codegen_unreachable!(self, "must be option type"),
_ => unreachable!("must be option type"),
};
let actual_ptr_type =
self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default());
@ -277,7 +279,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
self.ctx.i64_type()
} else {
codegen_unreachable!(self)
unreachable!()
};
Some(ty.const_int(*val as u64, false).into())
}
@ -291,7 +293,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let (types, is_vararg_ctx) = if let TypeEnum::TTuple { ty, is_vararg_ctx } = &*ty {
(ty.clone(), *is_vararg_ctx)
} else {
codegen_unreachable!(self)
unreachable!()
};
let values = zip(types, v.iter())
.map_while(|(ty, v)| self.gen_const(generator, v, ty))
@ -336,7 +338,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
None
}
_ => codegen_unreachable!(self),
_ => unreachable!(),
}
}
@ -350,7 +352,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
signed: bool,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else {
codegen_unreachable!(self)
unreachable!()
};
let float = self.ctx.f64_type();
match (op, signed) {
@ -425,7 +427,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
.build_right_shift(lhs, rhs, signed, "rshift")
.map(Into::into)
.unwrap(),
_ => codegen_unreachable!(self),
_ => unreachable!(),
}
}
@ -437,7 +439,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
// special implementation?
(Operator::MatMult, _) => codegen_unreachable!(self),
(Operator::MatMult, _) => unreachable!(),
}
}
@ -449,8 +451,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else {
codegen_unreachable!(
self,
unreachable!(
"Expected (FloatValue, FloatValue), got ({}, {})",
lhs.get_type(),
rhs.get_type()
@ -694,7 +695,7 @@ pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String> {
let TopLevelDef::Class { methods, .. } = def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { methods, .. } = def else { unreachable!() };
// TODO: what about other fields that require alloca?
let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2);
@ -726,7 +727,7 @@ pub fn gen_func_instance<'ctx>(
key,
) = fun
else {
codegen_unreachable!(ctx)
unreachable!()
};
if let Some(sym) = instance_to_symbol.get(&key) {
@ -758,7 +759,7 @@ pub fn gen_func_instance<'ctx>(
.collect();
let mut signature = store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { codegen_unreachable!(ctx) };
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { unreachable!() };
if let Some(obj) = &obj {
let zelf = store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
@ -1124,7 +1125,7 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let ExprKind::ListComp { elt, generators } = &expr.node else { codegen_unreachable!(ctx) };
let ExprKind::ListComp { elt, generators } = &expr.node else { unreachable!() };
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
@ -1383,13 +1384,13 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty1) {
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let elem_ty2 =
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty2) {
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
} else {
codegen_unreachable!(ctx)
unreachable!()
};
debug_assert!(ctx.unifier.unioned(elem_ty1, elem_ty2));
@ -1462,7 +1463,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
codegen_unreachable!(ctx)
unreachable!()
};
(elem_ty, left_val, right_val)
@ -1472,12 +1473,12 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
codegen_unreachable!(ctx)
unreachable!()
};
(elem_ty, right_val, left_val)
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let list_val =
ListValue::from_ptr_val(list_val.into_pointer_value(), llvm_usize, None);
@ -1620,7 +1621,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else {
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else {
codegen_unreachable!(ctx, "must be tobj")
unreachable!("must be tobj")
};
let (op_name, id) = {
let normal_method_name = Binop::normal(op.base).op_info().method_name;
@ -1641,19 +1642,19 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else {
let left_enum_ty = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else {
codegen_unreachable!(ctx, "must be tobj")
unreachable!("must be tobj")
};
let fn_ty = fields.get(&op_name).unwrap().0;
let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty);
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { codegen_unreachable!(ctx) };
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { unreachable!() };
sig.clone()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
methods.iter().find(|method| method.0 == op_name).unwrap().2
};
@ -1782,8 +1783,7 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
if op == ast::Unaryop::Invert {
ast::Unaryop::Not
} else {
codegen_unreachable!(
ctx,
unreachable!(
"ufunc {} not supported for ndarray[bool, N]",
op.op_info().method_name,
)
@ -1846,8 +1846,8 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let (Some(left_ty), left) = left else { codegen_unreachable!(ctx) };
let (Some(right_ty), right) = comparators[0] else { codegen_unreachable!(ctx) };
let (Some(left_ty), left) = left else { unreachable!() };
let (Some(right_ty), right) = comparators[0] else { unreachable!() };
let op = ops[0];
let left = AnyObject { value: left, ty: left_ty };
@ -1917,7 +1917,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ,
ast::Cmpop::NotEq => IntPredicate::NE,
_ if left_ty == ctx.primitives.bool => codegen_unreachable!(ctx),
_ if left_ty == ctx.primitives.bool => unreachable!(),
ast::Cmpop::Lt => {
if use_unsigned_ops {
IntPredicate::ULT
@ -1946,7 +1946,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
IntPredicate::SGE
}
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
ctx.builder.build_int_compare(op, lhs, rhs, "cmp").unwrap()
@ -1963,7 +1963,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
ctx.builder.build_float_compare(op, lhs, rhs, "cmp").unwrap()
} else if left_ty == ctx.primitives.str {
