1
0
Fork 0

use updated upstream core_io

This commit is contained in:
Sebastien Bourdeauducq 2021-05-29 14:09:11 +08:00
parent 2f9019ca0f
commit 062b894a4b
11 changed files with 19 additions and 6522 deletions

27
Cargo.lock generated
View File

@ -38,9 +38,11 @@ checksum = "3748f82c7d366a0b4950257d19db685d4958d2fa27c6d164a3f069fec42b748b"
[[package]] [[package]]
name = "core_io" name = "core_io"
version = "0.1.20200410" version = "0.1.20210325"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "97f8932064288cc79feb4d343a399d353a6f6f001e586ece47fe518a9e8507df"
dependencies = [ dependencies = [
"memchr", "rustc_version",
] ]
[[package]] [[package]]
@ -167,12 +169,6 @@ version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c75de51135344a4f8ed3cfe2720dc27736f7711989703a0b43aadf3753c55577" checksum = "c75de51135344a4f8ed3cfe2720dc27736f7711989703a0b43aadf3753c55577"
[[package]]
name = "memchr"
version = "2.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b16bd47d9e329435e309c58469fe0791c2d0d1ba96ec0954152a5ae2b04387dc"
[[package]] [[package]]
name = "nb" name = "nb"
version = "0.1.3" version = "0.1.3"
@ -200,6 +196,21 @@ version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd7a31eed1591dcbc95d92ad7161908e72f4677f8fabf2a32ca49b4237cbf211" checksum = "bd7a31eed1591dcbc95d92ad7161908e72f4677f8fabf2a32ca49b4237cbf211"
[[package]]
name = "rustc_version"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c5f5376ea5e30ce23c03eb77cbe4962b988deead10910c372b226388b594c084"
dependencies = [
"semver",
]
[[package]]
name = "semver"
version = "0.1.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d4f410fedcf71af0345d7607d246e7ad15faaadd49d240ee3b24e5dc21a820ac"
[[package]] [[package]]
name = "smoltcp" name = "smoltcp"
version = "0.7.3" version = "0.7.3"

View File

@ -6,7 +6,6 @@ members = [
"libsupport_zynq", "libsupport_zynq",
"libasync", "libasync",
"libconfig", "libconfig",
"libcoreio",
"experiments", "experiments",
"szl", "szl",
] ]
@ -19,6 +18,3 @@ opt-level = 'z'
lto = true lto = true
debug-assertions = false debug-assertions = false
overflow-checks = false overflow-checks = false
[patch.crates-io]
core_io = { path = "./libcoreio" }

View File

@ -1,14 +0,0 @@
[package]
authors = ["M-Labs"]
name = "core_io"
version = "0.1.20200410"
[lib]
name = "core_io"
[dependencies]
memchr = { version = "2", default-features = false, optional = true }
[features]
alloc = []
collections = ["alloc", "memchr"]

