ARTIQ can be installed using the Nix (on Linux) or MSYS2 (on Windows) package managers. Using Conda is also possible on both platforms but not recommended.
First, install the Nix package manager. Some distributions provide a package for the Nix package manager, otherwise, it can be installed via the script on the `Nix website <http://nixos.org/nix/>`_. Make sure you get Nix version 2.4 or higher.
The easiest way to obtain ARTIQ is then to install it into the user environment with ``$ nix profile install git+https://github.com/m-labs/artiq.git``. Answer "Yes" to the questions about setting Nix configuration options. This provides a minimal installation of ARTIQ where the usual commands (``artiq_master``, ``artiq_dashboard``, ``artiq_run``, etc.) are available.
This installation is however quite limited, as Nix creates a dedicated Python environment for the ARTIQ commands alone. This means that other useful Python packages that you may want (pandas, matplotlib, ...) are not available to them.
Installing multiple packages and making them visible to the ARTIQ commands requires using the Nix language. Create an empty directory with a file ``flake.nix`` with the following contents:
Then spawn a shell containing the packages with ``$ nix shell``. The ARTIQ commands with all the additional packages should now be available.
You can exit the shell by typing Control-D. The next time ``$ nix shell`` is invoked, Nix uses the cached packages so the shell startup is fast.
You can create directories containing each a ``flake.nix`` that correspond to different sets of packages. If you are familiar with Conda, using Nix in this way is similar to having multiple Conda environments.
If your favorite package is not available with Nix, contact us using the helpdesk@ email.
When installing and initializing ARTIQ using commands like ``nix shell``, ``nix develop``, or ``nix profile install``, you may encounter prompts to modify certain configuration settings. These settings correspond to the ``nixConfig`` flag within the ARTIQ flake:
::
do you want to allow configuration setting 'extra-sandbox-paths' to be set to '/opt' (y/N)?
do you want to allow configuration setting 'extra-substituters' to be set to 'https://nixbld.m-labs.hk' (y/N)?
do you want to allow configuration setting 'extra-trusted-public-keys' to be set to 'nixbld.m-labs.hk-1:5aSRVA5b320xbNvu30tqxVPXpld73bhtOeH6uAjRyHc=' (y/N)?
We recommend accepting these settings by responding with ``y``. If asked to permanently mark these values as trusted, choose ``y`` again. This action saves the configuration to ``~/.local/share/nix/trusted-settings.json``, allowing future prompts to be bypassed.
Alternatively, you can also use the option `accept-flake-config <https://nixos.org/manual/nix/stable/command-ref/conf-file#conf-accept-flake-config>`_ by appending ``--accept-flake-config`` to your nix command:
::
nix develop --accept-flake-config
Or add the option to ``~/.config/nix/nix.conf`` to make the setting more permanent:
::
extra-experimental-features = flakes
accept-flake-config = true
..note::
Should you wish to revert to the default settings, you can do so by editing the appropriate options in the aforementioned configuration files.
If the following message displays when running ``nix shell`` or ``nix develop``
::
warning: ignoring untrusted substituter 'https://nixbld.m-labs.hk', you are not a trusted user.
Run `man nix.conf` for more information on the `substituters` configuration option.
and Nix proceeds to build some packages from source, this means that you are using `multi-user mode <https://nixos.org/manual/nix/stable/installation/multi-user>`_ in Nix, for example when Nix is installed via ``pacman`` in Arch Linux.
By default, users accessing Nix in multi-user mode are "unprivileged" and cannot use untrusted substituters. To change this, edit ``/etc/nix/nix.conf`` and add the following line (or append to the key if the key already exists):
::
trusted-substituters = https://nixbld.m-labs.hk
This will add the substituter as a trusted substituter for all users using Nix.
Alternatively, add the following line:
::
trusted-users = <username> # Replace <username> with the user invoking `nix`
This will set your user as a trusted user, allowing the use of any untrusted substituters.
..warning::
Setting users as trusted users will effectively grant root access to those users. See the `Nix documentation <https://nixos.org/manual/nix/stable/command-ref/conf-file#conf-trusted-users>`_ for more information.
We recommend using our `offline installer <https://nixbld.m-labs.hk/job/artiq/extra/msys2-offline-installer/latest>`_, which contains all the necessary packages and no additional configuration is needed.
Installing ARTIQ via Conda is not recommended. Instead, Linux users should install it via Nix and Windows users should install it via MSYS2. Conda support may be removed in future ARTIQ releases and M-Labs can only provide very limited technical support for Conda.
After installing either Anaconda or Miniconda, open a new terminal (also known as command line, console, or shell and denoted here as lines starting with ``$``) and verify the following command works::
Executing just ``conda`` should print the help of the ``conda`` command. If your shell does not find the ``conda`` command, make sure that the Conda binaries are in your ``$PATH``. If ``$ echo $PATH`` does not show the Conda directories, add them: execute ``$ export PATH=$HOME/miniconda3/bin:$PATH`` if you installed Conda into ``~/miniconda3``.