@ -2095,7 +2095,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
match (op, val) {
(Cmpop::Eq, true) | (Cmpop::NotEq, false) => llvm_i1.const_all_ones(),
(Cmpop::Eq, false) | (Cmpop::NotEq, true) => llvm_i1.const_zero(),
(_, _) => codegen_unreachable!(ctx),
(_, _) => unreachable!(),
}
};
@ -2108,14 +2108,14 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let right_elem_ty = if let TypeEnum::TObj { params, .. } =
&*ctx.unifier.get_ty_immutable(right_ty)
{
*params.iter().next().unwrap().1
} else {
codegen_unreachable!(ctx)
unreachable!()
};
if !ctx.unifier.unioned(left_elem_ty, right_elem_ty) {
@ -2323,10 +2323,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
})
.map(BasicValueEnum::into_int_value)?;
Ok(ctx.builder.build_not(
generator.bool_to_i1(ctx, cmp),
"",
).unwrap())
Ok(ctx.builder.build_not(cmp, "").unwrap())
},
|_, ctx| {
let bb = ctx.builder.get_insert_block().unwrap();
@ -2475,7 +2472,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.const_null()
.into()
}
_ => codegen_unreachable!(ctx, "must be option type"),
_ => unreachable!("must be option type"),
}
}
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
@ -2485,7 +2482,29 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
None => {
let resolver = ctx.resolver.clone();
resolver.get_symbol_value(*id, ctx).unwrap()
if let Some(res) = resolver.get_symbol_value(*id, ctx) {
res
} else {
// Allow "raise Exception" short form
let def_id = resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), expr.location)
})?;
let def = ctx.top_level.definitions.read();
if let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() {
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!(
"Failed to resolve symbol {} (at {})",
id, expr.location
));
};
return Ok(generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into));
}
return Err(format!("Failed to resolve symbol {} (at {})", id, expr.location));
}
}
},
ExprKind::List { elts, .. } => {
@ -2514,7 +2533,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
*params.iter().next().unwrap().1
} else {
codegen_unreachable!(ctx)
unreachable!()
};
if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
@ -2608,9 +2627,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
return generator.gen_expr(ctx, &modified_expr);
}
None => {
codegen_unreachable!(ctx, "Function Type should not have attributes")
}
None => unreachable!("Function Type should not have attributes"),
}
} else if let TypeEnum::TObj { obj_id, fields, params } = &*ctx.unifier.get_ty(c) {
if fields.is_empty() && params.is_empty() {
@ -2632,7 +2649,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
return generator.gen_expr(ctx, &modified_expr);
}
None => codegen_unreachable!(ctx),
None => unreachable!(),
}
}
}
@ -2734,7 +2751,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
}
(Some(a), None) => a.into(),
(None, Some(b)) => b.into(),
(None, None) => codegen_unreachable!(ctx),
(None, None) => unreachable!(),
}
}
ExprKind::BinOp { op, left, right } => {
@ -2824,9 +2841,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
ctx.unifier.get_call_signature(*call).unwrap()
} else {
let ty = func.custom.unwrap();
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else {
codegen_unreachable!(ctx)
};
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else { unreachable!() };
sign.clone()
};
@ -2845,26 +2860,17 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
let Some(val) = generator.gen_expr(ctx, value)? else { return Ok(None) };
// Handle Class Method calls
// The attribute will be `DefinitionId` of the method if the call is to one of the parent methods
let func_id = attr.to_string().parse::<usize>();
let id = if let TypeEnum::TObj { obj_id, .. } =
&*ctx.unifier.get_ty(value.custom.unwrap())
{
*obj_id
} else {
codegen_unreachable!(ctx)
unreachable!()
};
// Use the `DefinitionID` from attribute if it is available
let fun_id = if let Ok(func_id) = func_id {
DefinitionId(func_id)
} else {
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else {
codegen_unreachable!(ctx)
};
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
methods.iter().find(|method| method.0 == *attr).unwrap().2
};
@ -2935,9 +2941,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.unwrap(),
));
}
ValueEnum::Dynamic(_) => {
codegen_unreachable!(ctx, "option must be static or ptr")
}
ValueEnum::Dynamic(_) => unreachable!("option must be static or ptr"),
}
}
@ -3094,10 +3098,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node {
(*v).try_into().unwrap()
} else {
codegen_unreachable!(
ctx,
"tuple subscript must be const int after type check"
);
unreachable!("tuple subscript must be const int after type check");
};
match generator.gen_expr(ctx, value)? {
Some(ValueEnum::Dynamic(v)) => {
@ -3120,10 +3121,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
None => return Ok(None),
}
}
_ => codegen_unreachable!(
ctx,
"should not be other subscriptable types after type check"
),
_ => unreachable!("should not be other subscriptable types after type check"),
}
}
ExprKind::ListComp { .. } => {
@ -3136,3 +3134,42 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
_ => unimplemented!(),
}))
}
/// Generate LLVM IR for an [`ExprKind::Slice`]
#[allow(clippy::type_complexity)]
pub fn gen_slice<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lower: &Option<Box<Expr<Option<Type>>>>,
upper: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
) -> Result<
(
Option<Instance<'ctx, Int<Int32>>>,
Option<Instance<'ctx, Int<Int32>>>,
Option<Instance<'ctx, Int<Int32>>>,
),
String,
> {
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => {
let value_expr = generator
.gen_expr(ctx, value_expr)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
let value_expr = Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
Some(value_expr)
}
})
};
let lower = help(lower)?;
let upper = help(upper)?;
let step = help(step)?;
Ok((lower, upper, step))
}