File diff suppressed because it is too large Load Diff

View File

@ -1,896 +0,0 @@
use crate::io::prelude::*;
use core::cmp;
use crate::io::{self, Error, ErrorKind, Initializer, SeekFrom};
#[cfg(feature = "collections")]
use core::convert::TryInto;
#[cfg(feature="collections")]
use collections::vec::Vec;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
/// A `Cursor` wraps an in-memory buffer and provides it with a
/// [`Seek`] implementation.
///
/// `Cursor`s are used with in-memory buffers, anything implementing
/// `AsRef<[u8]>`, to allow them to implement [`Read`] and/or [`Write`],
/// allowing these buffers to be used anywhere you might use a reader or writer
/// that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<`[`Vec`]`<u8>>` and
/// `Cursor<`[`&[u8]`][bytes]`>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [`Seek`]: trait.Seek.html
/// [`Read`]: ../../std/io/trait.Read.html
/// [`Write`]: ../../std/io/trait.Write.html
/// [`Vec`]: ../../std/vec/struct.Vec.html
/// [bytes]: ../../std/primitive.slice.html
/// [`File`]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// writer.seek(SeekFrom::End(-10))?;
///
/// for i in 0..10 {
/// writer.write(&[i])?;
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = File::create("foo.txt")?;
///
/// write_ten_bytes_at_end(&mut file)?;
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much slower than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying in-memory buffer.
///
/// Cursor initial position is `0` even if underlying buffer (e.g., `Vec`)
/// is not empty. So writing to cursor starts with overwriting `Vec`
/// content, not with appending to it.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T {
self.inner
}
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T {
&self.inner
}
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 {
self.pos
}
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) {
self.pos = pos;
}
}
impl<T> io::Seek for Cursor<T>
where
T: AsRef<[u8]>,
{
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let (base_pos, offset) = match style {
SeekFrom::Start(n) => {
self.pos = n;
return Ok(n);
}
SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
SeekFrom::Current(n) => (self.pos, n),
};
let new_pos = if offset >= 0 {
base_pos.checked_add(offset as u64)
} else {
base_pos.checked_sub((offset.wrapping_neg()) as u64)
};
match new_pos {
Some(n) => {
self.pos = n;
Ok(self.pos)
}
None => Err(Error::new(
ErrorKind::InvalidInput,
"invalid seek to a negative or overflowing position",
)),
}
}
fn stream_len(&mut self) -> io::Result<u64> {
Ok(self.inner.as_ref().len() as u64)
}
fn stream_position(&mut self) -> io::Result<u64> {
Ok(self.pos)
}
}
impl<T> Read for Cursor<T>
where
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.get_ref().as_ref(), buf)?;
self.pos += n as u64;
Ok(n)
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
let n = buf.len();
Read::read_exact(&mut self.get_ref().as_ref(), buf)?;
self.pos += n as u64;
Ok(())
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
#[cfg(feature = "collections")]
impl<T> BufRead for Cursor<T>
where
T: AsRef<[u8]>,
{
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) {
self.pos += amt as u64;
}
}
// Non-resizing write implementation
#[inline]
fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(*pos_mut, slice.len() as u64);
let amt = (&mut slice[(pos as usize)..]).write(buf)?;
*pos_mut += amt as u64;
Ok(amt)
}
// Resizing write implementation
#[cfg(feature = "collections")]
fn vec_write(pos_mut: &mut u64, vec: &mut Vec<u8>, buf: &[u8]) -> io::Result<usize> {
let pos: usize = (*pos_mut).try_into().map_err(|_| {
Error::new(
ErrorKind::InvalidInput,
"cursor position exceeds maximum possible vector length",
)
})?;
// Make sure the internal buffer is as least as big as where we
// currently are
let len = vec.len();
if len < pos {
// use `resize` so that the zero filling is as efficient as possible
vec.resize(pos, 0);
}
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let space = vec.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
vec[pos..pos + left.len()].copy_from_slice(left);
vec.extend_from_slice(right);
}
// Bump us forward
*pos_mut = (pos + buf.len()) as u64;
Ok(buf.len())
}
impl Write for Cursor<&mut [u8]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "collections")]
impl Write for Cursor<&mut Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "collections")]
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "alloc")]
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
use crate::io::{Cursor, IoSlice, IoSliceMut, SeekFrom};
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_mem_mut_writer() {
let mut vec = Vec::new();
let mut writer = Cursor::new(&mut vec);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_box_slice_writer_vectored() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[0])]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[1, 2, 3]), IoSlice::new(&[4, 5, 6, 7]),])
.unwrap(),
7,
);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[8, 9])]).unwrap(), 1);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[10])]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_vectored() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[0])]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[1, 2, 3]), IoSlice::new(&[4, 5, 6, 7])],)
.unwrap(),
7,
);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[8, 9])]).unwrap(), 1);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[10])]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_mem_reader_vectored() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2),])
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7].into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader_vectored() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7].into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2)],)
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_slice_reader_vectored() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2)],)
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_exact() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert!(reader.read_exact(&mut buf).is_ok());
let mut buf = [8];
assert!(reader.read_exact(&mut buf).is_ok());
assert_eq!(buf[0], 0);
assert_eq!(reader.len(), 7);
let mut buf = [0, 0, 0, 0, 0, 0, 0];
assert!(reader.read_exact(&mut buf).is_ok());
assert_eq!(buf, [1, 2, 3, 4, 5, 6, 7]);
assert_eq!(reader.len(), 0);
let mut buf = [0];
assert!(reader.read_exact(&mut buf).is_err());
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec![10]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_past_i64() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut r = Cursor::new(vec![10]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec![10]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
#[cfg(target_pointer_width = "32")]
fn vec_seek_and_write_past_usize_max() {
let mut c = Cursor::new(Vec::new());
c.set_position(<usize>::max_value() as u64 + 1);
assert!(c.write_all(&[1, 2, 3]).is_err());
}
#[test]
fn test_partial_eq() {
assert_eq!(Cursor::new(Vec::<u8>::new()), Cursor::new(Vec::<u8>::new()));
}
#[test]
fn test_eq() {
struct AssertEq<T: Eq>(pub T);
let _: AssertEq<Cursor<Vec<u8>>> = AssertEq(Cursor::new(Vec::new()));
}
}

