core/irrt: split irrt.cpp into headers
This commit is contained in:
parent
331ab8a946
commit
e9629a6688
@ -36,6 +36,8 @@ fn main() {
|
||||
"-Wextra",
|
||||
"-o",
|
||||
"-",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
|
@ -1,384 +1,3 @@
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> const T &max(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T> const T &min(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T> T __nac3_int_exp_impl(T base, T exp)
|
||||
{
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do
|
||||
{
|
||||
if (exp & 1)
|
||||
{
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(const SizeT *list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx)
|
||||
{
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i)
|
||||
{
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT *dims, SizeT num_dims, NDIndex *idxs)
|
||||
{
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++)
|
||||
{
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(const SizeT *dims, SizeT num_dims, const NDIndex *indices, SizeT num_indices)
|
||||
{
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i)
|
||||
{
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices)
|
||||
{
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(const SizeT *lhs_dims, SizeT lhs_ndims, const SizeT *rhs_dims, SizeT rhs_ndims,
|
||||
SizeT *out_dims)
|
||||
{
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i)
|
||||
{
|
||||
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT *out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr)
|
||||
{
|
||||
*out_dim = *rhs_dim_sz;
|
||||
}
|
||||
else if (rhs_dim_sz == nullptr)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else if (*lhs_dim_sz == 1)
|
||||
{
|
||||
*out_dim = *rhs_dim_sz;
|
||||
}
|
||||
else if (*rhs_dim_sz == 1)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else if (*lhs_dim_sz == *rhs_dim_sz)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT *src_dims, SizeT src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
for (SizeT i = 0; i < src_ndims; ++i)
|
||||
{
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) \
|
||||
{ \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
|
||||
{
|
||||
if (i < 0)
|
||||
{
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else if (i > len)
|
||||
{
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
|
||||
{
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0)
|
||||
{
|
||||
return ((diff - 1) / step) + 1;
|
||||
}
|
||||
else if (diff < 0 && step < 0)
|
||||
{
|
||||
return ((diff + 1) / step) + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
|
||||
SliceIndex src_arr_len, const SliceIndex size)
|
||||
{
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1)
|
||||
{
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0)
|
||||
{
|
||||
/* dropping */
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||
max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca)
|
||||
{
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
|
||||
{
|
||||
/* for constant optimization */
|
||||
if (size == 1)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
}
|
||||
else if (size == 4)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
}
|
||||
else if (size == 8)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x)
|
||||
{
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x)
|
||||
{
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z)
|
||||
{
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z))
|
||||
{
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(const uint32_t *list_data, uint32_t list_len, uint32_t begin_idx,
|
||||
uint32_t end_idx)
|
||||
{
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(const uint64_t *list_data, uint64_t list_len, uint64_t begin_idx,
|
||||
uint64_t end_idx)
|
||||
{
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t *dims, uint32_t num_dims, NDIndex *idxs)
|
||||
{
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t *dims, uint64_t num_dims, NDIndex *idxs)
|
||||
{
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(const uint32_t *dims, uint32_t num_dims, const NDIndex *indices,
|
||||
uint32_t num_indices)
|
||||
{
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(const uint64_t *dims, uint64_t num_dims, const NDIndex *indices,
|
||||
uint64_t num_indices)
|
||||
{
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(const uint32_t *lhs_dims, uint32_t lhs_ndims, const uint32_t *rhs_dims,
|
||||
uint32_t rhs_ndims, uint32_t *out_dims)
|
||||
{
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(const uint64_t *lhs_dims, uint64_t lhs_ndims, const uint64_t *rhs_dims,
|
||||
uint64_t rhs_ndims, uint64_t *out_dims)
|
||||
{
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(const uint32_t *src_dims, uint32_t src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t *src_dims, uint64_t src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
} // extern "C"
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
#include <irrt/original.hpp>
|
||||
|
8
nac3core/irrt/irrt/int_types.hpp
Normal file
8
nac3core/irrt/irrt/int_types.hpp
Normal file
@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
14