View File

@ -3,19 +3,19 @@ use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics,
macros::codegen_unreachable,
model::*,
object::{
list::List,
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
},
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use function::FnCall;
use crate::codegen::classes::TypedArrayLikeAccessor;
use crate::codegen::stmt::gen_for_callback_incrementing;
use function::CallFunction;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
@ -29,7 +29,7 @@ use itertools::Either;
use nac3parser::ast::Expr;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -45,25 +45,6 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
@ -81,7 +62,7 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
@ -467,7 +448,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
@ -612,7 +593,7 @@ where
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
@ -663,7 +644,7 @@ pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
@ -732,7 +713,7 @@ where
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
@ -800,7 +781,7 @@ pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
@ -920,7 +901,7 @@ pub fn call_ndarray_calc_broadcast_index<
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
@ -956,6 +937,32 @@ pub fn call_ndarray_calc_broadcast_index<
)
}
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
pub fn setup_irrt_exceptions<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
symbol_resolver: &dyn SymbolResolver,
) {
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = module.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
}
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
@ -986,7 +993,7 @@ pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator +
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
FnCall::builder(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
@ -1002,7 +1009,7 @@ pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator +
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
FnCall::builder(generator, ctx, &name)
CallFunction::begin(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
@ -1016,7 +1023,7 @@ pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("size")
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
@ -1025,7 +1032,7 @@ pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
@ -1034,7 +1041,7 @@ pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("len")
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
@ -1043,7 +1050,7 @@ pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
@ -1053,7 +1060,7 @@ pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
@ -1064,7 +1071,7 @@ pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
@ -1074,7 +1081,7 @@ pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_void();
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
@ -1084,7 +1091,7 @@ pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
@ -1095,16 +1102,16 @@ pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
FnCall::builder(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
FnCall::builder(generator, ctx, &name).arg(iter).returning_auto("has_element")
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
@ -1113,7 +1120,7 @@ pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
FnCall::builder(generator, ctx, &name).arg(iter).returning_void();
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
@ -1125,7 +1132,7 @@ pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
FnCall::builder(generator, ctx, &name)
CallFunction::begin(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
@ -1145,7 +1152,7 @@ pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerato
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
FnCall::builder(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
@ -1159,7 +1166,7 @@ pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Siz
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
FnCall::builder(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
@ -1174,7 +1181,11 @@ pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenera
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
FnCall::builder(generator, ctx, &name).arg(size).arg(new_ndims).arg(new_shape).returning_void();
CallFunction::begin(generator, ctx, &name)
.arg(size)
.arg(new_ndims)
.arg(new_shape)
.returning_void();
}
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
@ -1184,7 +1195,7 @@ pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
@ -1196,7 +1207,7 @@ pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
FnCall::builder(generator, ctx, &name)
CallFunction::begin(generator, ctx, &name)
.arg(num_shape_entries)
.arg(shape_entries)
.arg(dst_ndims)
@ -1213,7 +1224,7 @@ pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
FnCall::builder(generator, ctx, &name)
CallFunction::begin(generator, ctx, &name)
.arg(src_ndarray)
.arg(dst_ndarray)
.arg(num_axes)
@ -1236,7 +1247,7 @@ pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
FnCall::builder(generator, ctx, &name)
CallFunction::begin(generator, ctx, &name)
.arg(a_ndims)
.arg(a_shape)
.arg(b_ndims)

View File

@ -54,22 +54,6 @@ mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)]
pub struct StaticValueStore {
pub lookup: HashMap<Vec<(usize, u64)>, usize>,
@ -509,7 +493,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
Ptr(Struct(NDArray)).llvm_type(generator, ctx).as_basic_type_enum()
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(

View File

@ -18,7 +18,7 @@ impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
fn get_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,

View File

@ -11,8 +11,8 @@ use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// Trait for Rust structs identifying length values for [`Array`].
pub trait ArrayLen: fmt::Debug + Clone + Copy {
fn length(&self) -> u32;
pub trait LenKind: fmt::Debug + Clone + Copy {
fn get_length(&self) -> u32;
}
/// A statically known length.
@ -23,14 +23,14 @@ pub struct Len<const N: u32>;
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> ArrayLen for Len<N> {
fn length(&self) -> u32 {
impl<const N: u32> LenKind for Len<N> {
fn get_length(&self) -> u32 {
N
}
}
impl ArrayLen for AnyLen {
fn length(&self) -> u32 {
impl LenKind for AnyLen {
fn get_length(&self) -> u32 {
self.0
}
}
@ -46,16 +46,12 @@ pub struct Array<Len, Item> {
pub item: Item,
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.item.llvm_type(generator, ctx).array_type(self.len.length())
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.item.get_type(generator, ctx).array_type(self.len.get_length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
@ -69,11 +65,11 @@ impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.length() {
if ty.len() != self.len.get_length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.length()
self.len.get_length()
)));
}
@ -85,7 +81,7 @@ impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
}
}
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
@ -95,15 +91,15 @@ impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
unsafe { Ptr(self.model.0.item).believe_value(ptr) }
Ptr(self.model.0.item).believe_value(ptr)
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.length()),
i < u64::from(self.model.0.len.get_length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.length()
self.model.0.len.get_length()
);
let i = ctx.ctx.i32_type().const_int(i, false);

View File

@ -11,7 +11,7 @@ use crate::codegen::{CodeGenContext, CodeGenerator};
pub struct ModelError(pub String);
impl ModelError {
/// Append a context message to the error.
// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
@ -47,7 +47,7 @@ impl ModelError {
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model/ge.
/// ### Notes on converting between Inkwell and model.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
@ -68,16 +68,15 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// Return the [`BasicType`] of this model.
#[must_use]
fn llvm_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context)
-> Self::Type;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn size_of<G: CodeGenerator + ?Sized>(
fn sizeof<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.llvm_type(generator, ctx).size_of().unwrap()
self.get_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
@ -90,11 +89,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// Create an instance from a value.
///
/// # Safety
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
unsafe fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
@ -113,7 +110,7 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
unsafe { Ok(self.believe_value(value)) }
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
@ -122,8 +119,8 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
Ptr(*self).believe_value(p)
}
// Allocate an array on the stack and return its pointer.
@ -133,9 +130,8 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p =
ctx.builder.build_array_alloca(self.llvm_type(generator, ctx.ctx), len, "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
Ptr(*self).believe_value(p)
}
fn var_alloca<G: CodeGenerator + ?Sized>(
@ -144,9 +140,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
unsafe { Ok(Ptr(*self).believe_value(p)) }
Ok(Ptr(*self).believe_value(p))
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
@ -157,9 +153,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
unsafe { Ok(Ptr(*self).believe_value(PointerValue::from(p))) }
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
}
/// Allocate a constant array.
@ -180,7 +176,7 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
};
}
let value = match self.llvm_type(generator, ctx).as_basic_type_enum() {
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
@ -199,7 +195,6 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.

