forked from M-Labs/nalgebra
Merge pull request #1050 from metric-space/polar-decomposition-take-2
Take-2 of polar-decomposition
This commit is contained in:
commit
99ac8c4032
@ -1,8 +1,8 @@
|
||||
use crate::storage::Storage;
|
||||
use crate::{
|
||||
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
|
||||
SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, OMatrix, RealField, Schur,
|
||||
SymmetricEigen, SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
||||
};
|
||||
|
||||
/// # Rectangular matrix decomposition
|
||||
@ -17,6 +17,7 @@ use crate::{
|
||||
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
|
||||
/// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
|
||||
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
|
||||
/// | Polar (Left Polar) | `P' * U` | `U` is semi-unitary/unitary and `P'` is a positive semi-definite Hermitian Matrix
|
||||
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
/// Computes the bidiagonalization using householder reflections.
|
||||
pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
|
||||
@ -186,6 +187,62 @@ impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||
}
|
||||
|
||||
/// Computes the Polar Decomposition of a `matrix` (indirectly uses SVD).
|
||||
pub fn polar(self) -> (OMatrix<T, R, R>, OMatrix<T, R, C>)
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<T, R, C>
|
||||
+ Allocator<T, DimMinimum<R, C>, R>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T, R, R>
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||
+ Allocator<T, C>
|
||||
+ Allocator<T, R>
|
||||
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
|
||||
+ Allocator<T, DimMinimum<R, C>, C>
|
||||
+ Allocator<T, R, DimMinimum<R, C>>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
SVD::new_unordered(self.into_owned(), true, true)
|
||||
.to_polar()
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to compute the Polar Decomposition of a `matrix` (indirectly uses SVD).
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0 when computing the SVD.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the SVD computation algorithm.
|
||||
pub fn try_polar(
|
||||
self,
|
||||
eps: T::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<T, R, C>
|
||||
+ Allocator<T, DimMinimum<R, C>, R>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T, R, R>
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||
+ Allocator<T, C>
|
||||
+ Allocator<T, R>
|
||||
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
|
||||
+ Allocator<T, DimMinimum<R, C>, C>
|
||||
+ Allocator<T, R, DimMinimum<R, C>>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
SVD::try_new_unordered(self.into_owned(), true, true, eps, max_niter)
|
||||
.and_then(|svd| svd.to_polar())
|
||||
}
|
||||
}
|
||||
|
||||
/// # Square matrix decomposition
|
||||
|
@ -641,6 +641,28 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// converts SVD results to Polar decomposition form of the original Matrix: `A = P' * U`.
|
||||
///
|
||||
/// The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition)
|
||||
/// Returns None if the singular vectors of the SVD haven't been calculated
|
||||
pub fn to_polar(&self) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||
where
|
||||
DefaultAllocator: Allocator<T, R, C> //result
|
||||
+ Allocator<T, DimMinimum<R, C>, R> // adjoint
|
||||
+ Allocator<T, DimMinimum<R, C>> // mapped vals
|
||||
+ Allocator<T, R, R> // result
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>, // square matrix
|
||||
{
|
||||
match (&self.u, &self.v_t) {
|
||||
(Some(u), Some(v_t)) => Some((
|
||||
u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e)))
|
||||
* u.adjoint(),
|
||||
u * v_t,
|
||||
)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
|
||||
|
@ -153,6 +153,25 @@ mod proptest_tests {
|
||||
prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn svd_polar_decomposition(m in dmatrix_($scalar)) {
|
||||
let svd = m.clone().svd_unordered(true, true);
|
||||
let (p, u) = svd.to_polar().unwrap();
|
||||
|
||||
assert_relative_eq!(m, &p* &u, epsilon = 1.0e-5);
|
||||
// semi-unitary check
|
||||
assert!(u.is_orthogonal(1.0e-5) || u.transpose().is_orthogonal(1.0e-5));
|
||||
// hermitian check
|
||||
assert_relative_eq!(p, p.adjoint(), epsilon = 1.0e-5);
|
||||
|
||||
/*
|
||||
* Same thing, but using the method instead of calling the SVD explicitly.
|
||||
*/
|
||||
let (p2, u2) = m.clone().polar();
|
||||
assert_eq!(p, p2);
|
||||
assert_eq!(u, u2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user