View File

@ -1,551 +0,0 @@
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
use core::convert::From;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across [`std::io`] for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out [`io::Error`] directly and
/// is otherwise a direct mapping to [`Result`].
///
/// While usual Rust style is to import types directly, aliases of [`Result`]
/// often are not, to make it easier to distinguish between them. [`Result`] is
/// generally assumed to be [`std::result::Result`][`Result`], and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of [`std::result::Result`][`Result`].
///
/// [`std::io`]: ../io/index.html
/// [`io::Error`]: ../io/struct.Error.html
/// [`Result`]: ../result/enum.Result.html
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// io::stdin().read_line(&mut buffer)?;
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the [`Read`], [`Write`], [`Seek`], and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// [`ErrorKind`].
///
/// [`Read`]: ../io/trait.Read.html
/// [`Write`]: ../io/trait.Write.html
/// [`Seek`]: ../io/trait.Seek.html
/// [`ErrorKind`]: enum.ErrorKind.html
pub struct Error {
repr: Repr,
}
impl fmt::Debug for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.repr, f)
}
}
enum Repr {
Os(i32),
Simple(ErrorKind),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
///
/// It is used with the [`io::Error`] type.
///
/// [`io::Error`]: struct.Error.html
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[allow(deprecated)]
#[non_exhaustive]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike [`InvalidInput`], this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
///
/// [`InvalidInput`]: #variant.InvalidInput
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to [`write`] returned [`Ok(0)`].
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
///
/// [`write`]: ../../std/io/trait.Write.html#tymethod.write
/// [`Ok(0)`]: ../../std/io/type.Result.html
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
}
impl ErrorKind {
pub(crate) fn as_str(&self) -> &'static str {
match *self {
ErrorKind::NotFound => "entity not found",
ErrorKind::PermissionDenied => "permission denied",
ErrorKind::ConnectionRefused => "connection refused",
ErrorKind::ConnectionReset => "connection reset",
ErrorKind::ConnectionAborted => "connection aborted",
ErrorKind::NotConnected => "not connected",
ErrorKind::AddrInUse => "address in use",
ErrorKind::AddrNotAvailable => "address not available",
ErrorKind::BrokenPipe => "broken pipe",
ErrorKind::AlreadyExists => "entity already exists",
ErrorKind::WouldBlock => "operation would block",
ErrorKind::InvalidInput => "invalid input parameter",
ErrorKind::InvalidData => "invalid data",
ErrorKind::TimedOut => "timed out",
ErrorKind::WriteZero => "write zero",
ErrorKind::Interrupted => "operation interrupted",
ErrorKind::Other => "other os error",
ErrorKind::UnexpectedEof => "unexpected end of file",
}
}
}
/// Intended for use for errors not exposed to the user, where allocating onto
/// the heap (for normal construction via Error::new) is too costly.
impl From<ErrorKind> for Error {
/// Converts an [`ErrorKind`] into an [`Error`].
///
/// This conversion allocates a new error with a simple representation of error kind.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// let not_found = ErrorKind::NotFound;
/// let error = Error::from(not_found);
/// assert_eq!("entity not found", format!("{}", error));
/// ```
///
/// [`ErrorKind`]: ../../std/io/enum.ErrorKind.html
/// [`Error`]: ../../std/io/struct.Error.html
#[inline]
fn from(kind: ErrorKind) -> Error {
Error { repr: Repr::Simple(kind) }
}
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where
E: Into<String>,
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error { repr: Repr::Custom(Box::new(Custom { kind, error })) }
}
/// Creates a new instance of an `Error` from a particular OS error code.
///
/// # Examples
///
/// On Linux:
///
/// ```
/// # if cfg!(target_os = "linux") {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(22);
/// assert_eq!(error.kind(), io::ErrorKind::InvalidInput);
/// # }
/// ```
///
/// On Windows:
///
/// ```
/// # if cfg!(windows) {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(10022);
/// assert_eq!(error.kind(), io::ErrorKind::InvalidInput);
/// # }
/// ```
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_os_error(err: &Error) {
/// if let Some(raw_os_err) = err.raw_os_error() {
/// println!("raw OS error: {:?}", raw_os_err);
/// } else {
/// println!("Not an OS error");
/// }
/// }
///
/// fn main() {
/// // Will print "raw OS error: ...".
/// print_os_error(&Error::last_os_error());
/// // Will print "Not an OS error".
/// print_os_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
Repr::Simple(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {:?}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
/// use std::{error, fmt};
/// use std::fmt::Display;
///
/// #[derive(Debug)]
/// struct MyError {
/// v: String,
/// }
///
/// impl MyError {
/// fn new() -> MyError {
/// MyError {
/// v: "oh no!".to_string()
/// }
/// }
///
/// fn change_message(&mut self, new_message: &str) {
/// self.v = new_message.to_string();
/// }
/// }
///
/// impl error::Error for MyError {}
///
/// impl Display for MyError {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "MyError: {}", &self.v)
/// }
/// }
///
/// fn change_error(mut err: Error) -> Error {
/// if let Some(inner_err) = err.get_mut() {
/// inner_err.downcast_mut::<MyError>().unwrap().change_message("I've been changed!");
/// }
/// err
/// }
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&change_error(Error::last_os_error()));
/// // Will print "Inner error: ...".