View File

@ -63,11 +63,7 @@ impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_float_type(generator, ctx)
}

View File

@ -35,7 +35,7 @@ struct Arg<'ctx> {
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
/// the argument types and returning type.
pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
@ -46,9 +46,9 @@ pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn builder(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
FnCall { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
@ -63,7 +63,7 @@ impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, '
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.llvm_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
@ -73,7 +73,7 @@ impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, '
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.llvm_type(self.generator, self.ctx.ctx);
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work

View File

@ -100,11 +100,7 @@ impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
@ -138,10 +134,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
value: u64,
sign_extend: bool,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_int(value, sign_extend);
unsafe { self.believe_value(value) }
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<G: CodeGenerator + ?Sized>(
@ -149,8 +144,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_zero();
unsafe { self.believe_value(value) }
let value = self.get_type(generator, ctx).const_zero();
self.believe_value(value)
}
pub fn const_1<G: CodeGenerator + ?Sized>(
@ -158,7 +153,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
self.const_int(generator, ctx, 1)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
@ -166,8 +161,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.llvm_type(generator, ctx).const_all_ones();
unsafe { self.believe_value(value) }
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -182,9 +177,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
self.believe_value(value)
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
@ -198,8 +193,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -214,9 +209,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
self.believe_value(value)
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
@ -230,8 +225,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -246,9 +241,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
unsafe { self.believe_value(value) }
self.believe_value(value)
}
pub fn truncate<G: CodeGenerator + ?Sized>(
@ -262,8 +257,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
@ -277,7 +272,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
@ -293,7 +288,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
@ -306,7 +301,7 @@ impl Int<Bool> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0, false)
self.const_int(generator, ctx, 0)
}
#[must_use]
@ -315,7 +310,7 @@ impl Int<Bool> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1, false)
self.const_int(generator, ctx, 1)
}
}
@ -395,19 +390,19 @@ impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
self.model.believe_value(value)
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
self.model.believe_value(value)
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
unsafe { self.model.believe_value(value) }
self.model.believe_value(value)
}
pub fn compare(
@ -417,6 +412,6 @@ impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
Int(Bool).believe_value(value)
}
}

View File

@ -31,13 +31,9 @@ impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.llvm_type(generator, ctx).ptr_type(AddressSpace::default())
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
@ -75,8 +71,8 @@ impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.llvm_type(generator, ctx).const_null();
unsafe { self.believe_value(ptr) }
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
@ -91,9 +87,9 @@ impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
// ```
// return self.believe_value(ptr);
// ```
let t = self.llvm_type(generator, ctx.ctx);
let t = self.get_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
unsafe { self.believe_value(ptr) }
self.believe_value(ptr)
}
}
@ -106,7 +102,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
unsafe { self.model.believe_value(p) }
self.model.believe_value(p)
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
@ -114,9 +110,9 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: i64,
offset: u64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset as u64, true);
let offset = ctx.ctx.i32_type().const_int(offset, false);
self.offset(ctx, offset)
}
@ -132,7 +128,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
index: u64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
@ -151,7 +147,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: i64,
index: u64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
@ -194,13 +190,13 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
Int(Bool).believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
unsafe { Int(Bool).believe_value(value) }
Int(Bool).believe_value(value)
}
/// `memcpy` from another pointer.
@ -212,9 +208,9 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.size_of(generator, ctx.ctx);
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(SizeT).z_extend_or_truncate(generator, ctx, num_items);
let itemsize = self.model.sizeof(generator, ctx.ctx);
let itemsize = Int(Int64).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(Int64).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false

View File

@ -13,16 +13,16 @@ use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Output<M>;
type Out<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Output<M> {
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
self.add(name, M::default())
}
}
@ -31,7 +31,7 @@ pub trait FieldTraversal<'ctx> {
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u32,
pub gep_index: u64,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
@ -41,16 +41,16 @@ pub struct GepField<M> {
/// A traversal to calculate the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u32,
gep_index_counter: u64,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Output<M> = GepField<M>;
type Out<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Output { gep_index, name, model }
Self::Out { gep_index, name, model }
}
}
@ -65,10 +65,10 @@ struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Output<M> = (); // Checking types return nothing.
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Output<M> {
let t = model.llvm_type(self.generator, self.ctx).as_basic_type_enum();
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
@ -89,9 +89,9 @@ struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Output<M> = (); // Checking types return nothing.
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
@ -100,8 +100,7 @@ impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
self.errors
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
}
}
// Otherwise, it will be caught by Struct's `check_type`.
} // Otherwise, it will be caught by Struct's `check_type`.
}
}
@ -193,13 +192,13 @@ pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// Traverse through all fields of this [`StructKind`].
///
/// Only used internally in this module for implementing other components.
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
///
/// Only used internally in this module for implementing other components.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.iter_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
@ -209,7 +208,7 @@ pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.iter_fields(&mut traversal);
self.traverse_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
@ -243,11 +242,7 @@ impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
@ -270,7 +265,7 @@ impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
errors: Vec::new(),
scrutinee: ty,
};
self.0.iter_fields(&mut traversal);
self.0.traverse_fields(&mut traversal);
// Check the number of fields.
let exp_num_fields = traversal.gep_index_counter;
@ -303,7 +298,7 @@ impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index).unwrap();
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
@ -326,13 +321,13 @@ impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(u64::from(field.gep_index), false)],
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
unsafe { Ptr(field.model).believe_value(ptr) }
Ptr(field.model).believe_value(ptr)
}
/// Convenience function equivalent to `.gep(...).load(...)`.

View File

@ -34,7 +34,7 @@ where
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = unsafe { int_model.believe_value(i) };
let i = int_model.believe_value(i);
body(g, ctx, hooks, i)
},
step.value,

View File

@ -11,7 +11,6 @@ use crate::{
call_ndarray_calc_size,
},
llvm_intrinsics::{self, call_memcpy_generic},
macros::codegen_unreachable,
model::*,
object::{
any::AnyObject,
@ -264,7 +263,7 @@ fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
codegen_unreachable!(ctx)
unreachable!()
}
}
@ -292,7 +291,7 @@ fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
codegen_unreachable!(ctx)
unreachable!()
}
}
@ -360,7 +359,7 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}
}
@ -631,7 +630,7 @@ fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
} else if fill_value.is_int_value() || fill_value.is_float_value() {
fill_value
} else {
codegen_unreachable!(ctx)
unreachable!()
};
Ok(value)
@ -1753,7 +1752,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
},
|generator, ctx, (a_iter, _b_iter)| {
// Only a_iter drives the condition, b_iter should have the same status.
Ok(a_iter.has_element(generator, ctx).value)
Ok(a_iter.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (a_iter, b_iter)| {
let a_scalar = a_iter.get_scalar(generator, ctx).value;
@ -1797,8 +1796,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => codegen_unreachable!(
ctx,
_ => unreachable!(
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),