nac3core/irrt/irrt/math_util.hpp
Normal file
14
nac3core/irrt/irrt/math_util.hpp
Normal file
@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> const T &max(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T> const T &min(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? b : a;
|
||||
}
|
||||
} // namespace
|
372
nac3core/irrt/irrt/original.hpp
Normal file
372
nac3core/irrt/irrt/original.hpp
Normal file
@ -0,0 +1,372 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace
|
||||
{
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T> T __nac3_int_exp_impl(T base, T exp)
|
||||
{
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do
|
||||
{
|
||||
if (exp & 1)
|
||||
{
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(const SizeT *list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx)
|
||||
{
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i)
|
||||
{
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT *dims, SizeT num_dims, NDIndex *idxs)
|
||||
{
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++)
|
||||
{
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(const SizeT *dims, SizeT num_dims, const NDIndex *indices, SizeT num_indices)
|
||||
{
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i)
|
||||
{
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices)
|
||||
{
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(const SizeT *lhs_dims, SizeT lhs_ndims, const SizeT *rhs_dims, SizeT rhs_ndims,
|
||||
SizeT *out_dims)
|
||||
{
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i)
|
||||
{
|
||||
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT *out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr)
|
||||
{
|
||||
*out_dim = *rhs_dim_sz;
|
||||
}
|
||||
else if (rhs_dim_sz == nullptr)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else if (*lhs_dim_sz == 1)
|
||||
{
|
||||
*out_dim = *rhs_dim_sz;
|
||||
}
|
||||
else if (*rhs_dim_sz == 1)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else if (*lhs_dim_sz == *rhs_dim_sz)
|
||||
{
|
||||
*out_dim = *lhs_dim_sz;
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT *src_dims, SizeT src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
for (SizeT i = 0; i < src_ndims; ++i)
|
||||
{
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) \
|
||||
{ \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
|
||||
{
|
||||
if (i < 0)
|
||||
{
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else if (i > len)
|
||||
{
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
|
||||
{
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0)
|
||||
{
|
||||
return ((diff - 1) / step) + 1;
|
||||
}
|
||||
else if (diff < 0 && step < 0)
|
||||
{
|
||||
return ((diff + 1) / step) + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
|
||||
SliceIndex src_arr_len, const SliceIndex size)
|
||||
{
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1)
|
||||
{
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0)
|
||||
{
|
||||
/* dropping */
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||
max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca)
|
||||
{
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
|
||||
{
|
||||
/* for constant optimization */
|
||||
if (size == 1)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
}
|
||||
else if (size == 4)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
}
|
||||
else if (size == 8)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x)
|
||||
{
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x)
|
||||
{
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z)
|
||||
{
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z))
|
||||
{
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(const uint32_t *list_data, uint32_t list_len, uint32_t begin_idx,
|
||||
uint32_t end_idx)
|
||||
{
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(const uint64_t *list_data, uint64_t list_len, uint64_t begin_idx,
|
||||
uint64_t end_idx)
|
||||
{
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t *dims, uint32_t num_dims, NDIndex *idxs)
|
||||
{
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t *dims, uint64_t num_dims, NDIndex *idxs)
|
||||
{
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(const uint32_t *dims, uint32_t num_dims, const NDIndex *indices,
|
||||
uint32_t num_indices)
|
||||
{
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(const uint64_t *dims, uint64_t num_dims, const NDIndex *indices,
|
||||
uint64_t num_indices)
|
||||
{
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(const uint32_t *lhs_dims, uint32_t lhs_ndims, const uint32_t *rhs_dims,
|
||||
uint32_t rhs_ndims, uint32_t *out_dims)
|
||||
{
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(const uint64_t *lhs_dims, uint64_t lhs_ndims, const uint64_t *rhs_dims,
|
||||
uint64_t rhs_ndims, uint64_t *out_dims)
|
||||
{
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(const uint32_t *src_dims, uint32_t src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t *src_dims, uint64_t src_ndims, const NDIndex *in_idx,
|
||||
NDIndex *out_idx)
|
||||
{
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
} // extern "C"
|
Loading…
Reference in New Issue
Block a user