/// print_error(&change_error(Error::new(ErrorKind::Other, MyError::new())));
/// }
/// ```
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// if let Some(inner_err) = err.into_inner() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(c) => Some(c.error),
}
}
/// Returns the corresponding `ErrorKind` for this error.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// println!("{:?}", err.kind());
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::AddrInUse, "oh no!"));
/// }
/// ```
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
Repr::Simple(kind) => kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Repr::Os(code) => fmt
.debug_struct("Os")
.field("code", &code)
.finish(),
Repr::Custom(ref c) => fmt::Debug::fmt(&c, fmt),
Repr::Simple(kind) => fmt.debug_tuple("Kind").field(&kind).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
Repr::Simple(kind) => write!(fmt, "{}", kind.as_str()),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync + Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use super::{Custom, Error, ErrorKind, Repr};
use crate::error;
use crate::fmt;
use crate::sys::decode_error_kind;
use crate::sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let kind = decode_error_kind(code);
let err = Error {
repr: Repr::Custom(box Custom {
kind: ErrorKind::InvalidInput,
error: box Error { repr: super::Repr::Os(code) },
}),
};
let expected = format!(
"Custom {{ \
kind: InvalidInput, \
error: Os {{ \
code: {:?}, \
kind: {:?}, \
message: {:?} \
}} \
}}",
code, kind, msg
);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("asdf")
}
}
impl error::Error for TestError {}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().to_string());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,378 +0,0 @@
use core::cmp;
use core::fmt;
use crate::io::{
self, Error, ErrorKind, Initializer, Read, Seek, SeekFrom, Write,
};
#[cfg(feature = "collections")] use crate::io::BufRead;
use core::mem;
#[cfg(feature="collections")]
use collections::{
vec::Vec,
string::String,
};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
// =============================================================================
// Forwarding implementations
impl<R: Read + ?Sized> Read for &mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
(**self).initializer()
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<W: Write + ?Sized> Write for &mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
(**self).flush()
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<S: Seek + ?Sized> Seek for &mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
(**self).seek(pos)
}
}
#[cfg(feature = "collections")]
impl<B: BufRead + ?Sized> BufRead for &mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
(**self).fill_buf()
}
#[inline]
fn consume(&mut self, amt: usize) {
(**self).consume(amt)
}
#[cfg(feature="collections")]
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
#[cfg(feature="collections")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
#[cfg(feature="collections")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
(**self).flush()
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="collections")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
(**self).seek(pos)
}
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
(**self).fill_buf()
}
#[inline]
fn consume(&mut self, amt: usize) {
(**self).consume(amt)
}
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// Used by panicking::default_hook
#[cfg(test)]
/// This impl is only used by printing logic, so any error returned is always
/// of kind `Other`, and should be ignored.
#[cfg(feature="collections")]
impl Write for Box<dyn (::realstd::io::Write) + Send> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf).map_err(|_| ErrorKind::Other.into())
}
fn flush(&mut self) -> io::Result<()> {
(**self).flush().map_err(|_| ErrorKind::Other.into())
}
}
// =============================================================================
// In-memory buffer implementations
/// Read is implemented for `&[u8]` by copying from the slice.
///
/// Note that reading updates the slice to point to the yet unread part.
/// The slice will be empty when EOF is reached.
impl Read for &[u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
// First check if the amount of bytes we want to read is small:
// `copy_from_slice` will generally expand to a call to `memcpy`, and
// for a single byte the overhead is significant.
if amt == 1 {
buf[0] = a[0];
} else {
buf[..amt].copy_from_slice(a);
}
*self = b;
Ok(amt)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
// First check if the amount of bytes we want to read is small:
// `copy_from_slice` will generally expand to a call to `memcpy`, and
// for a single byte the overhead is significant.
if buf.len() == 1 {
buf[0] = a[0];
} else {
buf.copy_from_slice(a);
}
*self = b;
Ok(())
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
buf.extend_from_slice(*self);
let len = self.len();
*self = &self[len..];
Ok(len)
}
}
#[cfg(feature="collections")]
impl BufRead for &[u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(*self)
}
#[inline]
fn consume(&mut self, amt: usize) {
*self = &self[amt..];
}
}
/// Write is implemented for `&mut [u8]` by copying into the slice, overwriting
/// its data.
///
/// Note that writing updates the slice to point to the yet unwritten part.
/// The slice will be empty when it has been completely overwritten.
impl Write for &mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// Write is implemented for `Vec<u8>` by appending to the vector.
/// The vector will grow as needed.
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +0,0 @@
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Seek, Write};
#[cfg(feature = "collections")] pub use super::BufRead;