View File

@ -8,9 +8,9 @@ use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Output<Ptr<Item>>,
pub items: F::Out<Ptr<Item>>,
/// Number of items in the array
pub len: F::Output<Int<SizeT>>,
pub len: F::Out<Int<SizeT>>,
}
/// A list in NAC3.
@ -23,7 +23,7 @@ pub struct List<Item> {
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),

View File

@ -40,7 +40,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,

View File

@ -10,8 +10,8 @@ use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
@ -21,7 +21,7 @@ pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
@ -73,23 +73,19 @@ fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries = Int(SizeT).const_int(
generator,
ctx.ctx,
u64::try_from(in_shape_entries.len()).unwrap(),
false,
);
let num_shape_entries =
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = shape_entries.offset_const(ctx, i64::try_from(i).unwrap());
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims, false);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims, false);
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
@ -113,7 +109,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int, false);
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
let shape_entries = ndarrays

View File

@ -76,7 +76,7 @@ impl<'ctx> NDArrayObject<'ctx> {
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);

View File

@ -12,8 +12,8 @@ pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Output<Int<NDIndexType>>,
pub data: F::Output<Ptr<Int<Byte>>>,
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
@ -23,7 +23,7 @@ pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
@ -49,7 +49,7 @@ impl<'ctx> RustNDIndex<'ctx> {
}
}
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndex`].
/// Write the contents to an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
@ -59,7 +59,7 @@ impl<'ctx> RustNDIndex<'ctx> {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id(), false),
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
);
// Set `dst_ndindex_ptr->data`
@ -84,7 +84,7 @@ impl<'ctx> RustNDIndex<'ctx> {
}
}
/// Serialize a list of `RustNDIndex` as a newly allocated LLVM array of `NDIndex`.
/// Allocate an array of `NDIndex`es on the stack and return the array pointer.
pub fn make_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
@ -92,14 +92,10 @@ impl<'ctx> RustNDIndex<'ctx> {
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
// Allocate the LLVM ndindices.
let num_ndindices =
Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64, false);
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i64::try_from(i).unwrap());
let pndindex = ndindices.offset_const(ctx, i as u64);
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
@ -159,7 +155,10 @@ pub mod util {
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{model::*, object::utils::slice::util::gen_slice, CodeGenContext, CodeGenerator},
codegen::{
expr::gen_slice, model::*, object::utils::slice::RustSlice, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
@ -207,8 +206,8 @@ pub mod util {
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let slice = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(RustSlice { int_kind: Int32, start: lower, stop: upper, step })
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(

View File

@ -76,13 +76,14 @@ impl<'ctx> NDArrayObject<'ctx> {
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx).value)
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars = in_nditers
.iter()
.map(|nditer| nditer.get_scalar(generator, ctx).value)

View File

@ -28,7 +28,10 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
@ -68,11 +71,11 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
generator,
ctx,
i64::try_from(ndims_int - 1).unwrap(),
ndims_int - 1,
);
let at_row = i64::try_from(ndims_int - 2).unwrap();
let at_col = i64::try_from(ndims_int - 1).unwrap();
let at_row = ndims_int - 2;
let at_col = ndims_int - 1;
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
@ -86,9 +89,6 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
let i = indices.get_index_const(generator, ctx, at_row);
let j = indices.get_index_const(generator, ctx, at_col);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0, false);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1, false);
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
indices.set_index_const(ctx, at_row, i);

View File

@ -35,11 +35,11 @@ use super::{any::AnyObject, tuple::TupleObject};
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Output<Ptr<Int<Byte>>>,
pub itemsize: F::Output<Int<SizeT>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
@ -51,7 +51,7 @@ pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
@ -101,7 +101,7 @@ impl<'ctx> NDArrayObject<'ctx> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims, false)
Int(SizeT).const_int(generator, ctx, self.ndims)
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
@ -126,7 +126,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
@ -152,8 +152,8 @@ impl<'ctx> NDArrayObject<'ctx> {
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim, false);
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, dim);
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
}
ndarray
@ -173,7 +173,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
}
ndarray
@ -422,8 +422,6 @@ impl<'ctx> NDArrayObject<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
// TODO: It is possible to optimize this by exploiting contiguous strides with memset.
// Probably best to implement in IRRT.
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
@ -448,7 +446,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let dim = self
.instance
.get(generator, ctx, |f| f.shape)
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
@ -476,7 +474,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let dim = self
.instance
.get(generator, ctx, |f| f.strides)
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
@ -516,7 +514,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims, false);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(

View File

@ -1,7 +1,7 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_element, call_nac3_nditer_initialize, call_nac3_nditer_next},
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
@ -12,15 +12,15 @@ use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub indices: F::Output<Ptr<Int<SizeT>>>,
pub nth: F::Output<Int<SizeT>>,
pub element: F::Output<Ptr<Int<Byte>>>,
pub indices: F::Out<Ptr<Int<SizeT>>>,
pub nth: F::Out<Int<SizeT>>,
pub element: F::Out<Ptr<Int<Byte>>>,
pub size: F::Output<Int<SizeT>>,
pub size: F::Out<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
@ -30,7 +30,7 @@ pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
@ -72,22 +72,20 @@ impl<'ctx> NDIterHandle<'ctx> {
NDIterHandle { ndarray, instance: nditer, indices }
}
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
/// Is there a next element?
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_element<G: CodeGenerator + ?Sized>(
pub fn has_next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_element(generator, ctx, self.instance)
call_nac3_nditer_has_next(generator, ctx, self.instance)
}
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
/// Go to the next element. If `has_next()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
@ -168,7 +166,7 @@ impl<'ctx> NDArrayObject<'ctx> {
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx).value),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);

View File

@ -77,7 +77,7 @@ pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i64::try_from(i).unwrap(), int);
result.set_index_const(ctx, i as u64, int);
}
(len, result)

View File

@ -81,7 +81,7 @@ impl<'ctx> TupleObject<'ctx> {
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64, false)
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
}
/// Get the `i`-th (0-based) object in this tuple.