Controllers for third-party devices (e.g. Thorlabs TCube, Lab Brick Digital Attenuator, etc.) that are not shipped with ARTIQ can also be installed with this script. Browse `Hydra <https://nixbld.m-labs.hk/project/artiq>`_ or see the list of NDSPs in this manual to find the names of the corresponding packages, and list them at the beginning of the script.
On Windows, if the last command that creates and installs the ARTIQ environment fails with an error similar to "seeking backwards is not allowed", try re-running the command with admin rights.
For commercial use you might need a license for Anaconda/Miniconda or for using the Anaconda package channel. `Miniforge <https://github.com/conda-forge/miniforge>`_ might be an alternative in a commercial environment as it does not include the Anaconda package channel by default. If you want to use Anaconda/Miniconda/Miniforge in a commercial environment, please check the license and the latest terms of service.
When you upgrade ARTIQ, as well as updating the software on your host machine, it may also be necessary to reflash the gateware and firmware of your core device to keep them compatible. New numbered release versions in particular incorporate breaking changes and are not generally compatible. See :ref:`reflashing-core-device` below for instructions on reflashing.
Run ``$ nix profile upgrade`` if you installed ARTIQ into your user profile. If you used a ``flake.nix`` shell environment, make a back-up copy of the ``flake.lock`` file to enable rollback, then run ``$ nix flake update`` and re-enter the environment with ``$ nix shell``.
Run ``pacman -Syu`` to update all MSYS2 packages including ARTIQ. If you get a message telling you that the shell session must be restarted after a partial update, open the shell again after the partial update and repeat the command. See the MSYS2 and Pacman manual for information on how to update individual packages if required.
When upgrading ARTIQ or when testing different versions it is recommended that new Conda environments are created instead of upgrading the packages in existing environments.
Switching between Conda environments using commands such as ``$ conda deactivate artiq-7`` and ``$ conda activate artiq-8`` is the recommended way to roll back to previous versions of ARTIQ.
If you have purchased a pre-assembled system from M-Labs or QUARTIQ, the gateware and firmware of your device will already be flashed to the newest version of ARTIQ. These steps are only necessary if you obtained your hardware in a different way, or if you want to change or upgrade your ARTIQ version after purchase.
If you have an active firmware subscription with M-Labs or QUARTIQ, you can obtain firmware that corresponds to your currently installed version of ARTIQ using AFWS (ARTIQ firmware service). One year of subscription is included with most hardware purchases. You may purchase or extend firmware subscriptions by writing to the sales@ email.
Replace ``[username]`` with the login name that was given to you with the subscription, ``[variant]`` with the name of your system variant, and ``[afws_directory]`` with the name of an empty directory, which will be created by the command if it does not exist. Enter your password when prompted and wait for the build (if applicable) and download to finish. If you experience issues with the AFWS client, write to the helpdesk@ email.
For certain configurations (KC705 or ZC705 only) it is also possible to source firmware from `the M-Labs Hydra server <https://nixbld.m-labs.hk/project/artiq>` (in ``main`` and ``zynq`` respectively).
These instructions are not applicable to Kasli-SoC, which does not use the utility ``artiq_flash`` to reflash. If your core device is a Kasli SoC, skip straight to :ref:`writing-flash`.
* With Nix, add ``aqmain.openocd-bscanspi`` to the shell packages. Be careful not to add ``pkgs.openocd`` instead - this would install OpenOCD from the NixOS package collection, which does not support ARTIQ boards.
* On Linux, first ensure that the current user belongs to the ``plugdev`` group (i.e. ``plugdev`` shown when you run ``$ groups``). If it does not, run ``$ sudo adduser $USER plugdev`` and re-login.
If you installed OpenOCD on Linux using Conda and are using the Conda environment ``artiq``, then execute the statements below. If you are using a different environment, you will have to replace ``artiq`` with the name of your environment::
First ensure the board is connected to your computer. In the case of Kasli, the JTAG adapter is integrated into the Kasli board; for flashing (and debugging) you simply need to connect your computer to the micro-USB connector on the Kasli front panel. For Kasli-SoC, which uses ``artiq_coremgmt``, an IP address supplied either with the ``-D`` option or in a correctly specified ``device_db.py`` suffices.
Flashing over network is also possible for Kasli and KC705, assuming IP networking has been set up. In this case, the ``-H HOSTNAME`` option is used; see the entry for ``artiq_flash`` in the :ref:`Utilities <flashing-loading-tool>` reference.