View File

@ -1,269 +0,0 @@
#![allow(missing_copy_implementations)]
use core::fmt;
use core::mem;
use crate::io::{self, ErrorKind, Initializer, Read, Write};
#[cfg(feature = "collections")] use crate::io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If youre wanting to copy the contents of one file to another and youre
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: ../fs/fn.copy.html
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// io::copy(&mut reader, &mut writer)?;
///
/// assert_eq!(&b"hello"[..], &writer[..]);
/// Ok(())
/// }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where
R: Read,
W: Write,
{
let mut buf = unsafe {
#[allow(deprecated)]
let mut buf: [u8; super::DEFAULT_BUF_SIZE] = mem::uninitialized();
reader.initializer().initialize(&mut buf);
buf
};
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty`]. Please see
/// the documentation of [`empty()`][`empty`] for more details.
///
/// [`empty`]: fn.empty.html
pub struct Empty {
_priv: (),
}
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return [`Ok`]`(0)`.
///
/// [`Ok`]: ../result/enum.Result.html#variant.Ok
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
pub fn empty() -> Empty {
Empty { _priv: () }
}
impl Read for Empty {
#[inline]
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> {
Ok(0)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
#[cfg(feature="collections")]
impl BufRead for Empty {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(&[])
}
#[inline]
fn consume(&mut self, _n: usize) {}
}
impl fmt::Debug for Empty {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Empty { .. }")
}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat {
byte: u8,
}
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
pub fn repeat(byte: u8) -> Repeat {
Repeat { byte }
}
impl Read for Repeat {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl fmt::Debug for Repeat {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Repeat { .. }")
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink {
_priv: (),
}
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
pub fn sink() -> Sink {
Sink { _priv: () }
}
impl Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
Ok(buf.len())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl fmt::Debug for Sink {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Sink { .. }")
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
use crate::io::{copy, empty, repeat, sink};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut dyn Read, &mut w as &mut dyn Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

View File

@ -1,51 +0,0 @@
//! <p id="core_io-show-docblock"></p>
//! This is just a listing of the functionality available in this crate. See
//! the [std documentation](https://doc.rust-lang.org/nightly/std/io/index.html)
//! for a full description of the functionality.
#![allow(stable_features,unused_features)]
#![feature(question_mark,const_fn,copy_from_slice,try_from,str_internals,align_offset,slice_internals)]
#![cfg_attr(any(feature="alloc",feature="collections"),feature(alloc))]
#![cfg_attr(pattern_guards,feature(bind_by_move_pattern_guards,nll))]
#![cfg_attr(non_exhaustive,feature(non_exhaustive))]
#![cfg_attr(unicode,feature(str_char))]
#![cfg_attr(unicode,feature(unicode))]
#![no_std]
#[cfg_attr(feature="collections",macro_use)]
#[cfg_attr(feature="collections",allow(unused_imports))]
#[cfg(feature="collections")] extern crate alloc as collections;
#[cfg(feature="alloc")] extern crate alloc;
#[cfg(rustc_unicode)]
extern crate rustc_unicode;
#[cfg(std_unicode)]
extern crate std_unicode;
#[cfg(not(feature="collections"))]
pub type ErrorString = &'static str;
// Provide Box::new wrapper
#[cfg(not(feature="alloc"))]
struct FakeBox<T>(core::marker::PhantomData<T>);
#[cfg(not(feature="alloc"))]
impl<T> FakeBox<T> {
fn new(val: T) -> T {
val
}
}
// Needed for older compilers, to ignore vec!/format! macros in tests
#[cfg(not(feature="collections"))]
#[allow(unused)]
macro_rules! vec (
( $ elem : expr ; $ n : expr ) => { () };
( $ ( $ x : expr ) , * ) => { () };
( $ ( $ x : expr , ) * ) => { () };
);
#[cfg(not(feature="collections"))]
#[allow(unused)]
macro_rules! format {
( $ ( $ arg : tt ) * ) => { () };
}
mod io;
pub use io::*;