View File

@ -3,12 +3,12 @@ use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
/// Fields of [`Slice`]
#[derive(Debug, Clone)]
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
pub start_defined: F::Output<Int<Bool>>,
pub start: F::Output<Int<N>>,
pub stop_defined: F::Output<Int<Bool>>,
pub stop: F::Output<Int<N>>,
pub step_defined: F::Output<Int<Bool>>,
pub step: F::Output<Int<N>>,
pub start_defined: F::Out<Int<Bool>>,
pub start: F::Out<Int<N>>,
pub stop_defined: F::Out<Int<Bool>>,
pub stop: F::Out<Int<N>>,
pub step_defined: F::Out<Int<Bool>>,
pub step: F::Out<Int<N>>,
}
/// An IRRT representation of an (unresolved) slice.
@ -18,7 +18,7 @@ pub struct Slice<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add("start", Int(self.0)),

View File

@ -1,9 +1,7 @@
use super::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::{destructure_range, gen_binop_expr},
gen_in_range_check,
super::symbol_resolver::ValueEnum,
expr::destructure_range,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
object::{
any::AnyObject,
ndarray::{
@ -13,7 +11,11 @@ use super::{
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
@ -125,7 +127,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
codegen_unreachable!(ctx);
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
@ -139,7 +141,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}))
}
@ -180,14 +182,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
// Perform i1 <-> i8 conversion as needed
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
generator.bool_to_i8(ctx, val.into_int_value()).into()
} else {
val
};
ctx.builder.build_store(ptr, val).unwrap();
}
};
@ -205,12 +199,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
codegen_unreachable!(ctx)
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
codegen_unreachable!(ctx);
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
@ -270,7 +264,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
codegen_unreachable!(ctx) // The typechecker ensures this
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
@ -318,9 +312,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else {
codegen_unreachable!(ctx)
};
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
@ -470,9 +462,7 @@ pub fn gen_for<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
codegen_unreachable!(ctx)
};
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -514,7 +504,7 @@ pub fn gen_for<G: CodeGenerator>(
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
codegen_unreachable!(ctx)
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
@ -957,7 +947,7 @@ pub fn gen_while<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -987,7 +977,7 @@ pub fn gen_while<G: CodeGenerator>(
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
@ -1135,7 +1125,7 @@ pub fn gen_if<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -1258,11 +1248,11 @@ pub fn exn_constructor<'ctx>(
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
@ -1370,7 +1360,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
codegen_unreachable!(ctx)
unreachable!()
};
// if we need to generate anything related to exception, we must have personality defined
@ -1447,7 +1437,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
@ -1719,23 +1709,6 @@ pub fn gen_return<G: CodeGenerator>(
} else {
None
};
// Remap boolean return type into i1
let value = value.map(|ret_val| {
// The "return type" of a sret function is in the first parameter
let expected_ty = if ctx.need_sret {
func.get_type().get_param_types()[0]
} else {
func.get_type().get_return_type().unwrap()
};
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
} else {
ret_val
}
});
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
@ -1746,6 +1719,25 @@ pub fn gen_return<G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
@ -1814,30 +1806,7 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exn = if let ExprKind::Name { id, .. } = &exc.node {
// Handle "raise Exception" short form
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
})?;
let def = ctx.top_level.definitions.read();
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into)
} else {
generator.gen_expr(ctx, exc)?
};
let exc = if let Some(v) = exn {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());

View File

@ -23,7 +23,7 @@ impl Default for ComposerConfig {
}
}
pub type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Vec<DefAst>,
@ -1822,12 +1822,7 @@ impl TopLevelComposer {
if *name != init_str_id {
unreachable!("must be init function here")
}
let all_inited = Self::get_all_assigned_field(
object_id.0,
definition_ast_list,
body.as_slice(),
)?;
let all_inited = Self::get_all_assigned_field(body.as_slice())?;
for (f, _, _) in fields {
if !all_inited.contains(f) {
return Err(HashSet::from([

View File

@ -3,7 +3,6 @@ use std::convert::TryInto;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
use ast::ExprKind;
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
@ -750,16 +749,7 @@ impl TopLevelComposer {
)
}
/// This function returns the fields that have been initialized in the `__init__` function of a class
/// The function takes as input:
/// * `class_id`: The `object_id` of the class whose function is being evaluated (check `TopLevelDef::Class`)
/// * `definition_ast_list`: A list of ast definitions and statements defined in `TopLevelComposer`
/// * `stmts`: The body of function being parsed. Each statment is analyzed to check varaible initialization statements
pub fn get_all_assigned_field(
class_id: usize,
definition_ast_list: &Vec<DefAst>,
stmts: &[Stmt<()>],
) -> Result<HashSet<StrRef>, HashSet<String>> {
pub fn get_all_assigned_field(stmts: &[Stmt<()>]) -> Result<HashSet<StrRef>, HashSet<String>> {
let mut result = HashSet::new();
for s in stmts {
match &s.node {
@ -795,138 +785,30 @@ impl TopLevelComposer {
// TODO: do not check for For and While?
ast::StmtKind::For { body, orelse, .. }
| ast::StmtKind::While { body, orelse, .. } => {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(orelse.as_slice())?);
}
ast::StmtKind::If { body, orelse, .. } => {
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
}
ast::StmtKind::Try { body, orelse, finalbody, .. } => {
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
finalbody.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(finalbody.as_slice())?);
}
ast::StmtKind::With { body, .. } => {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
}
// Variables Initialized in function calls
ast::StmtKind::Expr { value, .. } => {
let ExprKind::Call { func, .. } = &value.node else {
continue;
};
let ExprKind::Attribute { value, attr, .. } = &func.node else {
continue;
};
let ExprKind::Name { id, .. } = &value.node else {
continue;
};
// Need to consider the two cases:
// Case 1) Call to class function i.e. id = `self`
// Case 2) Call to class ancestor function i.e. id = ancestor_name
// We leave checking whether function in case 2 belonged to class ancestor or not to type checker
//
// According to current handling of `self`, function definition are fixed and do not change regardless
// of which object is passed as `self` i.e. virtual polymorphism is not supported
// Therefore, we change class id for case 2 to reflect behavior of our compiler
let class_name = if *id == "self".into() {
let ast::StmtKind::ClassDef { name, .. } =
&definition_ast_list[class_id].1.as_ref().unwrap().node
else {
unreachable!()
};
name
} else {
id
};
let parent_method = definition_ast_list.iter().find_map(|def| {
let (
class_def,
Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. },
..
}),
) = &def
else {
return None;
};
let TopLevelDef::Class { object_id: class_id, .. } = &*class_def.read()
else {
unreachable!()
};
if name == class_name {
body.iter().find_map(|m| {
let ast::StmtKind::FunctionDef { name, body, .. } = &m.node else {
return None;
};
if *name == *attr {
return Some((body.clone(), class_id.0));
}
None
})
} else {
None
}
});
// If method body is none then method does not exist
if let Some((method_body, class_id)) = parent_method {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
method_body.as_slice(),
)?);
} else {
return Err(HashSet::from([format!(
"{}.{} not found in class {class_name} at {}",
*id, *attr, value.location
)]));
}
result.extend(Self::get_all_assigned_field(body.as_slice())?);
}
ast::StmtKind::Pass { .. }
| ast::StmtKind::Assert { .. }
| ast::StmtKind::AnnAssign { .. } => {}
| ast::StmtKind::Expr { .. } => {}
_ => {
unimplemented!()