For Kasli, insert a SFP/RJ45 transceiver (normally included with purchases from M-Labs and QUARTIQ) into the SFP0 port and connect it to an Ethernet port in your network. If the port is 10Mbps or 100Mbps and not 1000Mbps, make sure that the SFP/RJ45 transceiver supports the lower rate. Many SFP/RJ45 transceivers only support the 1000Mbps rate. If you do not have a SFP/RJ45 transceiver that supports 10Mbps and 100Mbps rates, you may instead use a gigabit Ethernet switch in the middle to perform rate conversion.
Kasli-SoC already directly features RJ45 10/100/1000T Ethernet, but the same is still true of its SFP ports.
If you purchased a Kasli or Kasli-SoC device from M-Labs, it usually comes with the IP address ``192.168.1.75``. Once you can reach this IP, it can be changed by running: ::
Kasli-SoC is not a valid target for ``artiq_flash``; it is easiest to reboot by power cycle. For a KC705, it is necessary to specify ``artiq_flash -t kc705 start``.
If the ``ip`` config is not set, Kasli-SoC firmware defaults to using the IP address ``192.168.1.56``. It can then be changed with the procedure above.
If the ``ip`` config field is not set or set to ``use_dhcp``, the device will attempt to obtain an IP address and default gateway using DHCP. If a static IP address is nonetheless wanted, it can be flashed directly (OpenOCD must be installed and configured, as above), along with, as necessary, default gateway, IPv6, and/or MAC address:
$ artiq_mkfs flash_storage.img [-s mac xx:xx:xx:xx:xx:xx] [-s ip xx.xx.xx.xx/xx] [-s ipv4_default_route xx.xx.xx.xx] [-s ip6 xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/xx] [-s ipv6_default_route xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx]
On Kasli or Kasli SoC devices, specifying the MAC address is unnecessary, as they can obtain it from their EEPROM. If you only want to access the core device from the same subnet, default gateway and IPv4 prefix length may also be ommitted. Regardless of board, once a device is reachable by ``artiq_coremgmt``, any of these fields can be accessed using ``artiq_coremgmt config write`` and ``artiq_coremgt config read``; see also :ref:`Utilities <core-device-management-tool>`.
Check that you can ping the device. If ping fails, check that the Ethernet link LED is ON - on Kasli, it is the LED next to the SFP0 connector. As a next step, look at the messages emitted on the UART during boot. Use a program such as flterm or PuTTY to connect to the device's serial port at 115200bps 8-N-1 and reboot the device. On Kasli, the serial port is on FTDI channel 2 with v1.1 hardware (with channel 0 being JTAG) and on FTDI channel 1 with v1.0 hardware. Note that on Windows you might need to install the `FTDI drivers <https://ftdichip.com/drivers/>`_ first.
Regarding use of IPv6, note that the device also has a link-local address that corresponds to its EUI-64, which can be used simultaneously to the IPv6 address defined by using the ``ip6`` configuration key, which may be of arbitrary nature.
These steps are optional, and only need to be executed if necessary for your specific purposes. In all cases, the core device generally needs to be restarted for changes to take effect.
The idle kernel is the kernel (that is, a piece of code running on the core device; see :ref:`next topic <connecting-to-the-core-device>` for more information about kernels) which the core device runs whenever it is not connected to the host via Ethernet. This kernel is therefore stored immediately in the :ref:`core device configuration flash storage <core-device-flash-storage>`.
To flash the idle kernel, first compile an idle experiment. Since the core device is not connected to the host, RPCs (calling Python code running on the host from the kernel) are forbidden, and its ``run()`` method must be a kernel, marked correctly with the ``@kernel`` decorator. Write the compiled experiment to the core device configuration flash storage, under the key ``idle_kernel``:
The startup kernel is the kernel executed once immediately whenever the core device powers on. Uses include initializing DDSes, setting TTL directions etc. Proceed as with the idle kernel, but using the ``startup_kernel`` key in the ``artiq_coremgmt`` command.
For DRTIO systems, the startup kernel should wait until the desired destinations (including local RTIO) are up, using :meth:`artiq.coredevice.Core.get_rtio_destination_status`.
If you are using DRTIO and the default routing table (for a star topology) is not suitable to your needs, prepare and load a different routing table. See :ref:`Using DRTIO <using-drtio>`.
The core device may use any of: an external clock signal, its internal clock with external frequency reference, or its internal clock with internal crystal reference. Clock source and timing are set at power-up. To find out what clock signal you are using, check startup logs with ``artiq_coremgmt log``.
Availability of these options depends on specific board and configuration - specific settings may or may not be supported. See also :ref:`core-device-clocking`.
This feature allows you to print the channels' respective names alongside with their numbers in RTIO error messages. To enable it, run the ``artiq_rtiomap`` tool and write its result into the device config at the ``device_map`` key: ::