View File

@ -511,23 +511,6 @@ pub fn typeof_binop(
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
}
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
@ -544,8 +527,6 @@ pub fn typeof_binop(
));
}
// Deduce the ndims of the resulting ndarray.
// If this is 0 (an unsized ndarray), matmul returns a scalar just like NumPy.
let result_ndims = match (lhs_ndims, rhs_ndims) {
(0, _) | (_, 0) => {
return Err(

View File

@ -12,7 +12,6 @@ use super::{
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
},
};
use crate::toplevel::type_annotation::TypeAnnotation;
use crate::{
symbol_resolver::{SymbolResolver, SymbolValue},
toplevel::{
@ -103,7 +102,6 @@ pub struct Inferencer<'a> {
}
type InferenceError = HashSet<String>;
type OverrideResult = Result<Option<ast::Expr<Option<Type>>>, InferenceError>;
struct NaiveFolder();
impl Fold<()> for NaiveFolder {
@ -1713,86 +1711,6 @@ impl<'a> Inferencer<'a> {
Ok(None)
}
/// Checks whether a class method is calling parent function
/// Returns [`None`] if its not a call to parent method, otherwise
/// returns a new `func` with class name replaced by `self` and method resolved to its `DefinitionID`
///
/// e.g. A.f1(self, ...) returns Some(self.{DefintionID(f1)})
fn check_overriding(&mut self, func: &ast::Expr<()>, args: &[ast::Expr<()>]) -> OverrideResult {
// `self` must be first argument for call to parent method
if let Some(Located { node: ExprKind::Name { id, .. }, .. }) = &args.first() {
if *id != "self".into() {
return Ok(None);
}
} else {
return Ok(None);
}
let Located {
node: ExprKind::Attribute { value, attr: method_name, ctx }, location, ..
} = func
else {
return Ok(None);
};
let ExprKind::Name { id: class_name, ctx: class_ctx } = &value.node else {
return Ok(None);
};
let zelf = &self.fold_expr(args[0].clone())?;
// Check whether the method belongs to class ancestors
let def_id = self.unifier.get_ty(zelf.custom.unwrap());
let TypeEnum::TObj { obj_id, .. } = def_id.as_ref() else { unreachable!() };
let defs = self.top_level.definitions.read();
let res = {
if let TopLevelDef::Class { ancestors, .. } = &*defs[obj_id.0].read() {
let res = ancestors.iter().find_map(|f| {
let TypeAnnotation::CustomClass { id, .. } = f else { unreachable!() };
let TopLevelDef::Class { name, methods, .. } = &*defs[id.0].read() else {
unreachable!()
};
// Class names are stored as `__module__.class`
let name = name.to_string();
let (_, name) = name.rsplit_once('.').unwrap();
if name == class_name.to_string() {
return methods.iter().find_map(|f| {
if f.0 == *method_name {
return Some(*f);
}
None
});
}
None
});
res
} else {
None
}
};
match res {
Some(r) => {
let mut new_func = func.clone();
let mut new_value = value.clone();
new_value.node = ExprKind::Name { id: "self".into(), ctx: *class_ctx };
new_func.node =
ExprKind::Attribute { value: new_value.clone(), attr: *method_name, ctx: *ctx };
let mut new_func = self.fold_expr(new_func)?;
let ExprKind::Attribute { value, .. } = new_func.node else { unreachable!() };
new_func.node =
ExprKind::Attribute { value, attr: r.2 .0.to_string().into(), ctx: *ctx };
new_func.custom = Some(r.1);
Ok(Some(new_func))
}
None => report_error(
format!("Ancestor method [{class_name}.{method_name}] should be defined with same decorator as its overridden version").as_str(),
*location,
),
}
}
fn fold_call(
&mut self,
location: Location,
@ -1806,20 +1724,8 @@ impl<'a> Inferencer<'a> {
return Ok(spec_call_func);
}
// Check for call to parent method
let override_res = self.check_overriding(&func, &args)?;
let is_override = override_res.is_some();
let func = if is_override { override_res.unwrap() } else { self.fold_expr(func)? };
let func = Box::new(func);
let mut args =
args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
// TODO: Handle passing of self to functions to allow runtime lookup of functions to be called
// Currently removing `self` and using compile time function definitions
if is_override {
args.remove(0);
}
let func = Box::new(self.fold_expr(func)?);
let args = args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
let keywords = keywords
.into_iter()
.map(|v| fold::fold_keyword(self, v))

View File

@ -19,19 +19,19 @@ void output_bool(bool x) {
}
void output_int32(int32_t x) {
printf("%" PRId32 "\n", x);
printf("%"PRId32"\n", x);
}
void output_int64(int64_t x) {
printf("%" PRId64 "\n", x);
printf("%"PRId64"\n", x);
}
void output_uint32(uint32_t x) {
printf("%" PRIu32 "\n", x);
printf("%"PRIu32"\n", x);
}
void output_uint64(uint64_t x) {
printf("%" PRIu64 "\n", x);
printf("%"PRIu64"\n", x);
}
void output_float64(double x) {
@ -52,7 +52,7 @@ void output_range(int32_t range[3]) {
}
void output_asciiart(int32_t x) {
static const char* chars = " .,-:;i+hHM$*#@ ";
static const char *chars = " .,-:;i+hHM$*#@ ";
if (x < 0) {
putchar('\n');
} else {
@ -61,12 +61,12 @@ void output_asciiart(int32_t x) {
}
struct cslice {
void* data;
void *data;
size_t len;
};
void output_int32_list(struct cslice* slice) {
const int32_t* data = (int32_t*)slice->data;
void output_int32_list(struct cslice *slice) {
const int32_t *data = (int32_t *) slice->data;
putchar('[');
for (size_t i = 0; i < slice->len; ++i) {
@ -80,23 +80,23 @@ void output_int32_list(struct cslice* slice) {
putchar('\n');
}
void output_str(struct cslice* slice) {
const char* data = (const char*)slice->data;
void output_str(struct cslice *slice) {
const char *data = (const char *) slice->data;
for (size_t i = 0; i < slice->len; ++i) {
putchar(data[i]);
}
}
void output_strln(struct cslice* slice) {
void output_strln(struct cslice *slice) {
output_str(slice);
putchar('\n');
}
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice* slice) {
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice *slice) {
int i;
void* ptr = (void*)&i;
return (uintptr_t)ptr;
void *ptr = (void *) &i;
return (uintptr_t) ptr;
}
uint32_t __nac3_personality(uint32_t state, uint32_t exception_object, uint32_t context) {
@ -119,12 +119,11 @@ struct Exception {
uint32_t __nac3_raise(struct Exception* e) {
printf("__nac3_raise called. Exception details:\n");
printf(" ID: %" PRIu32 "\n", e->id);
printf(" Location: %*s:%" PRIu32 ":%" PRIu32 "\n", (int)e->file.len, (const char*)e->file.data, e->line,
e->column);
printf(" Function: %*s\n", (int)e->function.len, (const char*)e->function.data);
printf(" Message: \"%*s\"\n", (int)e->message.len, (const char*)e->message.data);
printf(" Params: {0}=%" PRId64 ", {1}=%" PRId64 ", {2}=%" PRId64 "\n", e->param[0], e->param[1], e->param[2]);
printf(" ID: %"PRIu32"\n", e->id);
printf(" Location: %*s:%"PRIu32":%"PRIu32"\n" , (int) e->file.len, (const char*) e->file.data, e->line, e->column);
printf(" Function: %*s\n" , (int) e->function.len, (const char*) e->function.data);
printf(" Message: \"%*s\"\n" , (int) e->message.len, (const char*) e->message.data);
printf(" Params: {0}=%"PRId64", {1}=%"PRId64", {2}=%"PRId64"\n", e->param[0], e->param[1], e->param[2]);
exit(101);
__builtin_unreachable();
}

View File

@ -9,7 +9,6 @@ def output_bool(x: bool):
def example1():
x, *ys, z = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(len(ys))
output_int32(ys[0])
output_int32(ys[1])
output_int32(ys[2])
@ -19,14 +18,12 @@ def example2():
x, y, *zs = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(y)
output_int32(len(zs))
output_int32(zs[0])
output_int32(zs[1])
output_int32(zs[2])
def example3():
*xs, y, z = (1, 2, 3, 4, 5)
output_int32(len(xs))
output_int32(xs[0])
output_int32(xs[1])
output_int32(xs[2])
@ -34,12 +31,6 @@ def example3():
output_int32(z)
def example4():
*xs, y, z = (4, 5)
output_int32(len(xs))
output_int32(y)
output_int32(z)
def example5():
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
x = [0, 1]
i = 0
@ -53,7 +44,7 @@ class A:
def __init__(self):
self.value = 1000
def example6():
def example5():
ws = [88, 7, 8]
a = A()
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
@ -72,5 +63,4 @@ def run() -> int32:
example3()
example4()
example5()
example6()
return 0

View File

@ -10,58 +10,23 @@ class A:
def __init__(self, a: int32):
self.a = a
def output_all_fields(self):
output_int32(self.a)
def f1(self):
self.f2()
def set_a(self, a: int32):
self.a = a
def f2(self):
output_int32(self.a)
class B(A):
b: int32
def __init__(self, b: int32):
A.__init__(self, b + 1)
self.set_b(b)
def output_parent_fields(self):
A.output_all_fields(self)
def output_all_fields(self):
A.output_all_fields(self)
output_int32(self.b)
def set_b(self, b: int32):
self.a = b + 1
self.b = b
class C(B):
c: int32
def __init__(self, c: int32):
B.__init__(self, c + 1)
self.c = c
def output_parent_fields(self):
B.output_all_fields(self)
def output_all_fields(self):
B.output_all_fields(self)
output_int32(self.c)
def set_c(self, c: int32):
self.c = c
def run() -> int32:
ccc = C(10)
ccc.output_all_fields()
ccc.set_a(1)
ccc.set_b(2)
ccc.set_c(3)
ccc.output_all_fields()
bbb = B(10)
bbb.set_a(9)
bbb.set_b(8)
bbb.output_all_fields()
ccc.output_all_fields()
aaa = A(5)
bbb = B(2)
aaa.f1()
bbb.f1()
return 0

View File

@ -15,6 +15,7 @@ use std::{collections::HashMap, sync::Arc};
pub struct ResolverInternal {
pub id_to_type: Mutex<HashMap<StrRef, Type>>,
pub id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub module_globals: Mutex<HashMap<StrRef, SymbolValue>>,
pub str_store: Mutex<HashMap<String, i32>>,
}

View File

@ -14,6 +14,7 @@ use inkwell::{
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
OptimizationLevel,
};
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
@ -306,6 +307,7 @@ fn main() {
let internal_resolver: Arc<ResolverInternal> = ResolverInternal {
id_to_type: builtins_ty.into(),
id_to_def: builtins_def.into(),
class_names: Mutex::default(),
module_globals: Mutex::default(),
str_store: Mutex::default(),
}
@ -316,7 +318,8 @@ fn main() {
let context = inkwell::context::Context::create();
// Process IRRT
let irrt = load_irrt(&context, resolver.as_ref());
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
if emit_llvm {
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
}